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Abstract 

Background:  While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, 
accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem 
cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected 
marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaning‑
fully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. 
However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an 
unbiased approach for classifying cell identity is required.

Methods:  The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A 
hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, pro‑
vided in the R package DevKidCC (github.​com/​Kidne​yRege​nerat​ion/​DevKi​dCC), was then used to predict relative cell 
identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, 
interrogating the impact of such variations. The package contains custom functions for the display of differential gene 
expression within cellular subtypes.

Results:  DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences 
in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and 
unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of 
note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles 
that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, 
DevKidCC identified a consequential depletion of nephron progenitors.

Conclusions:  The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity 
within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as 
are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid 
comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating 
new approaches.
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Background
Single-cell RNA sequencing has transformed how we 
approach biological questions at the transcriptional level, 
facilitating accurate evaluation of cellular heterogeneity 
within complex samples, including entire tissues. When 
coupled with approaches for molecular lineage tagging 
[1] and computational approaches to analyse pseudo-
time [2–4] and RNA velocity [5, 6], gene expression in 
complex tissues such as the kidney can be studied at an 
unprecedented resolution. Despite these advantages, 
classification of cellular identity remains challenging and 
variable between datasets, even when analysing simi-
lar cellular systems. Currently, a common approach for 
identifying cell populations within single-cell data is to 
first cluster cells, compute differentially expressed genes 
between clusters and label clusters of cells based on 
expression of known marker genes [4, 7, 8]. The choice 
of clusters can be arbitrary, with users defining the num-
ber of clusters, thereby raising the potential for biases 
in the reproducibility of cell-type labels [9]. Placement 
of cells into a cluster relies on transcriptional similarity 
[10], hence there needs to be a large enough population 
with a distinct gene signature for this to occur. Cell clus-
ters are also commonly defined based upon one or a few 
known differentially expressed genes rather than their 
global transcriptional signature. Finally, technical chal-
lenges such as batch variation can impact definitive cel-
lular identification.

The application of single-cell profiling to develop-
mental biology presents unique challenges due to the 
presence of intermediate cell types undergoing differen-
tiation during morphogenesis. The mammalian kidney 
contains more than 25 cell types in the mature postnatal 
tissue, arising from a smaller number of progenitor cell 
types including nephron, stromal, endothelial and ure-
teric progenitors. Organogenesis is driven via reciprocal 
signalling and self-organisation with many intermediate 
transcriptional states that are less well defined, making 
the classification of cell types at the single-cell level both 
extremely useful but particularly difficult (reviewed in 
Little and Combes [11]). This is further complicated with 
hPSC-derived kidney organoid datasets. While protocols 
for differentiating kidney organoids from hPSC attempt 
to replicate in  vivo kidney differentiation, they are lim-
ited and contain emerging non-specific, off-target, or 
synthetic cell types [12–15]. Here, unbiased classification 
of cellular identity is a computational challenge. Indeed, 
recent single-cell profiling of human fetal kidney (HFK) 
datasets have shown that the classical canonical markers 
for many cell identities within the kidney are not unique 
to these cell types but are also expressed at lower levels 
within other populations [15–18]. This makes cell clas-
sification in organoids more challenging when analysing 

gene expression of these markers in the single-cell clus-
ters. The ability to robustly identify and classify cells in 
hPSC-derived organoid data is crucial to facilitate useful 
comparisons between datasets, particularly data gener-
ated using different differentiation protocols and cell 
lines as well as in response to mutation or perturbation. 
To compare between organoid protocols, studies have 
generated organoids for data integration and direct com-
parison [12, 14]. In other work, existing data has been 
integrated with new data with batch correction methods 
[19, 20] to identify conserved and unique features. These 
analyses help to improve and refine protocols towards a 
more accurate endpoint tissue.

One approach to cellular identification is to apply a 
small set of ‘known’ genes to identify clusters within a 
dataset based upon an existing reference dataset that has 
been accurately classified. Reviewing 13 published kid-
ney or ureteric bud organoid single-cell RNA-seq data-
sets (Table 1), seven used a published HFK reference to 
find congruence with their clustered organoid cell pop-
ulations either through integration or training a unique 
random forest classifier. However, many different HFK 
references were used across these publications while 
other analyses simply selected DE genes for classifica-
tion without a reference source. Cell classification may 
be inconsistent when using various references contain-
ing different proportions of cells, possibly captured at 
different ages or regions of the tissue. Indeed, the most 
commonly used HFK reference only contained cells from 
the cortex of a 16-week kidney and hence was reported 
to contain few nephron cells and no ureteric epithelium 
[27]. There have been many tools developed to utilise 
reference data to classify a related query dataset, with 
scrna-​tools.​org [4] listing 110 tools in the ‘Classification’ 
category. These tools extract cell type information from 
an annotated reference and apply that to a query dataset. 
Most rely upon the user to supply the reference data and 
for those that supply a reference, none are directly rele-
vant to hPSC-derived kidney organoids. The R packages 
scTyper [50] and scClassify [51] have models pre-trained 
on available kidney references; however, these are not 
ideal for the classification of the human developing kid-
ney, due to training on mouse cell data (scClassify), or 
using gene sets of limited adult kidney cell types rather 
than developing kidney cell populations (scTyper). The 
browser-based tool, Azimuth, from HuBMAP (https://​
azimu​th.​hubma​pcons​ortium.​org/) [52] provides refer-
ence-based mapping for an uploaded single-cell gene 
expression matrix; however, the relevant available ref-
erences are either human adult kidney or a human fetal 
development, the latter lacking the required granularity 
for the developing kidney. As such, there is a need for a 
tool that can be used to directly and accurately classify 

http://scrna-tools.org
https://azimuth.hubmapconsortium.org/
https://azimuth.hubmapconsortium.org/
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the cell types present within kidney organoids based on 
cell types within the developing human kidney.

Here we have taken reference HFK datasets from three 
publications that span multiple ages and kidney regions 
(Table  1), performed individual annotations of the cells 
present based on prior information, then used all confi-
dently classified cells to train classification models using 
the R package scPred [53], a generalisable method which 
has showed high accuracy in different experiments and 
datasets from multiple tissues, and considered a top per-
former in benchmarking studies [9]. We finally utilise 
established knowledge of kidney developmental biology 
to refine the classification of off-target cell types. The 
resulting model, referred to as DevKidCC, provides a 
robust and accurate classification of cells in novel single-
cell datasets generated from developing human kidney or 
stem cell-derived kidney organoids. DevKidCC defines 
a model of cellular identity organised in a hierarchical 
manner to represent the key developmental trajectories 
of lineages within the developing kidney. The classifica-
tion method is complemented with custom visualization 
tools in the DevKidCC package. This classifier was then 
used to investigate published kidney organoid datasets 
to compare organoid patterning and gene expression 
profiles across these datasets. We present a variety of 
applications of DevKidCC to the reanalysis of existing 
data. This analysis revealed differences in cell type pro-
portions, nephron patterning and maturation between 
kidney organoid protocols. We also applied DevKidCC 
to investigate approaches for directed differentiation to 
one cell population, the ureteric epithelium, and dissect 
the effect of all-trans retinoic acid on nephron patterning 
and podocyte maturation. While DevKidCC is specifi-
cally trained on HFK for application to kidney organoid 
models, the development framework presented here 
could be applied for any tissue system to generate a cell 
classification model.

Methods
DevKidCC algorithm
DevKidCC (Developing Kidney Cell Classifier) is a func-
tion written in R designed to provide an accurate, robust 
and reproducible method to classify single cell RNA-
sequencing datasets containing human developing 
kidney-like cells. The algorithm has two steps: data pre-
processing and cell classification. Below we describe the 
development and utilisation of these steps.

Data pre‑processing
The required input is a scRNA-seq dataset as a Seurat 
[7, 8] object. The first step is extraction of the raw count 
matrix, which is then normalised by dividing the total 
expression of each gene by the total gene expression per 

cell then multiplied by a scale factor of 10,000 and natural 
log-transformed with pseudocount of 1.

Cell classification
We generated a comprehensive developing kidney ref-
erence single-cell dataset by harmonising the raw data 
from multiple high-quality human fetal kidney datasets. 
The annotation of the reference included three tiers with 
increasing specificity, with a clear hierarchical structure 
between the tiers. This dataset was then used to train 
machine learning models using the R package scPred 
[53]. One model was trained for each node of identities 
within the classification hierarchy.

Utilising scPred [53] the classifiers were trained using 
the same parameters, with the relevant cells inputted for 
each. The feature space used was the top 100 principal 
components. The classifiers were trained using a support 
vector machine with a radial kernel using one round of 
harmonisation. The classifiers are stored as a scPred [53]
object and can be used to classify cells within a Seurat 
[7, 8] object using the scPred [53] package. These classi-
fiers will calculate the probability of a cell belonging to 
the trained identities within that classifier, giving a prob-
ability score between 0 and 1 for each identity. It will 
then assign an identity of the highest score above the set 
threshold or call the cell unassigned if no identity scores 
above the threshold. Classification is organised in a bio-
logically relevant hierarchy so as to optimally and accu-
rately identify the cellular identity of all analysed cells. 
All cells are first classified using the first-tier model, con-
taining generalised lineage identities of stroma, nephron 
progenitors, nephron, ureteric epithelium and endothe-
lium. After probability calculation using the first-tier 
model, cells that do not pass the threshold are classified 
as unassigned. The area under the AUROC and AUPRC 
to decide a threshold were determined using the MLeval 
R package from CRAN https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​MLeval/​index.​html [54]. The threshold is set to 
0.7 by default but can be adjusted by the user, which can 
be useful if the user wants to classify cells with decreas-
ing degrees of probability. NPC cells were subjected to 
further investigation by subsetting and reclustering at a 
resolution level of 0.5 using FindClusters and identify-
ing the percentage of cells expressing PAX2 with clusters 
below 30% being relabelled as NPC-like. Cells assigned to 
stroma, nephron and ureteric epithelium are passed into 
a second tier of classification specific to these identities. 
It is important to note that at the second and third clas-
sification tiers, there is no thresholding, i.e., all cells are 
assigned an identity with no cells classed as unassigned. 
The second-tier ureteric epithelium model is trained on 
the tip, cortical, outer and inner medullary cell identities. 
The second-tier stroma model is trained on the stromal 

https://cran.r-project.org/web/packages/MLeval/index.html
https://cran.r-project.org/web/packages/MLeval/index.html
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progenitors, cortex, medullary and mesangial cell iden-
tities. The second-tier nephron model is trained on the 
early nephron, distal nephron, proximal nephron, renal 
corpuscle and nephron cell cycle population. The distal 
nephron, proximal nephron and renal corpuscle are then 
further classified into more specific identities in a third 
tier of models. The third-tier distal nephron model is 
trained on early distal/medial cells, distal tubule and loop 
of Henle cells. The third-tier proximal nephron model 
is trained on early proximal tubule and proximal tubule 
cells. The third-tier renal corpuscle model is trained on 
parietal epithelial cells, early podocytes and podocytes. 
Each stage of the classification step is recorded as a meta-
data column, as is the final classification for each cell. All 
the probability scores and tier classifications are read-
ily accessible within the Seurat [7, 8] object for further 
analysis.

Comprehensive reference generation
Raw data was downloaded from GEO database from 
repositories GSE114530 [23] and GSE124472 [25] or 
provided to us directly by the authors, since made avail-
able at EMBL-EBI ArrayExpress under accession number 
E-MTAB-9083 [21]. The data as CellRanger output was 
read into R and processed using Seurat [7, 8] (v3.2.2), 
using SCTransform [55] for pre-processing. Clustering 
and manual annotation were performed on each data-
set individually, referring back to the original papers and 
using established markers enriched in clusters to classify 
each cluster. Once annotated, datasets were integrated 
using Harmony [56] with 100 PCAs and 10000 variable 
features.

Organoid gene expression database
All available single-cell RNA-sequencing kidney orga-
noid datasets were downloaded (from Gene Expression 
Omnibus (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) with 
accession numbers GSE118184, GSE109718, GSE119561, 
GSE114802, GSE115986, GSE132026, GSE124472, 
GSE152014, GSE161255, GSE152685, GSE131086) [25, 
30, 33–35, 40, 42, 44, 46, 48]) and used to build a data-
base. This database was generated by running DevKidCC, 
extracting summaries of the gene expression informa-
tion at each classification tier and combining these into 
a formatted table. This database can be used to directly 
compare gene expression between existing datasets, also 
novel datasets classified using DevKidCC. The link to 
download this database is available at https://​kidne​yrege​
nerat​ion.​github.​io/​DevKi​dCC/​index.​html [57].

DevKidCC Kidney Organoid Gene Explorer shiny app
To make visualisation of the organoid database pos-
sible outside of using R, a shiny app was developed that 

provides an interface to interact with the organoid data-
base using a modified CompareDotPlot function. This 
allows for an interactive way to visualise and analyse gene 
expression within published organoid datasets. This app 
is accessible at https://​kidne​yrege​nerat​ion.​github.​io/​
DevKi​dCC/​artic​les/​Shiny​App.​html [58].

Downstream visualisation functions
To facilitate data visualisation and analysis of DevKidCC 
classified datasets, three customised functions were 
included in the package. DotPlotCompare is a modified 
version of the DotPlot function from the Seurat pack-
age. A gene expression profile of the reference is present 
within the function and can be used for direct compari-
sons to an existing or novel dataset. There is an option 
to visualise the organoid database within this function as 
well; the downloading instructions for this are available at 
the package Github repository (https://​github.​com/​Kidne​
yRege​nerat​ion/​DevKi​dCC) [57]. The proportions of cells 
classified using DevKidCC can be visualised as a bar chart 
using the ComparePlot function. This can also take as 
input a gene and show the expression of that gene in each 
segment. The IdentMeans function produces summarises 
the contribution of samples to each population through a 
chart showing the mean and standard deviation/standard 
error of the mean.

iPSC‑derived organoid differentiation
The day prior to differentiation, CRL2429-MAFBmTag-
BFP2/GATA3mCherry human iPSCs [59] or CRL2429-
SIX2EGFP [13, 59] were dissociated with TrypLE 
(Thermo Fisher Scientific, cat# 12563029), counted using 
a haemocytometer and seeded onto Laminin 521-coated 
(Biolamina, cat# LN-521-03) 6-well plates at a density of 
50 x 103 cells per well in Essential 8 (Thermo Fisher Sci-
entific, cat# A1517001) medium. Intermediate mesoderm 
induction was performed by culturing iPSCs in TeSR-E6 
medium (Stem Cell Technologies, cat# 05946) contain-
ing 4-8 μM CHIR99021 (R&D Systems, cat# 4423) for 4 
days. On day 4, cells were switched to TeSR-E6 medium 
supplemented with 200ng/ml FGF9 (R&D Systems, 
cat# 273-F9-025) and 1 μg/ml Heparin (Sigma-Aldrich). 
On day 7, cells were dissociated with TrypLE, diluted 
five-fold with TeSR-E6 medium, transferred to a 15-ml 
conical tube and centrifuged for 5 min at 300 x g to pel-
let cells. The supernatant was discarded, and cells were 
resuspended in residual medium and transferred directly 
into a syringe for bioprinting. Syringes containing the 
cell paste were loaded onto a NovoGen MMX Bioprinter, 
primed to ensure cell material was flowing, with 100,000 
cells deposited per organoid onto a 0.4-μm Transwell 
polyester membranes in 6-well plates (Corning). Fol-
lowing bioprinting, organoids were cultured for 1h in 

https://www.ncbi.nlm.nih.gov/geo/
https://kidneyregeneration.github.io/DevKidCC/index.html
https://kidneyregeneration.github.io/DevKidCC/index.html
https://kidneyregeneration.github.io/DevKidCC/articles/ShinyApp.html
https://kidneyregeneration.github.io/DevKidCC/articles/ShinyApp.html
https://github.com/KidneyRegeneration/DevKidCC
https://github.com/KidneyRegeneration/DevKidCC
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presence of 6μM CHIR99021 in TeSR-E6 medium in the 
basolateral compartment and subsequently cultured until 
day 12 in TeSR-E6 medium supplemented with 200 ng/
ml FGF9 and 1 μg/ml Heparin. From day 12 to day 25, 
organoids were grown in TeSR-E6 medium either with-
out additional supplement or with additional 5uM all-
trans retinoic acid (Sigma-Aldrich, cat# R2625-100MG). 
Unless otherwise stated, kidney organoids were cultured 
until harvest at day 25.

Flow cytometry
Prior to analysis, single-kidney organoids were dissoci-
ated with 0.2 ml of a 1:1 TrypLE/Accutase solution in 1.5-
ml tubes at 37°C for 15–25 min, with occasional mixing 
(flicking) until large clumps were no longer clearly visible. 
1 ml of HBBS supplemented with 2% FBS was added to 
the cells before passing through a 40-lM FACS tube cell 
strainer (Falcon). Flow cytometry was performed using a 
LSRFortessa Cell Analyzer (BD Biosciences). Data acqui-
sition and analysis were performed using FACSDiva (BD) 
and FlowLogic software (Inivai). Gating was performed 
on live cells based on forward and side-scatter analysis.

Whole mount immunostaining
Fixed kidney organoids were incubated in blocking buffer 
(PBS 1X donkey serum 10% triton X100 0.3%) at 4°C for 
3h before adding primary antibodies against HNF4α (Life 
Technologies 1:300, cat# MA1-199), Nephrin (NPHS1 
1:300, Bioscientific, cat# AF4269) and Claudin-1 (CLDN1 
1:100, Thermo Fisher Scientific, cat# 71-7800) at 4°C 
for 2 days. After washing in PBS 1X triton X-100 0.1%, 
organoids were incubated in secondary antibodies 1:400 
at 4°C for 2 days: Alexa fluor 405 donkey anti-mouse 
(Abcam, cat# ab175659), Alexa fluor 488 donkey anti-
goat (Molecular Probes, cat# A11055) and Alexa fluor 
568 donkey anti-rabbit (Life Technologies, cat# A10042). 
Samples were then washed before blocking at 4°C for 3h 
with PBS 1X mouse serum 10μg/ml triton X-100 0.3% 
and adding an APC-conjugated CD31 antibody (1:50, 
Biolegend, cat# 303115) at 4°C for 2 days. Finally, samples 
were washed and imaged in 50:50 glycerol:PBS 1X using 
a Dragonfly Spinning Disc Confocal Microscope (Andor 
Technology).

Single‑cell transcriptional profiling and data analysis
The novel dataset presented in this paper was generated 
from the same batch of samples presented in Howden 
et  al. [13]. Human iPSC organoids were dissociated as 
described above (for flow cytometry) and passed through 
a 40-μM FACS tube cell strainer. Following centrifugation 
at 300 g for 3 min, the supernatant was discarded and 
cells resuspended in 50 μl TeSR-E6 medium. Viability and 
cell number were assessed, and samples were run across 

separate runs on a Chromium Chip Kit (10× Genomics). 
Libraries were prepared using Chromium Single-Cell Li 
sequenced on an Illumina HiSeq with 100-bp paired-end 
reads. Cell Ranger (v1.3.1) was used to process and aggre-
gate raw data from each of the samples returning a count 
matrix. Quality control and analysis was performed in R 
using the Seurat package (v3.2.2). 1668 cells expressing 
more than 1500 genes and less than 30% mitochondrial 
genes passed quality control with means of 15100 for 
UMI count and 3697 for genes expressed. Classification 
was performed using DevKidCC (v0.1.6) as described in 
this manuscript.

Results
Generation of the model hierarchy for complete cell 
classification
We first built a comprehensive reference dataset on 
which to train the probabilistic classification models. 
We used high quality HFK single-cell RNA-sequence 
datasets published in Hochane et  al. [24], Tran et  al. 
[26] and Holloway et al. [22] (Table 1). Samples ranged 
from 9 to 19 weeks’ gestation, across which time the 
developing human kidney undergoes both growth and 
maturation, with week 16 being most frequently rep-
resented. These references were originally annotated 
using clustering and cluster labelling using marker gene 
expression. One dataset was a recently published high 
quality HFK dataset [22] (8,987 cells) that included 
both medulla and cortex regions and including a 
96-day male and 108-day female sample. Of note, this 
dataset contained ureteric epithelium, which had not 
been thoroughly analysed to this point [47]. This data 
was combined with data from 17,759 HFK cells rang-
ing from week 11 to 18 of gestation [24] to increase the 
developmental range of the training set. A further 8317 
cells from gestational week 17 which had been micro-
dissected into the cortex, inner and outer medullary 
zones [26] were combined to complete the comprehen-
sive reference single-cell RNA-sequencing HFK dataset. 
Cells from all datasets were integrated using Harmony 
[56] (Fig. 1A) before performing a supervised clustering 
and annotation, using the original annotations of each 
dataset as a guide. This led to a reference dataset con-
taining three ureteric epithelial subpopulations includ-
ing ureteric tip (UTip), outer stalk (UOS), inner stalk 
(UIS), four stromal subpopulations including stromal 
progenitor cells (SPC), cortical stroma (CS), medul-
lary stroma (MS), mesangial cells (MesS), endothelium 
(Endo), the nephron progenitor cells (NPC) and the 
nephron including subpopulations of early nephron 
(EN), early distal tubule (EDT), distal tubule (DT), 
Loop of Henle (LOH), early proximal tubule (EPT), 
proximal tubule (PT), parietal epithelial cells (PEC), 
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early podocytes (EPod) and podocytes (Pod) (Fig.  1B, 
C, Additional file  1: Fig. S1). Some of these popula-
tions were further classified in the original publica-
tions, including the DT being split into distal straight, 
distal convoluted and connecting segment or the clas-
sification of populations in relation to morphological 

features, such renal vesicle, comma shaped body and 
S-shaped body segmentation [24, 26, 47]. While mor-
phologically there is a consistency in segment iden-
tification, this is less clear in single-cell data and has 
led to inconsistency in classification terminology. As 
such, here we have classified cell populations based on 

Fig. 1  Generation of a comprehensive reference to train classification models. A UMAP visualisation of the integrated reference HFK datasets. B 
Expression of marker genes in the integrated reference shown by annotated identity. C Graphical representation of the DevKidCC model hierarchy 
and classification process. HFK human fetal kidney, Pct. percent of, Exp. expression
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expression of known differentiation markers as cells 
take on a more distinct identity.

scPred‑derived models provide accurate classification 
of kidney cell types
The complex and dynamic nature of the developing kid-
ney, with multiple cell lineages and waves of nephrogen-
esis, means that cells of many stages of differentiation can 
be present at all developing timepoints within the same 
single-cell data. This is one of the main challenges in 
classifying cells in the HFK single-cell data, as the cells 
are in transitional flux. The multiple lineages within the 
kidney also make classifying cell types difficult, as the 
differences between lineages mask the subtle differences 
in gene expression between cell types within a lineage, 
such as those of the epithelial sub-types. To minimise the 
impact of this transcriptional variance on classification, 
we took a hierarchal approach by using annotations at 
differing degrees of resolution to train three tiers of mod-
els (Fig. 1C). The models were trained with the package 
scPred [53] which utilises a machine learning approach 
to train sets of binary predictive models on a reference 
single-cell dataset. This model estimates the probability 
of a cell within a query dataset belonging to an identity 
group classified within the model. This has been shown 
to be a robust method to classify cells of a novel dataset 
based on a known reference [9, 43, 53]. The advantages 
of using scPred include ready integration with Seurat 
objects and the capacity to utilise many machine learn-
ing models available through the caret package. scPred 
provides ROC, sensitivity and specificity metrics using 
held-out training data for each binary classifier within a 
model which we used to benchmark multiple classes of 
models. A support vector machine with a radial basis 
kernel (svmRadial) and 100 principal components was 
used, with this performing equal to or better than a gen-
eralised linear model (glm) or neural network implemen-
tation (nnet) (Table S1A).

When implementing probabilistic models in prac-
tice, it can be beneficial to establish a threshold for a 
cell to be assigned an identity; however, this is difficult 
as organoids do not have a ‘ground truth’ for cell iden-
tity. While scPred provides ROC, sensitivity and specific-
ity metrics using held-out training data for each binary 
classifier within a model (Table  S1B), we wanted to 
investigate the model’s accuracy on organoid datasets. 
For this, we used two organoid single-cell datasets to 

test the binary classifiers within the tier 1 model which 
classified cells based on their lineage; nephron progeni-
tor cells (NPC), nephron, ureteric epithelium (UrEp), 
stroma and endothelial. The Howden et al. [13] organoids 
were used as we had access to the original annotation 
showing a representation of all key cell types, while the 
Uchimura et al. [45] dataset was reported to be enriched 
for the UrEp population. We used the standard cluster-
ing pipeline to reproduce Uchimura annotation from 
the original publication. While the AUROC was 0.93 or 
higher for all tests, the AUPRG curves showed a much 
faster drop off in precision for the Howden et al. [13] test 
than Uchimura et al. [45] (Additional file 1: Figure S2A). 
Using the performance of the Nephron, NPC, UrEp and 
Stroma binary classifiers in these tests led to setting a 
default threshold of 0.7 for the tier 1 model’s classifica-
tion with all cells having a maximum probability below 
this remaining ‘unassigned.’

We next investigated the probability scores of the 
model on all freely available published organoid datasets 
(371,570 cells from 58 samples) ranging from 7 to 32 days 
of culture and two human fetal kidney datasets including 
the frequently used Lindstrom et al. [27]. While the dis-
tribution of the maximum scores for cells in the HFK and 
organoid datasets showed very similar patterns, orga-
noids showed a lower mean and larger SEM (Fig. 2A). A 
two-sample t test comparing the HFK and organoid prob-
ability scores of ‘end-stage’ organoids, i.e., those beyond 
18 days of culture, indicated significant differences 
between the assigned nephron (p < 2.3 x 10-36), UrEp (p 
< 2.9 x 10-25), stroma (p < 2.3 x 10-308) and NPC (p < 2.3 x 
10-308). The model classified between 60.8% and 92.0% of 
‘end-stage’ organoids, while the HFK samples had >90% 
classification (Fig. 2A). The ‘unassigned’ cells may repre-
sent non-renal off target cell types not normally present 
in HFK or cells in which identity is not sufficiently strong 
for definitive classification. When applied to the dataset 
of Lindstrom et al. [27], this model classified 90.4% of the 
2945 cells that passed quality control, while the remain-
ing cells expressed markers for immune cells (HLA-DRA, 
CCL3, SRGN) which are not represented in the model 
and so were not assigned an identity (Additional file  1: 
Figure S2B,C). 14 cells (0.5%) were classified as UrEp, 
positioned at the tips of one end of the nephron cluster. 
The nephron cells nearest to the UrEp population were 
further classified as DN epithelium (not shown). While 
these two cell populations arise from distinct precursors, 

(See figure on next page.)
Fig. 2  DevKidCC accurately classifies human fetal kidney data. A Probability score distributions for the tier 1 classifier for both human fetal kidney 
(left) and organoid (right) data, grouped by tier 1 classification. B Mean number of cells expressing shown genes, grouped by HFK NPCs, organoid 
NPCs, organoid NPC-like and organoid unassigned populations. C Probability score distribution for the tier 2 stroma classifier on all organoids. 
D Probability score distribution for the tier 2 UrEp classifier on all organoids. E Probability score distribution for the tier 2 and 3 nephron lineage 
classifiers on all organoids
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Fig. 2  (See legend on previous page.)
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they share a similar transcriptional profile, making them 
difficult to distinguish at single-cell level [15–18, 47]. 
The ability to identify and classify these two populations 
separately, even with a small contribution of one popu-
lation within a dataset, demonstrates the power of using 
scPred-derived models. The expression of marker genes 
used by Lindstrom et  al. [27] to annotate cell identities 
were shown as enriched in the same populations clas-
sified using DevKidCC (Additional file  1: Figure S2C), 
affirming the accuracy and relevance this classification 
method.

Some samples showed classified NPC populations 
with enrichment for ‘off-target’ markers of muscle 
(MYL1, MYOG) neural (ZIC2) and melanin-expressing 
(PMEL) populations, in line with previous reports (Addi-
tional file 1: Fig. 2D). This is particularly relevant as the 
Howden et  al. [13] dataset used for model evaluation is 
one of these. One theory for the generation of these cell 
types is misdirected differentiation potentially from a 
shared progenitor with the NPC cells that arise, which 
may explain the similarity to the NPC profile and high 
probability score. PAX2 has been shown as a gene that 
marks the ‘lineage boundary’ between the NPC and stro-
mal populations in  vivo [60], as well as being an early 
marker of the nephron lineage [61]. There is evidence, 
however, that PAX2 is dispensable for in  vitro nephron 
formation [62], once again highlighting differences 
between in vivo and in vitro systems. We investigated the 
expression of PAX2 in the NPC classified cells and found 
a correlation between PAX2 expression and other key 
markers of NPCs such as LYPD1 and SIX2. There is also 
an inverse correlation between PAX2 expression and off-
target markers of muscle, neural and melanin-expressing 
cells (Fig.  2B). Incorporating this biological knowledge 
to refine the classification of NPCs, we included a step 
to subcluster and screen for PAX2 expression, with sub-
clusters having less than 30% of cells express PAX2 being 
relabeled as ‘NPC-like’ (Fig. 2B). These cells may have the 
potential to undergo nephrogenesis if correctly induced 
however lack a clear in  vivo NPC transcriptional signa-
ture, making them likely in vitro artefacts arising in this 
system.

The cells classified as nephron, stromal and UrEp 
underwent the further stage/s of classification. The stro-
mal and UrEp population utilise one further classifier, 
classifying them into stromal subsets of SPC, CS, MS 
and MesC (Fig. 2C), while the UrEp population is further 
classified into UTip, UOS and UIS identities (Fig.  2D). 
The nephron population however has additional segmen-
tation and requires two further stages of classification 
(Fig.  2E). A summary of the scPred provided AUROC, 
sensitivity and specificity metrics generated using held-
out training data for each binary classifier within a model, 

which range between 0.879 and 1.000, are provided in 
Additional file  3: Table  S2. However, lack of a ‘ground 
truth’ for organoid identity makes it difficult to precisely 
evaluate model performance using held out in vivo data. 
To complement that analysis, we compare the probability 
scores for all tests within an identity (Fig. 2C–E). These 
results highlight the accuracy of these additional models, 
particularly within the nephron cell identities.

These models are utilised in a hierarchical method of 
classification provided in a single-call wrapper func-
tion DKCC() within the R package DevKidCC, taking an 
input a Seurat object. To determine cells in the first tier, 
a probability threshold of 0.7 is set while at all other tiers 
the threshold is removed. This enables all cells that are 
classified at the top tier to be given an assigned identity 
regardless of the highest degree probability predicted by 
the lower tier models. Further investigation of the calcu-
lated probability can be interrogated as every cell has a 
record in the metadata of the scores from each classifi-
cation. No preprocessing is required as DKCC() utilises 
Seurat’s NormalizeData() function for data normalisa-
tion. The recommended pipeline is to read in raw counts 
data using the Seurat pipeline, filter out poor quality cells 
and then run DKCC(). The classifications for each tier 
and the final identities can be accessed within the meta-
data slot for further investigation. The package contains 
custom in-build functions ComparePlot, DotPlotCom-
pare and IdentMeans to investigate the cell populations 
within the classified sample.

DevKidCC classification rapidly and accurately reproduces 
published annotations
To investigate the utility of using this package on real-
world data, the DevKidCC classification of two published 
kidney organoid single-cell datasets was compared to 
their original cluster-based annotations. Howden et  al. 
[13] contained samples from two differentiation time-
points; intermediate (18 day) and late (25 day) stage 
organoids while Wu et al. [12] contained day 26 organoid 
datasets from two distinct protocols for deriving kid-
ney organoids, labelled as Takasato [63] and Morizane 
[64] after the original authors. Within the Howden et al. 
[13] and Wu et  al. [12] data, 76.0% and 61.1% of cells 
were assigned using DevKidCC, respectively. Within the 
Howden et al. [13] dataset, all original clusters contained 
cells that were reclassified as unassigned, with the larg-
est contribution being from clusters previously annotated 
as the neuron and muscle, illustrating the specificity with 
which the model classifies renal cell types (Fig. 3A).

Both stroma and NPC are mesenchymal cell types. 
The mesenchymal cells present within kidney orga-
noids have been difficult to accurately classify due to 
their gene expression profiles being different to those of 
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characterised developing kidney stroma [15]. There was 
some overlap in the distribution of cells with high prob-
ability for both stroma and NPC (Fig.  3C). Cells within 

organoids that share expression profiles both with stroma 
and NPC have been previously noted [16] and may arise 
as an in  vitro artefact. The PAX2 lineage differentiation 

Fig. 3  DevKidCC classification of organoid datasets. A UMAP representation of the original classification of the Howden dataset. B DevKidCC 
classifications of the same dataset. C UMAP representation of Howden dataset showing Stroma and NPC prediction scores, PAX2 and SIX2 
expression values. D ComponentPlot showing the reclassification of the Howden dataset including distinguishing between NPC and NPC-like 
populations. E The original (left) and comparative DevKidCC (right) classification of data published in Wu. NPC nephron progenitor cell
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between NPC and NPC-like cells is clearly shown when 
comparing the high probability NPC cells express-
ing PAX2 being localised to the larger ‘nephron’ cluster 
while the high probability NPCs not expressing PAX2 
are separately localised in distinct clusters (Fig.  3C). 
The expression of SIX2, the gold standard in  vivo NPC 
marker, is shown for comparison and has a wider distri-
bution including other mesenchymal cell types labelled 
as Stroma, in line with the initial publication of this data 
(Fig. 3C). DevKidCC reclassified ~25% of cells originally 
annotated as ‘muscle’ and ‘neural’ as NPC or NPC-like, 
while also reclassifying some as stromal cells. The off-
target populations were noted to share expression of 
key NPC markers such as SIX2 and SALL1 [13] indicat-
ing there is some transcriptional similarity. Within the 
nephron, cells previously identified as ‘Committed and 
Early Nephron’ due to the expression of both committed 
NPC (LYPD1) and early nephron (LHX1, JAG1) markers 
within this cluster were reclassified by DevKidCC to dis-
tinguish between the two cell populations (Fig. 3D). The 
previous analysis of the Howden et al. [13] data identified 
seven clusters as stromal (Fig. 3A, D), of which almost all 
of those assigned an identity using DevKidCC remained 
classified as a stromal sub-type (Fig. 3D).

To further examine the capability of DevKidCC clas-
sification, we analysed organoid datasets from Wu et al. 
[12] generated from either embryonic (ES) or induced 
pluripotent (iPS) stem cells using two different proto-
cols [12]. Using DevKidCC with default parameters, we 
were able to rapidly reproduce the initial classification 
of these organoids, accounting for the differences in the 
nomenclature (Fig.  3E). This classification identified an 
increased population of cells not matching the reference 
(termed ‘unassigned’) compared to the original annota-
tion. Here, DevKidCC could again distinguish kidney 
cells from likely off target cell types, such as the originally 
reported neural population, that may represent arte-
facts of in vitro culture [12, 13]. This demonstrates how 
DevKidCC provides a consistent and measurable bench-
mark for kidney cell classification in organoids that can 
be applied to all data, enabling direct and relevant com-
parisons. Together these reanalyses demonstrate the 
accuracy with which DevKidCC can classify renal cell 
types within organoid datasets.

DevKidCC provides a method for direct comparison 
between protocols
A major challenge for the field has been to compare 
between datasets generated from different labs, lines, 
batches or from different protocols due to differences 
in the analyses that were used. This is particularly perti-
nent given the use of several distinct protocols for gen-
erating kidney tissue from hPSCs (see Table  1). Direct 

comparisons between studies and protocols requires an 
integration of all existing samples to allow re-clustering 
and differential gene expression analysis on the combined 
dataset. This is challenging due to the noise between 
samples, the majority of which relates to technical or 
batch effects [20] that can confound biological varia-
tions of interest during data integration [65]. To avoid 
these challenges, DevKidCC was used to directly identify 
all cell types present within multiple datasets enabling 
direct comparisons without the need for integration. As 
DevKidCC will compare all cells to the same compre-
hensive reference, the biological information for each 
sample can be directly compared without prior dimen-
sional reduction and clustering. To demonstrate this, 
we applied DevKidCC to all available single cell kidney 
organoid datasets (summarised in Table  1) irrespective 
of the cell line, organoid age, differentiation protocol or 
laboratory. This comprehensive analysis allows a direct 
comparison of cell proportions across all samples at each 
tier of classification. We first focused on end stage orga-
noids from the three main differentiation protocols rep-
resented in the literature, Takasato et al. [63], Morizane 
et al. [64] and Freedman et al. [66] (Fig. 4A). This imme-
diately showed variation in the proportions of ‘unas-
signed’ cells across all datasets and the lack of nephron 
maturation even in the oldest organoids regardless of 
protocol. The maturation of nephron cell types was lim-
ited in all protocols and samples, although the Morizane 
[64] protocol produced organoids with the highest num-
ber of cells reflective of a more mature podocyte stage. 
While there were a small number of mature podocytes, 
there were almost no mature proximal tubule cells gener-
ated with any organoid protocol, with cells rather being 
classified as less mature EPT with expression of proxi-
mal markers such as CUBN, LRP2 and HNF4A but lack 
the specific solute channels such as SLC47A1, SLC22A2 
and SLC22A8 (Additional file 1: Figure S3). In clustering-
based analyses, these cell populations are often split into 
two or more groups which are interpreted to have vary-
ing degrees of maturation, whereas the DevKidCC clas-
sification indicates that these are mostly immature. There 
is noticeable variance between publications generating 
organoids from the same protocol, concurring with ear-
lier studies showing that batch differences are a notable 
source of variation [12, 20]. We performed two analyses 
of the unassigned populations, grouped by protocol. The 
most conserved differentially expressed genes between 
samples of each protocol were inputted into the ToppFun 
browser, with the Takasato protocol [63] and Morizane 
protocol [64] derived populations showing similar upreg-
ulated pathways such as skeletal system development and 
extracellular matrix organization, while the Freedman 
protocol [66]-derived populations showed an enrichment 
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for neural system pathways (Additional file  1: Figure 
S4A). A second independent analysis used the Azimuth 
web browser to annotate these cells using the human fetal 
development reference. This analysis predicted the iden-
tity of each cell, with the strongest probabilities falling in 

the skeletal muscle and satellite cell categories in all pro-
tocols, with a range of other cell types being predicted, 
including populations of metanephric and ureteric cells 
of the kidney, various stromal populations and some neu-
ral subtypes (Additional file 1: Figure S4B). Interestingly, 

Fig. 4  Direct comparison of organoids generated from different protocols. A Proportion of cell type contribution for all end-stage samples of 
Freedman, Morizane and Takasato protocols at the first tier of classification (left) and the breakdown of nephron sub-types (right), with the reference 
for comparison. B Direct comparisons of percentage cell contributions between these protocols. Pct percent of total cells
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37.47% and 23.38% of these cells derived from Mori-
zane [64] and Freedman [66] protocols, respectively, 
were assigned metanephric while only 0.89% of Takasato 
[63]-derived cells. This analysis highlights the variation in 
the transcriptomic profiles present within organoid pop-
ulations and the challenges in identifying those cell types 
even with the best available analysis pipelines.

DevKidCC analysis revealed differences in cell propor-
tion and nephron patterning between organoids gen-
erated with different protocols. The proportion of cell 
populations within the reference HFK is unlikely to be 
representative of the ratios within a developing kidney 
due to the different methods used to collect samples; 
however, as organoid samples are typically a whole sam-
ple dissociation, we can infer some information com-
paring between these. Organoids generated using the 
Freedman protocol [66] show a small stromal popula-
tion in comparison to other protocols while contain-
ing more early-stage nephron cells, although this may 
be indicative of the slightly younger age of these orga-
noids. In the Morizane protocol [64] organoids, we iden-
tify limited distal tubule cells, with less than 25% of the 
nephrons classified as distal whereas the Takasato [63] 
and Freedman [66] protocols show more evenly seg-
mented nephron components. The Takasato protocol 
[63] generates the most distal tubule (Fig. 4B), including 
some cells classed as a more mature DT segment as well 
as an SLC12A1 expressing Loop of Henle population. The 
DT expressed GATA3 and TMEM52B but lacked the dis-
tal convoluted tubule specific marker SLC12A3, although 
in some cases the connecting segment specific marker 
CALB1 is expressed (Additional file  1: Figure S4). This 
would indicate that the connecting segment, which rep-
resents the most distal region of the nephron and which 
invades and fuses into the ureteric tip to form a contigu-
ous tube, is being generated in some organoids. This is 
promising as it would indicate that there is the potential 
to promote fusion of these nephrons to any separately 
induced collecting duct structure, potentially enabling 
kidney tissue engineering. In summary, while nephrons 
are forming and showing evidence of patterning and 
identifiable segmentation in all protocols, their rela-
tive proximo-distal patterning and evident immaturity 
will impact their utility for disease modelling and drug 
screening studies.

Identifying nephron progenitor cell variation 
between protocols
To further investigate relative gene expression between 
datasets, we extracted gene expression profiles and pro-
portions of cells in each classified population, in all 
available organoid datasets (see Table  1) and the com-
prehensive reference. A modified version of the DotPlot 

function from the Seurat [7, 8] package was included to 
directly compare gene expression between datasets and 
the reference. The NPC are a crucial population when 
considering kidney organoids as in  vivo they give rise 
to the entirety of the nephrons [67], the functional unit 
of the adult kidney. Our classification system has high-
lighted the difference between NPC and NPC-like cells 
that arise during in  vitro differentiation; however, we 
sought to further investigate the NPC population within 
organoids. The direct comparison between kidney orga-
noids (Fig.  4A, B) revealed substantial variation in the 
proportion of NPCs, which we further investigated by 
applying the function DotPlotCompare (modified DotPlot 
from the Seurat package) to visualization relative gene 
expression in NPCs across all protocols.

The nephron develops from NPCs which are a het-
erogeneous population of mesenchyme that undergo a 
mesenchyme to epithelial transition (MET) in response 
to signals from the ureteric epithelium, giving rise to the 
entire nephron epithelium [67, 68]. In  vivo analysis has 
shown markers like SIX1, SIX2, CITED1, DAPL1 and 
LYPD1 are expressed in this population and can be used 
to reliably identify these cells from the surrounding stro-
mal mesenchyme in  situ [17, 27]. These markers have 
also been used to identify the NPC populations of cells 
in both HFK and organoids in single-cell datasets. When 
analysing NPC from within the reference HFK dataset 
using DevKidCC, we can see that 44.9% of cells express 
SIX2, 56.3% express SIX1, 53.3% CITED1 while over 70% 
express DAPL1 and LYPD1. Importantly, the kidney is the 
third excretory organ to arise during development. The 
final kidney is comprised of metanephric nephrons and 
is preceded by the pronephric and mesonephric tubules 
[69]. These arise in an anterior to posterior manner, 
which is reflected in their respective HOX codes. Within 
the HFK reference data set, the NPCs that give rise to the 
metanephric nephrons express a posterior HOX code, 
particularly the HOX10 and HOX11 paralogues [70, 71]. 
The posterior HOX genes are expressed, with HOXA10 
most abundant and HOXC10, HOXD10, HOXA11 and 
HOXD11 at lower levels and in less cells. The heterogene-
ity of gene expression within this population could result 
from data sparseness, dropout levels and capture bias. It 
may also be explained by transcriptional bursting [72], 
where genes are not constantly being transcribed and so 
the sample harvesting may occur during a transcriptional 
lull. However, this does provide a true reference for com-
parison to the expression profiles expected within these 
cell populations in organoids.

When we compare organoid NPCs to the HFK refer-
ence, we again note variance between publications and 
protocols. While the majority of organoid datasets are 
end-stage and thus are largely depleted of NPCs, this 
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analysis confirmed previous studies showing a popula-
tion of NPCs, sometimes referred to as mesenchymal 
progenitors, can remain. Organoids containing more 
than 30 NPC cells were analysed for the expression of 
NPC markers. Takasato protocol [63]-derived NPCs 
show expression of the posterior HOX code and in many 
samples known NPC markers, while the Morizane pro-
tocol [64], Freedman protocol [66] and Low protocol 
[41]-derived NPCs lack expression of posterior HOX 
genes, but do express some expected NPC markers, 
most abundantly LYPD1 and SIX1 while these are lim-
ited in Morizane protocol [64] and Freedman protocol 
[66]-derived NPCs, with almost no SIX2, CITED1 and 
DAPL1 present. Analysis of NPCs in end-stage organoids 
is not optimal as the prolonged culture may cause some 
transcriptional variability. Indeed, differences in mouse 
NPCs across developmental time have been character-
ised [73]. However, these traits are observed in samples 
of younger organoids and even monolayer time-points 
(Fig. 5A). In the ‘unassigned’ and ‘NPC-like’ populations 
generated in organoids, expression of the muscle mark-
ers, including MYOG and MYOD1 was sometimes evi-
dent. A subset of individual cells within such a published 
‘muscle’ cluster [13] were re-classified by DevKidCC 
as NPC but do show expression of these muscle genes 
(Fig.  5A, Additional file  1: Figure S3). Indeed, muscle 
gene expression is detectable in kidney organoid clus-
ters previously labelled as NPC from multiple protocols 
and publications [12–15, 31]. However, there is no evi-
dence for the expression of these genes in the HFK ref-
erence, suggesting that their consistent expression in 
organoid populations is an artefact of the in vitro culture 
conditions. During in  vivo kidney development NPCs 
undergo a balance of self-renewal and commitment to 
nephrogenesis, allowing for ongoing waves of nephron 
formation leading to an average of 1 million nephrons 
per human kidney [74]. However, developing organoids 
in vitro undergo limited nephrogenesis, leading to 10 to 
100s of nephrons per organoid [13]. This variation is pre-
sented grouped by experiment and timepoint, with the 
NPC percentage decreasing with time (Fig. 5B). The Low 
et  al. [41] samples show an NPC peak at day 12 before 
a decrease by day 14 coinciding with the appearance of 
nephron populations. As organoids age, the NPC and 
NPC-like populations decrease or deplete while nephron 
and stromal populations increase, likely at a faster rate 
than is required to maintain an NPC population for 
ongoing nephrogenesis. In summary, we have identified 
an in vitro culture artefact muscle gene signature within 
the NPC population present across multiple protocols, 
giving a target to modulate for improving NPC identity 
within organoids. We also identify a decrease in expres-
sion of key NPC genes, including SIX2 which in mouse 

is believed to govern self-renewal, indicating a potential 
cause for the lack of ongoing nephrogenesis in vitro. This 
analysis demonstrates how using DevKidCC to classify 
and directly compare all published organoids datasets 
can improve our understanding of NPC population gen-
erated across multiple kidney organoid protocols.

Application of DevKidCC to investigate the impact 
of retinoic acid on kidney organoid maturation
Accurately identifying the cell types present within an 
organoid is crucial for the analysis of disease states or the 
optimization of the differentiation protocols. To evalu-
ate the application of DevKidCC in analysing functional 
differences between methods, we analysed unpublished 
data in which kidney organoids from the same starting 
cell line generated from the same batch were treated with 
5μM retinoic acid (RA) after removal of all other growth 
factors at day 12 of the Takasato protocol [63] to promote 
maturation. Mammalian nephrogenesis in vivo occurs in 
waves with new nephrons constantly forming up to 36 
weeks gestation [75, 76] in humans and into the first week 
of life in mice [77]. This is facilitated by the presence of a 
peripheral nephrogenic niche within which the NPC bal-
ance self-renewal versus nephron commitment. Once 
differentiated, NPCs exist throughout the duration of 
organoid culture and deplete with time, although a popu-
lation does remain in mature organoids able to undergo 
nephrogenesis when induced with a canonical Wnt ago-
nist [13] (Fig.  4A). Retinoic acid signaling plays many 
roles in kidney development depending on spatiotem-
poral expression [78–80] and is also known to promote 
the differentiation of progenitor cell populations [81]. We 
investigated adding all-trans retinoic acid to organoids at 
multiple time points to see what effect this would have 
on organoids. The addition of 1–5 μM RA before day five 
of 3D organoid culture, substantially impaired nephron 
formation, whereas addition at day five onwards led 
to organoids with fully segmented nephrons similar to 
organoids without RA (data not shown). The DevKidCC 
classification identified an increase in the percentage of 
classified stromal cells, seemingly at the expense of the 
‘unassigned’ population. In contrast to control organoids 
from the same batch (How_T_D25) [13] and organoid 
datasets of the same line, age and differentiation proto-
col (LVH_T_Hand_D25 and LVH_T_Dot_D25) at day 
25, the addition of RA resulted in a complete depletion 
of NPC cells (Fig. 6A). While the percentage of nephron 
cells did not change, there was a shift towards early proxi-
mal tubule (EPT) (Fig. 6B). The addition of RA also drove 
an increase in the presence of classified stroma at the 
expense of unassigned cells. These comparisons indicate 
that RA caused the depletion of NPCs, expansion of renal 
stroma and proximalisation of nephrons within forming 
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Fig. 5  Direct comparison of NPCs generated from different protocols. A Gene expression of all samples day 16 or less, grouped by protocol. B 
Proportions of classified cells for groups of samples with time-course information (y-axes unique to each plot). NPC nephron progenitor cell

(See figure on next page.)
Fig. 6  Effect of retinoic acid when added to mid-stage organoids. A ComparePlot comparison of control and treated organoids datasets grouped 
by tier 1 lineage classification. B ComparePlot comparison of control and treated organoids showing the nephron identity grouped by cell sub-type. 
C FACS plot showing effect of RA addition on SIX2+ cell population. D Expression of PT and Pod gene markers in control and treated organoid 
datasets. E Expression of CLDN1 in control (left) and treated (right) organoids. RA retinoic acid, PT proximal tubule, Pod podocyte



Page 18 of 25Wilson et al. Genome Medicine           (2022) 14:19 

Fig. 6  (See legend on previous page.)
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organoids. To confirm if NPCs were indeed depleted by 
RA addition, organoids were generated using a SIX2EGFP 
reporter line [13, 59] with and without the addition of RA 
and analysed using flow cytometry after 7 days. The con-
trol organoids had 31.44% EGFP+ cells while the orga-
noids with RA had less than 0.5% (Fig. 6C). This confirms 
that RA acts directly or indirectly on the NPC popula-
tion, forcing them to either undergo commitment to 
form nephrons or differentiate away from NPC identity 
down a stromal pathway.

To investigate the maturation of the nephrons we vis-
ualized maturation markers both proximal tubule and 
podocytes using the DotPlotCompare function within 
the package. While there was an increase in the percent-
age of nephron cells identified as proximal tubule, this 
was entirely EPT and there was no evidence of increased 
maturation at a transcriptional level with no expres-
sion of mature PT genes like SLC22A6. (Fig. 6D). There 
was an increase in the expression of podocyte matura-
tion genes such as DDN, NTNG1 and NPHS2 with RA 
addition, corresponding with a decrease in OLFM3 and 
PAX8 expression as predicted for genes expressed in 
immature podocytes but downregulated with matura-
tion [24]. Immunofluorescence showed PEC marker 
CLDN1 had improved localization to the epithelial cells 
surrounding the podocytes, which is the normal loca-
tion of PECs (Fig.  6E). The expression of both PEC and 
podocyte markers in cells assigned to all three renal cor-
puscle identities is consistent with the previous analysis 
of these populations and may indicate that the delinea-
tion of specific gene signatures within these cells is not 
yet occurring.

Analysis of existing protocols for the development 
of ureteric epithelium
The ureteric epithelium in the mammalian kidney arises 
as a side branch of the mesonephric duct that grows into 
the presumptive kidney mesenchyme [82]. Hence it has 
been suggested that it is not possible to generate ure-
teric epithelium using the same differentiation protocol 
able to generate the nephron lineages [83]. Single-cell 
analyses have recently revealed the significant transcrip-
tional congruence between the distal nephron and the 
ureteric epithelium in both human and mouse [12, 16]. 
It has also been established that distal nephron from 
standard organoids remains plastic and can be induced 
to adopt a ureteric epithelial fate [18]. To date, a number 
of protocols have been published that report the gen-
eration of ureteric epithelium [45, 47, 49, 83, 84] both 
from single monolayer differentiations generating both 
nephron and ureteric segments, or the isolation of cel-
lular fractions that are then cultured separately to form 
ureteric epithelium. While organoids generated from a 

single differentiated monolayer have been reported to 
contain both nephron and ureteric lineages [13, 45, 63], 
this was due predominantly to expression of markers like 
GATA3 and HOXB7 which have been further identified 
as expressed in distal nephron segments [16, 18, 47].

As DevKidCC had shown an accurate delineation of 
UrEp and Distal Nephron in the HFK samples (Addi-
tional file 1: Figure S2B), we investigated the DevKidCC 
classification of four single cell samples claiming substan-
tial UrEp generation using different approaches; one from 
a targeted UrEp differentiation [49], one from UrEp that 
had been derived from DN [47] and two from organoid 
samples generated either using the Takasato protocol or 
a mixed-culture approach with further UrEp-enhancing 
culture conditions [45] (Table  1). DevKidCC classified 
32.41%, 21.96%, 1.87% and 26.81% of all sample cells as 
UrEp, respectively (Fig. 7A). The targeted UrEp cultures 
retained a more proliferative tip-like identity while the 
organoid cultures had a more stalk-like identity (Fig. 7B). 
Reflecting the methods of culture, the targeted UE cul-
tures had nephron segments almost exclusively DN, 
while the organoid cultures also contained proximal seg-
ments (Fig. 7C). The absence of NPC-like cells in the DN-
isolated and recultured cells while their presence in the 
directly differentiated UrEp may be explained by the dif-
ferent protocols used to generate UrEp and kidney devel-
opmental biology. Cultures differentiated towards an 
anteriorised intermediate mesoderm population directly 
from hPSCs are likely to generate a proportion of NPC-
like cells as a bona fide posterior intermediate mesoderm 
of a more anterior nephrogenic cord, such as the meso-
nephric tubules. In contrast, the DN-derived cultures 
were depleted of mesenchymal cells.

When we compare the distribution of probabilities for 
the nephron and UrEp populations between samples, we 
see a broader range of scores in both targeted cultures 
compared to the Uchimura organoids (Fig.  7D, E). The 
targeted cultures are differentiated in the absence of any 
supporting stromal populations, instead the signalling 
factors required for specifying the cell identity are added 
to the media. While this also occurs in the Uchimura 
et al. [45] organoids, they are further supported by addi-
tional mesenchymal populations as would be the case 
in  vivo. An emerging understanding of the importance 
of stroma in signalling and patterning both in  vivo and 
in  vitro may provide some key as to why there is less 
specificity within these direct, isolated cultures [83, 85].

Gene expression database and interactive app
The capacity to investigate published single cell datasets 
is limited. The analysis provided in an original publica-
tion is generally the only output available without down-
loading and reanalysing a dataset. Kidney Interactive 



Page 20 of 25Wilson et al. Genome Medicine           (2022) 14:19 

Fig. 7  Classification of ureteric cell types in organoid and targeted cultures. A The DevKidCC classification for the in vitro samples targeting UrEp 
culture. B Further classification of all UrEp cells from previous panel. C Further classification of all nephron cells from panel A. D Comparison of 
nephron and UrEp probability scores for all nephron classified cells. E Comparison of nephron and UrEp probability scores for all UrEp classified cells. 
UrEp ureteric epithelium
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Transcriptomics (KIT) site (http://​humph​reysl​ab.​com/​
Singl​eCell/) [86] provides analysis of a number of pub-
lished HFK and organoid datasets [12, 20, 87] together 
with data from adult human and mouse healthy and 
injured kidney [86, 88, 89], allowing visualization of genes 
within these datasets in TSNE and Expression Plot for-
mats. The Cello interactive app (https://​cello.​shiny​apps.​
io/​kidne​ycell​explo​rer/) [18] provides a visualization of 
gene expression broken down by carefully annotated sub-
populations of the kidney nephron as expressed within 
adult mouse tissues. These useful tools enable the inves-
tigation of gene expression in kidney cell types; however, 
they do not provide a way to directly compare different 
datasets for relative proportions or levels of gene expres-
sion within component cells. We provide an interactive 
shiny app, freely available (https://​kidne​yrege​nerat​ion.​
github.​io/​DevKi​dCC/​artic​les/​Shiny​App.​html) [58], which 
allows for the investigation of gene expression in all orga-
noid datasets as classified using DevKidCC. Using this 
App, gene expression can be directly compared between 
any included datasets, allowing for real-time investiga-
tion by all researchers. The tool provides a resource for 
researchers interested in gene expression and/or cell 
populations to identify the organoid protocol that would 
best suit their application, whether that be developmen-
tal biology, drug screening or clinical purposes.

Discussion
The question of cell identity is one that is difficult to 
answer. Histologically, we can try to define a cell type 
based on its morphology, gene expression or protein 
expression, the latter typically being read by immunohis-
tochemistry and immunofluorescence assays. In many 
cellular states, particularly those present during organo-
genesis, evaluation of cellular identity by functional 
assays is challenging and marker expression is rarely 
unique. This challenge is significant when evaluating cell 
identity using single-cell RNA sequencing data. Such 
data is sparse, providing an incomplete snapshot rather 
than a comprehensive picture. As capture technology and 
bioinformatics tools have improved, increased levels of 
information can be extracted from this data, providing 
an overall synergy of expression profile for groups of cells 
within a sample. This can be combined with the pseu-
dotime trajectory or even molecular lineage tagging to 
relate cells within a sample by history, assisting in likely 
classification of cell type. Such inferences are much more 
difficult in a synthetic in  vitro system such as hPSC-
derived organoids. Such protocols direct cells to undergo 
a series of changes that attempt to replicate the in  vivo 
process. However, in reality hPSC-derived lineages often 
do not completely recapitulate their in vivo counterparts, 
at least at the level of the transcriptome. We can often 

identify a gene, or a number of genes, expressed in a cell 
that provides information of its identity, but in many 
cases, there is ambiguity. This is compounded by our 
knowledge that hPSC-derived organoid models replicate 
early developmental cell states that are frequently in flux, 
not present in adult tissue and are less well defined.

The classification of cells within all single-cell data 
has been inconsistent as clustering and classification 
decisions vary between individual researchers and the 
limitations within each dataset. The arbitrary nature of 
classifying cells using clustering algorithms is challenged 
when identifying cells transitioning between popula-
tions, often represented as the ‘borders’ of clusters. The 
cluster-based classification of such cells will change 
with different approaches to analysis. The application of 
a cell-centred identification approach circumvents this 
challenge. DevKidCC represents a method of specifi-
cally classifying individual cellular identity within hPSC-
derived kidney organoids based predominantly upon set 
models trained on a comprehensive reference dataset. 
It should be noted however that these models are indi-
rectly dependant on cluster-based analysis as the ref-
erence itself was initially annotated this way. Our tool 
facilitates direct comparisons between kidney organoid 
datasets by classifying cells based on the reference data. 
The base package, scPred [53], includes a way to inte-
grate the data within the models using Harmony [56], 
although this can introduce false correlations and over-
corrections between similar cell populations such as the 
mesenchymal cells that have intermediate to high scores 
for both stroma and NPC. However, batch differences are 
a confounding source of variation that must be taken into 
account. Hence, DevKidCC runs one round of harmoni-
zation using the scPred’s inbuilt application of Harmony. 
This leads to potential iPSC-derived off-target popula-
tions with muscle or neural gene expression to be classi-
fied as NPC. This may be a result of the binary classifier 
for NPC not having enough information to delineate the 
cell types that have diverged from the NPC developmen-
tal trajectory, an example of in vitro artefacts. NPCs are 
an interesting population as some key markers, including 
CITED1, are not actually required for NPCs to become 
nephrons but are involved in other regulatory processes. 
To incorporate biological knowledge to refine the NPC 
classification, DevKidCC performs a further evaluation of 
PAX2 expression to refine NPC classification. PAX2 is a 
known in vivo marker of nephron identity not expressed 
in the stroma. Indeed it has been shown to repress stro-
mal identity [60] and is an accurate marker of nephron 
lineage identity in single-cell kidney datasets. The classi-
fication for all datasets has been integrated into functions 
allowing for plotting any novel dataset in direct compari-
son using the classification from DevKidCC. A suite of 
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custom visualisation functions is included in DevKidCC 
to provide a classification and visualization toolset to 
investigate cell identity and gene expression within novel 
and existing kidney organoids.

DevKidCC was developed so that it could be applied 
to novel datasets facilitating direct comparisons to those 
previously generated. This will make comparative studies 
much easier, facilitating the analysis of genetic variants, 
disease states or methodological variation in new proto-
cols. While this system has developed a model with three 
tiers of subclassification, the complexity of the human 
nephron, even in the fetal kidney, is such that there is 
scope to interrogate individual cellular identity even 
further within this and other subcomponents. As these 
models were trained using developing HFK, the ability 
of the tool to accurately classify cell identity during ear-
lier stages of mesoderm patterning or mature kidney is 
limited. The adult kidney shows significant specification 
of functional cell types within all segments of the final 
nephron, many of which have distinct functional roles 
in renal filtration and fluid homeostasis but are not pre-
sent in the fetal organ. Indeed, the ratio of epithelium 
to stroma is dramatically shifted in the adult. While the 
fetal kidney begins to show expression of maturing cel-
lular states, including expression of intercalated and prin-
cipal cell identities within the distal nephron/collecting 
duct, it is likely that a distinct cellular identity tool will be 
required for the accurate identification of cellular identity 
in postnatal kidney tissue. Conversely, the use of HFK 
from Trimester 1 and 2 as the reference dataset limits the 
ability to identify earlier stages of morphogenesis. This 
may explain the large percentage of unassigned cell calls 
in datasets in early stages of kidney organoid differentia-
tion protocols (Fig. 4A). However, DevKidCC applied to 
early-stage differentiations (day 7, intermediate meso-
derm) split cell identity between NPC and unassigned, 
suggesting that the tool is able to identify those cells 
beginning to commit to the mesenchymal precursors of 
the kidney. Indeed, in a dataset that includes day 7, 15 
and 29 organoids between two cell lines [14], there is a 
direct relationship between the proportion of cells clas-
sified as NPC at day 7 to the proportion of nephron cells 
at day 15 and 29 (Fig. 5B). We conclude that at this early 
stage the cells identified as NPC at this early stage could 
be the percentage of the differentiation correctly pat-
terned to intermediate mesoderm and are still the cells 
that will go on to form the nephron population.

The generation of mature nephron structures is a 
challenge still facing the field and is a focus of current 
research. It is generally accepted that current organoid 
protocols generate tissues transcriptionally and morpho-
logically similar to trimester 1 and 2 stages of develop-
ment. To fully utilise organoids for disease and toxicology 

studies, optimisation of protocols to generate mature 
and functionally relevant tissues is essential. Here we 
show how the addition of retinoic acid impacts the cel-
lular composition of organoids by depleting NPC cells 
when added after the point at which nephrogenesis has 
begun at day 12 in Takasato organoids. This also seems to 
increase the percentage of classifiable renal stroma com-
pared to off-target mesenchyme, as well as increasing 
the proportion of EPT compared to other nephron sub-
types. While there was minimal transcriptional evidence 
for an increase in podocyte maturation, the improved 
localisation of PEC marker CLDN1 to cells surrounding 
the podocytes in the glomerulus would indicate there is a 
positive effect on glomerular maturation.

Conclusions
DevKidCC provides a robust, reproducible and computa-
tionally efficient tool for the classification of kidney sin-
gle-cell data, in both human and organoid-derived tissue. 
Using DevKidCC, we can now directly compare between 
kidney samples regardless of batch and have done so for 
all available published datasets. This important advance 
has provided insights into differences in organoids 
derived using different protocols and allows for any novel 
dataset to be directly compared to all previous datasets. 
The included custom functions simplify visualisation of 
cell identity proportion and gene expression within sam-
ples and between multiple samples. Any novel dataset 
can be classified using the framework provided in this 
package, allowing for direct comparison to all previous 
datasets, all of which are included within the package. 
For visualisation of gene expression profiles and organoid 
cell identities, the gene expression profiles of all datasets 
have been built into an R Shiny app available at https://​
kidne​yrege​nerat​ion.​github.​io/​DevKi​dCC/​artic​les/​Shiny​
App.​html [58] that does not require the use of R directly, 
allowing for easy access to this information. Finally, while 
this package has been built using HFK data to classify 
kidney cells, the framework can be transferred to any tis-
sue type where adequate single-cell data is available.
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