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Abstract 

Background:  The mutational profile of cancer reflects the activity of the mutagenic processes which have been 
operative throughout the lineage of the cancer cell. These processes leave characteristic profiles of somatic mutations 
called mutational signatures. Mutational signatures, including single-base substitution (SBS) signatures, may reflect 
the effects of exogenous or endogenous exposures.

Methods:  We used polygenic risk scores (PRS) to summarize common germline variation associated with cancer risk 
and other cancer-related traits and examined the association between somatic mutational profiles and germline PRS 
in 12 cancer types from The Cancer Genome Atlas. Somatic mutational profiles were constructed from whole-exome 
sequencing data of primary tumors. PRS were calculated for the 12 selected cancer types and 9 non-cancer traits, 
including cancer risk determinants, hormonal factors, and immune-mediated inflammatory diseases, using germline 
genetic data and published summary statistics from genome-wide association studies.

Results:  We found 17 statistically significant associations between somatic mutational profiles and germline PRS 
after Bonferroni correction (p < 3.15 × 10−5), including positive associations between germline inflammatory bowel 
disease PRS and number of somatic mutations attributed to signature SBS1 in prostate cancer and APOBEC-related 
signatures in breast cancer. Positive associations were also found between age at menarche PRS and mutation counts 
of SBS1 in overall and estrogen receptor-positive breast cancer. Consistent with prior studies that found an inverse 
association between the pubertal development PRS and risk of prostate cancer, likely reflecting hormone-related 
mechanisms, we found an inverse association between age at menarche PRS and mutation counts of SBS1 in prostate 
cancer. Inverse associations were also found between several cancer PRS and tumor mutation counts.

Conclusions:  Our analysis suggests that there are robust associations between tumor somatic mutational profiles 
and germline PRS. These may reflect the mechanisms through hormone regulation and immune responses that con-
tribute to cancer etiology and drive cancer progression.
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Background
Cancer is driven by the accumulation of somatic muta-
tions. In contrast to germline variants, which are inher-
ited from egg or sperm and occur in the DNA of every 
cell in the body, somatic mutations are generated from 

mutational processes of exogenous and endogenous 
exposures as well as DNA enzymatic modifications and 
failure/infidelity of DNA repair and replication [1–3]. 
Mutational processes result in different mutation types 
(e.g., C>T substitution at the mutated base of ACG 
motif ) with characteristic combinations of mutation 
types constituting different mutational signatures [1, 4]. 
Previous studies have identified and confirmed more 
than 50 distinct signatures of single-base substitution 
(SBS) derived from the analysis of whole-genome and 
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whole-exome sequences (WES) of multiple cancer types 
[1, 4–9], but the etiologies for many of these signatures 
remain largely unexplored. In addition, tumor mutational 
burden (TMB), which quantifies the total mutations per 
megabase in a tumor tissue, has been suggested as a bio-
marker to predict the response of a patient to immu-
notherapy [10–12]. Recently, The US Food and Drug 
Administration approved the use of pembrolizumab, 
a humanized antibody for cancer immunotherapy, in 
patients with TMB-high solid tumors [13]. However, cur-
rently, it is not fully understood the reason most patients 
with high TMB benefit from immunotherapy.

Mutational signatures reflect the activity of the muta-
tional processes that have been active throughout a per-
son’s life [2]. The identified SBS signatures reflect both 
processes commonly found across cancer types as well 
as processes confined to a particular cancer type. For 
example, signature SBS2 and SBS13, both attributed to 
the enzymatic activity of the APOBEC family of cyti-
dine deaminases, are present in multiple cancer types 
[6]. In contrast, signature SBS12, whose etiology is still 
unknown, is almost exclusively found in liver cancers [1]. 
Some signatures reflect the effects of lifestyle choices, 
such as signature SBS4, which is associated with tobacco 
smoking in multiple cancer types, or environmental 
exposures, such as signatures SBS7a/b/c/d which are 
imprinted by exposure to ultraviolet light [1, 14]. Some 
signatures are caused by endogenous exposures, for 
example, the clock-like signature SBS1 is attributed to 
endogenous deamination of 5-methylcytosine [15]. How-
ever, the etiologies for many other recently identified 
signatures remain unclear. Linking those signatures of 
unknown origin to cancer risk factors may suggest mech-
anisms and provide avenues for further investigation.

Previous studies of multiple cancer types have found 
associations between somatic mutational burden and 
germline genetic variations [16]. For example, germline 
MC1R R alleles carrier status is significantly associated 
with somatic mutational burden in melanomas [17]. 
Germline and somatic statuses of ZNF750 and CDC27 
have an impact on somatic mutational signatures in 
esophageal squamous cell carcinomas [18]. rs2588809 
carrier status in gene RAD51B is significantly associ-
ated with total somatic mutation counts in breast cancer 
[19]. rs17000526, a variant associated with APOBEC3B 
expression, is strongly associated with APOBEC signa-
ture mutations in bladder cancer [20]. The minor allele 
(C allele) of germline variant rs12628403 at 22q13.1 has 
been found to reduce APOBEC3B-like mutagenesis in 
cancer types with low APOBEC mutations and increase 
APOBEC3A-like mutagenesis in cancer types with high 
APOBEC mutations; this variant is a proxy for a 30-kb 
APOBEC3B-eliminating deletion that is known to 

increase breast cancer risk as well as APOBEC mutagen-
esis in breast tumor [7, 20]. Another variant rs2142833 is 
associated with APOBEC3B-like mutagenesis across can-
cer types [7]. Carter et al. [21] investigated the interaction 
between germline variants and somatic events in can-
cer genes and found robust associations. A recent study 
by Sun et  al. showed that about 13% of the variation in 
pan-cancer TMB can be explained by common germline 
genetic variants [22]. In addition to studying the associa-
tion at the level of individual variants, one study [19] also 
examined the relationship between polygenic risk scores 
(PRS), which combine the effect of multiple germline var-
iants, and somatic mutational burden. They found that 
germline PRS of breast cancer was inversely associated 
with total somatic mutation counts in breast tumor sam-
ples, but the underlying mechanism is still obscure.

Here, we performed a pan-cancer analysis of the asso-
ciation between tumor somatic mutational profiles and 
germline PRS of cancers and non-cancer traits using data 
from The Cancer Genome Atlas (TCGA). Studies with 
comprehensive somatic mutation data do not always have 
complete and accurate epidemiological exposure data. 
By aggregating information across individual genetic 
variants associated with exogenous and endogenous 
risk factors, as well as other cancers and diseases that 
may share common biological mechanisms, PRS may 
increase power to detect associations between germline 
and somatic variation. Studying the relationship between 
germline PRS and somatic mutations can also provide 
insight into the underlying biological mechanisms of can-
cer development.

Methods
Study population
TCGA is a joint cancer genomics program of the National 
Cancer Institute and National Human Genome Research 
Institute that began in 2006. Over the past decade, TCGA 
collected more than 20,000 primary cancer and matched 
normal samples from over 11,000 cases across 33 cancer 
types [23]. All TCGA biospecimens, including blood and 
tissue, were collected by their Tissue Source Sites from 
eligible cancer patients along with their clinical metadata. 
Genomic data were generated from genomic characteri-
zation and high-throughput sequencing of the molecular 
analytes and were made available to the research commu-
nity [24]. Here, we selected cancer types based on the total 
number of cases in TCGA and the availability of large 
genome-wide association studies (GWAS) for calculat-
ing PRS. Twelve cancer types (Fig. 1) with more than 300 
patients of European ancestry in TCGA were selected to 
ensure 80% power (at a type I error rate of 5%) to detect 
an association between PRS and total somatic muta-
tion counts (TSMC) of similar or greater magnitude as 
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that previously reported between rs2588809 and TSMC 
[19] (Additional file 1: Figure S1). The initial total sample 
size was 5296 with the sample size for each cancer type 
ranging from 314 (bladder urothelial carcinoma) to 802 
(breast invasive carcinoma). We further restricted sample 
type to primary tumor and excluded male cases for breast 

cancer. Age at cancer diagnosis, sex, and tumor stage were 
retrieved from the Genomic Data Commons (GDC) data 
portal (https://​portal.​gdc.​cancer.​gov/) [25]. Tumor stage 
was not available for prostate cancer, endometrial cancer, 
lower grade glioma, glioblastoma, and ovarian cancer. Sam-
ples with missing age at cancer diagnosis, tumor stage (if 

Fig. 1  Mutation counts of SBS signatures and TSMC across 12 TCGA cancer types and two subtypes of breast cancer. Each dot represents a tumor 
sample. The median of log10(mutation count + 1) for each cancer type (or subtype) and SBS signature (or TSMC) is represented by both the color of 
the dots and the short black line in each panel. The number of TCGA samples for each cancer type is shown on the top

https://portal.gdc.cancer.gov/
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available), and sex information were further excluded. The 
remaining 4813 samples with both germline and somatic 
data available were included in the final analysis. About 
8% of TCGA cases carry pathogenic or likely pathogenic 
germline variants, which may affect somatic mutations 
[26]. We therefore further identified carriers of pathogenic 
or likely pathogenic variants as reported by Huang et  al. 
among the selected TCGA cases [26].

Mutational signatures
Mutational signatures were identified from TCGA WES 
data using methods based on nonnegative matrix fac-
torization [1]. We obtained the mutation counts for 54 
distinct SBS signatures for each selected tumor sample 
from the ICGC data portal (https://​dcc.​icgc.​org/​relea​
ses/​PCAWG) [7]. In addition, we created a new signature 
variable called APOBEC-related signatures by summing 
up the somatic mutation counts of SBS2 and SBS13 (both 
attributed to APOBEC activity). We analyzed all SBS sig-
natures that were present in more than 20 samples of at 
least one cancer and in more than 20% of samples of that 
cancer type. In addition to the SBS signature-specific muta-
tions, we also retrieved TSMC, defined as the total number 
of somatic missense mutations, for each sample using the 
maftools R package [27]. Many colorectal and endometrial 
cancers exhibit genetic hypermutability due to impaired 
mismatch repair [28–30]. We defined colorectal and endo-
metrial cancer tumors with TSMC greater than 500 to be 
hypermutable.

Germline variant data
Raw germline single nucleotide polymorphism (SNP) array 
data were downloaded from the GDC Legacy Archive 
(https://​portal.​gdc.​cancer.​gov/​legacy-​archi​ve) [25]. Geno-
type quality control (QC) was applied to remove variants 
with > 5% missing calls, Hardy-Weinberg equilibrium p < 5 
× 10−6, or minor allele frequency (MAF) < 1%. To restrict 
to individuals of European ancestry, genetic principal com-
ponents (PCs) were computed using post-QC, linkage dis-
equilibrium (LD) pruned variants, and any outlier sample 
> 6 standard deviations away from the mean along either 
of the top 2 PCs was removed. All remaining samples and 
genotypes were then imputed to the Haplotype Reference 
Consortium reference panel [31].

Calculation of PRS
The PRS of a trait for subject i was calculated as:

where the weight βj is the log odds ratio (or the beta 
coefficient for continuous traits) of the trait compar-
ing effect allele to other alleles at SNP j, and Gij is the 

PRSi =

∑

j

βjGij

expected number of effect allele at SNP j for subject i 
(allele dosage).

We calculated germline PRS for 23 cancers and non-
cancer traits, including the 12 selected cancer types, 
breast cancer stratified into estrogen receptor-positive 
(ER+) and estrogen receptor-negative (ER−) subtypes, 
cancer risk determinants (cigarettes per day, drink per 
week, and body mass index (BMI)), hormonal factors 
(age at menarche and age at natural menopause), and 
immune-mediated inflammatory diseases (inflamma-
tory bowel disease (IBD), ulcerative colitis (UC), Crohn’s 
disease (CD), and rheumatoid arthritis (RA)) using the 
TCGA germline variant data and published GWAS sum-
mary statistics. For cancer PRS, the list of SNPs and cor-
responding weights were obtained from one of the four 
sources: (i) GWAS or PRS paper, (ii) NHGRI-EBI GWAS 
Catalog [32], (iii) Cancer PRSweb [33], and (iv) The Poly-
genic Score (PGS) Catalog [34]. For non-cancer PRS, the 
summary statistics were from GWAS or PRS papers. 
Sources of GWAS summary statistics for each trait are 
summarized in Additional file 1: Table S1.

We filtered the SNP list for each trait using different 
strategies. For those from GWAS Catalog, we removed 
results from cross-cancer, subgroup, or interaction anal-
ysis and restricted to European ancestry studies with a 
minimum of 2000 cases and 2000 controls. We removed 
SNPs with a p value above the genome-wide significance 
threshold (p > 5 × 10−8) for those from GWAS Catalog or 
GWAS papers. For SNPs from Cancer PRSweb, we used 
the p value threshold with the best performance as evalu-
ated by Nagelkerke’s pseudo-R2. We did not additionally 
filter by p value nor perform LD clumping on SNPs from 
PRS papers or PGS Catalog. LD clumping was performed 
on SNP lists from GWAS paper and GWAS Catalog: we 
removed SNPs with MAF < 1% or in LD (r2 > 0.1) with 
SNPs of smaller p value. We used PLINK 2.0 [35] to cal-
culate PRS for each trait and subject from the final list of 
SNPs (Additional file 2: Table S2).

Validation of PRS
We evaluated the ability of the calculated PRS to dis-
criminate between specific cancer cases and controls in 
our data. For each cancer type and PRS, an unadjusted 
logistic model was fit by treating all patients of that can-
cer type as cases and a randomly selected subset (with 
the same sample size as cases) of other cancer cases as 
controls. The performance of PRS was assessed by the 
area under the receiver operating characteristic curve. In 
addition to the 12 cancer types and the two breast cancer 
subtypes, we also evaluated the performance of PRS on 
discriminating lung cancer cases combined (lung adeno-
carcinoma and squamous cell carcinoma) and glioma 
cases combined (lower grade glioma and glioblastoma). 

https://dcc.icgc.org/releases/PCAWG
https://dcc.icgc.org/releases/PCAWG
https://portal.gdc.cancer.gov/legacy-archive
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For those cancer types with subtypes or other closely 
related types (e.g., breast cancer), none of the patients of 
the other subtypes (or related types) was included as con-
trols when treating one subtype (or type) as cases.

Association between somatic mutations and germline PRS
We fit a zero-inflated negative binomial model, nega-
tive binomial model, or linear model regressing tumor 
somatic mutation counts on germline cancer or non-can-
cer PRS for each combination of cancer type (or subtype), 
SBS signature (or TSMC), and PRS, adjusting for sex (if 
applicable), age at cancer diagnosis (in years), and the top 
10 genetic PCs. TSMC were Winsorized to 98%, where 
the counts below the first percentile were set to the first 
percentile and the counts above the 99th percentile were 
set to the 99th percentile. PRS were standardized to have 
a mean zero and unit standard deviation before running 
each model. For each cancer type and SBS signature (or 
TSMC), a zero-inflated negative binomial model was fit if 
the proportion of zero-count samples is greater than 10%; 
otherwise, we fit a negative binomial model directly. If the 
zero-inflated negative binomial model failed to converge 
and the proportion of zero-count samples is less than 
50% (if greater than or equal to 50%, all models were con-
sidered as failed), we tried the negative binomial model. 
If both two models failed, we transformed the muta-
tion count to log10 (count + 1) and fit the linear model. 
In each attempt, we ran both models with and without 
PRS (models were considered as failed if either model 
failed) and obtained p value from the likelihood ratio test 
on these two models. We performed a fixed-effect meta-
analysis of the associations between TSMC or each SBS 
signature and each PRS across cancers. Stouffer’s Z-score 
method was also used to combine the individual p values 
from each cancer type. The Z-score for the overall meta-
analysis is:

where Zi is the Z-score for cancer type i, wi is the sam-
ple size of cancer type i, and k is the total number of can-
cer types and subtypes.

Sensitivity analysis
To assess the impact of age at cancer diagnosis on the 
association of germline PRS and somatic mutational 
burden, we performed association tests without adjust-
ing for age at cancer diagnosis. Spearman correlations 
were calculated for (i) somatic mutation count and age 
at cancer diagnosis for each cancer type and signature 
(or TSMC) and (ii) PRS and age at cancer diagnosis for 
each cancer type. Tumor stage was only available for 

Z ∼

∑k
i=1

wiZi
√

∑k
i=1

w2
i

some cancers; we performed association tests adjust-
ing for tumor stage for those cancer types. We further 
adjusted for the hypermutable subtype indicator in mod-
els of colorectal and endometrial cancer. The impact of 
pathogenic variant carrier status on the associations 
was assessed by running models without PRS and mod-
els with PRS and an interaction term of PRS and patho-
genic variant carrier status. We obtained 2 d.f. p values 
for the association of PRS and mutational signature from 
the likelihood ratio test comparing these two models. We 
further adjusted for the known germline APOBEC3 risk 
variants, rs17000526, rs12628403, and rs2142833 [7, 20], 
separately, in the associations with the APOBEC-related 
signatures. PRS SNPs in the main analysis underwent 
stringent filtrations on p value (e.g., p < 5 × 10−8); we cal-
culated another set of PRS for BMI, IBD, and drinks per 
week using large sets of genome-wide SNPs with weak 
restriction on p value (e.g., p < 0.05) from PGS Catalog 
(Additional file 1: Table S1) and refit the models. All sen-
sitivity analysis models were of the same model types as 
the models in the main analysis.

Results
TCGA germline and somatic data
We included 4813 patients of European ancestry across 
12 cancer types with germline variant and somatic muta-
tion data available from TCGA. Overall, somatic data 
were retrieved for (Fig. 1): (i) TSMC, (ii) nine individual 
SBS mutational signatures: SBS1, SBS3, SBS4, SBS5, 
SBS11, SBS29, SBS30, SBS37, and SBS40, among which 
SBS1, SBS3, SBS30 were attributed to endogenous muta-
tional process (spontaneous deamination of 5-methyl-
cytosine, defective homologous recombination DNA 
damage repair, and defective DNA base excision repair, 
respectively); SBS4, SBS11, and SBS29 were attributed to 
exogenous exposures (tobacco smoking, temozolomide 
treatment, and tobacco chewing, respectively); other 
signatures were of unknown etiology, and (iii) one com-
bined APOBEC-related signatures (SBS2 and SBS13). 
The germline PRS validation results are summarized in 
Additional file 2: Table S3; all cancer PRS were positively 
associated with the corresponding cancer case status in 
the TCGA samples.

Correlations with age at cancer diagnosis
We assessed the correlations between somatic muta-
tions by signature (or TSMC) and age at cancer diag-
nosis for each selected cancer type (Fig.  2). We used 
Bonferroni correction accounting for 69 tests (p = 7.25 
× 10−4), which is the total number of cancer-signature 
pairs included in the analyses. Consistent with previ-
ous studies [5], SBS1 and SBS5, the two clock-like sig-
natures for which the numbers of mutations increase 
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with age, showed strong positive correlations with 
age at diagnosis for most cancer types, though there 
exists heterogeneity across cancers. We also evaluated 
the correlation between the calculated germline PRS 
and age at diagnosis for each cancer type (Additional 
file  1: Figure S2). Although none of these associations 
passed the Bonferroni-adjusted significance threshold 
accounting for 322 tests (p = 1.55 × 10−4), the Spear-
man’s ρ with age for most cancer PRS were negative 
among the cases of that specific cancer, indicating that 
higher germline PRS of a cancer is associated with ear-
lier diagnosis of that cancer.

Associations between somatic mutations and germline 
PRS
Models regressing tumor somatic mutation counts on 
germline cancer or non-cancer PRS were fit for each 
combination of cancer type (or subtype), SBS signature 
(or TSMC), and PRS. The p value threshold for sig-
nificance was 3.15 × 10−5, adjusting for multiple com-
parisons using Bonferroni correction (1587 tests). We 
found 17 statistically significant associations (Table 1). 
Significant associations were found for prostate cancer, 
breast cancer, colorectal cancer, endometrial cancer, 
and glioblastoma; most of them involved somatic muta-
tion count of SBS1 (deamination of 5-methylcytosine) 

Fig. 2  Correlations between somatic mutation counts and age at cancer diagnosis for each cancer type. Only the correlations with age at cancer 
diagnosis for those cancer-signature pairs included in the analyses are shown in this figure. The number in each cell and the cell color represent the 
Spearman correlation (ρ) between mutation counts of a SBS signature or TSMC (y-axis) and age at diagnosis in a cancer type (x-axis). Corrections 
passed the Bonferroni threshold (p < 0.05/69 = 7.25 × 10-4) are marked with triple asterisk (***), correlations with p < 0.01 are marked with double 
asterisk (**), and correlations with p < 0.05 are marked with single asterisk (*)
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and the immune-mediated inflammatory diseases 
(IBD, CD, and UC) PRS. The full association results are 
in Additional file  2: Table  S4. The association results 
across the 12 cancer types and two breast cancer sub-
types for significant signature-PRS pairs are shown in 
Additional file 1: Figure S3. The association results for 
significant cancer-PRS pairs across mutational signa-
tures are shown in Additional file  1: Figure S4. Given 
that there were strong positive correlations between the 
number of mutations of SBS1 and age at cancer diagno-
sis in breast cancer (Spearman’s ρ = 0.18, p = 2.50 × 
10−6), in colorectal cancer (Spearman’s ρ = 0.24, p = 
2.85 × 10−5), and in glioblastoma (Spearman’s ρ = 0.23, 
p = 1.11 × 10−4); a nominally significant correlation 
between SBS1 and age in prostate cancer (Spearman’s ρ 
= 0.12, p = 0.02); and a significant correlation between 
SBS40 and age in endometrial cancer (Spearman’s ρ = 
0.18, p = 9.67 × 10−4), we further evaluated the associ-
ations of somatic mutations and PRS without adjusting 
for age at cancer diagnosis. There was no substantial 
change on the top findings, though we observed more 
significant associations with SBS1 and SBS5, which 
were likely to be driven by their correlations with age 
at diagnosis (Additional file  2: Table  S5). The inverse 
association between SBS1 and cigarettes-per-day PRS 

in colorectal tumor was slightly above the Bonferroni 
threshold without adjusting for age (p = 3.71 × 10−5). 
There was no substantial change of the directions and 
effect sizes of the significant associations after adjust-
ing for tumor stage where available, though the inverse 
association between head and neck cancer PRS and 
TSMC in colorectal tumor became non-significant 
(Additional file 2: Table S6). After adjusting for hyper-
mutable status for colorectal and endometrial cancer 
associations, the colorectal cancer associations for both 
SBS1 with cigarettes-per-day PRS and TSMC with head 
and neck cancer PRS became non-significant, although 
the direction of associations remained consistent (with 
the exception of head and neck cancer PRS and colo-
rectal cancer TSMC; Additional file 2: Table S7). After 
adjusting for pathogenic variant carrier status, five of 
the seventeen associations became non-significant 
(Additional file 2: Table S8). Finally, when we simulta-
neously adjusted for tumor stage, hypermutable status 
for colorectal and endometrial cancer, and pathogenic 
variant carrier status, six associations became non-
significant, although, again, the direction of association 
remained consistent (with the exception of head and 
neck cancer PRS and colorectal cancer TSMC; Addi-
tional file 2: Table S9).

Table 1  Significant associations between tumor somatic mutation counts and germline PRS

a PRS is calculated from the germline genetic data of the same TCGA patient as the tumor sample
b Direction of the association between somatic mutation count and PRS from zero-inflated negative binomial model, negative binomial model, or linear model 
adjusting for age at cancer diagnosis, sex, and the top 10 genetic PCs
c P value associated with PRS. P values are obtained from likelihood ratio test of model with PRS and model without PRS. For zero-inflated negative binomial model, 
the results are from testing the count and logistic model jointly. Age at cancer diagnosis, sex, and the top 10 genetic PCs were adjusted as covariates in all models
d APOBEC-related signature count is the sum of SBS2 and SBS13 mutation counts, both signatures are attributed to the enzymatic activity of the APOBEC family of 
cytidine deaminases

Cancer type Somatic mutation count Germline PRSa Direction of associationb p valuec

PRAD SBS1 Age at menarche − 2.49 × 10−9

PRAD SBS1 IBD + 9.04 × 10−6

PRAD SBS1 CD + 4.63 × 10−8

PRAD SBS1 UC + 3.71 × 10−9

PRAD SBS1 GBM − 3.29 × 10−8

PRAD SBS1 HNSC − 2.07 × 10−9

PRAD SBS1 BMI + 6.09 × 10−8

PRAD SBS1 Drinks per week − 1.69 × 10−5

BRCA​ APOBEC-relatedd IBD + 1.79 × 10−6

BRCA​ SBS1 Age at menarche + 1.47 × 10−5

BRCA ER+ SBS1 Age at menarche + 2.89 × 10−5

BRCA ER- SBS1 HNSC − 1.99 × 10−6

BRCA ER- TSMC HNSC − 5.31 × 10−7

COAD SBS1 Cigarettes per day − 1.71 × 10−5

COAD TSMC HNSC − 1.71 × 10−5

GBM SBS1 OV + 1.97 × 10−5

UCEC SBS40 CD − 7.71 × 10−7
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Consistent with a previous study [19], which found a 
significant inverse association between breast cancer PRS 
and TSMC in breast tumor samples for ER+ patients, we 
found inverse associations between the somatic mutation 
counts of APOBEC-related signatures and breast cancer 
PRS (both overall and ER+ specific) in breast tumors, 
though the associations were slightly above the signifi-
cance threshold (p = 5.08 × 10−5 for ER+, p = 1.14 × 
10−4 for overall). We further adjusted for the known ger-
mline APOBEC3 risk variants, rs17000526, rs12628403, 
and rs2142833, in the associations with the APOBEC-
related signatures. rs17000526 is in LD with bladder 
cancer PRS SNP rs1014971 (r2 = 0.98) and breast cancer 
PRS SNP rs5750715 (r2 = 0.16); rs12628403 is also in LD 
with rs5750715 (r2 = 0.18); rs2142833 was not included 
in the calculation of any cancer or non-cancer PRS or in 
LD (r2 > 0.1) with any PRS variants. There was no sub-
stantial change in the top associations with the APOBEC-
related signatures after adjusting for these variants 
separately. We observed an additional significant inverse 
association between age at menarche PRS and APOBEC-
related signatures in breast tumor (p = 2.57 × 10−5) and 
a significant positive association for CD PRS (p = 2.75 
× 10−5) after adjusting for rs2142833. Consistent with 
a prior study [20], we observed a significant association 
between rs17000526 and the APOBEC-related signatures 
in bladder tumors (regression coefficient = 0.21 for the 
rs17000526-A allele, p = 1.81 × 10−4). This association 
was not significant in the overall breast tumors. However, 
we did find a nominally significant association between 
rs17000526 and the APOBEC-related signatures in ER+ 
breast tumors (coefficient = 0.10, p = 0.04). In addition, 
significant associations were also found for rs12628403 in 
the overall (regression coefficient for rs12628403-A allele 
= − 0.25, p = 1.59 × 10−3) and ER+ breast tumors (coef-
ficient = − 0.31, p = 1.16 × 10−3).

Except for breast cancer, the most significant associa-
tion of somatic mutations and germline PRS for the same 
cancer type was observed between prostate cancer PRS 
and SBS1 count in prostate tumor (p = 7.87 × 10−5). We 
did not see any significant association between muta-
tion counts in lung tumor and cigarettes-per-day PRS 
(smallest p values: p = 3.32 × 10−3 for TSMC in lung 
adenocarcinoma; p = 0.03 for SBS1 in lung squamous 
cell carcinoma). Age at natural menopause and RA PRS 
were also not significantly associated with mutation 

counts in any cancer type (smallest p values: p = 1.96 × 
10−4 for age at natural menopause PRS and SBS5 count 
in prostate tumor; p = 9.32 × 10−5 for RA and TSMC in 
glioblastoma).

Consistent with the main analysis, we observed a sig-
nificant inverse association between drinks-per-week 
PRS calculated using genome-wide SNPs (i.e., including 
SNPs that do not meet the genome-wide significance 
threshold) and SBS1 count in prostate tumor (p = 6.35 × 
10−7). Positive associations between BMI PRS and SBS1 
count in prostate tumor (p = 2.34 × 10−3), IBD PRS and 
SBS1 count in prostate tumor (p = 0.20), and IBD PRS 
and APOBEC mutation count in breast tumor (p = 0.22) 
all became non-significant using genome-wide SNPs.

For the meta-analyses of signature-PRS associations 
across cancers, we used Bonferroni correction to adjust 
for multiple comparisons of 115 tests, which is the total 
number of signature-PRS pairs, excluding those only 
available for breast cancer (overall, ER+, and ER−) and 
lung cancer (adenocarcinoma and squamous cell car-
cinoma). The associations of SBS1 with CD PRS, SBS1 
with kidney cancer PRS, and APOBEC-related signatures 
with IBD PRS were significant using both the fixed-effect 
model and the Stouffer’s Z method (p < 4.35 × 10−4) 
(Fig.  3). Overall, we found 19 associations that were 
statistically significant based on either the fixed-effect 
model or Stouffer’s method (Additional file 2: Table S10).

Discussion
We performed a comprehensive analysis on the asso-
ciation between tumor somatic mutational profiles and 
germline PRS for various cancers and non-cancer traits, 
leveraging mutational signatures and germline variant 
data of 12 cancer types, as well as summary statistics 
from recent large GWAS. Our results demonstrate that 
there are robust associations between somatic muta-
tional profiles and germline PRS in human cancer. Some 
of these PRS reflect genetic variations underlying cancer-
related risk factors. Linking mutational signatures to 
these exogenous and endogenous risk factors represented 
by PRS may suggest the etiology of associated mutational 
processes. Other PRS reflect the germline genetic contri-
bution to cancer risk. Studying the relationships of PRS 
with tumor somatic mutational burden may shed light on 
the underlying mechanism of cancer development that is 
attributed to germline-somatic interactions.

(See figure on next page.)
Fig. 3  Significant association results from meta-analyses. The fixed-effect and Stouffer’s p values for the association between SBS1 and CD PRS 
are p = 4.29 × 10−5 and p = 1.33 × 10−5; for the association between SBS1 and the kidney cancer PRS, they are p = 9.05 × 10−7 and p = 2.10 × 
10−4, and for the association between APOBEC-related signatures and IBD PRS, they are p = 2.61 × 10−4 and p = 3.13 × 10−4. There are significant 
heterogeneities in the effect sizes for the associations between SBS1 and CD PRS and APOBEC-related signatures and IBD PRS across cancers (p < 
0.01). The effect sizes and 95% CI for PRS are plotted using gray squares and black horizontal lines. The size of the gray squares represents the weight 
in the fixed-effect model for each cancer type. Dashed line and diamond represent the results from the fixed-effect model
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Fig. 3  (See legend on previous page.)
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We found several inverse associations between ger-
mline cancer PRS and tumor mutation counts. Interest-
ingly, the overall breast cancer PRS and ER+-specific PRS 
were both associated with the somatic mutation count 
of APOBEC-related signatures in breast tumor. These 
inverse relationships are consistent with a previous study 
by Zhu et  al. [19]. Similarly, Qing et  al. [36] reported a 
significant inverse relationship between germline high-
functional-impact variants and somatic mutations in 
cancer hallmark genes among TCGA patients across 
age groups. It has been hypothesized that patients with 
higher germline variant burden tend to develop cancer 
at a younger age thus would have fewer acquired somatic 
mutations, whereas patients at a lower germline genetic 
risk may need longer time for cancer development, which 
is mainly driven by the accumulation of somatic muta-
tions [19, 36]. However, we observed this inverse rela-
tionship for APOBEC-related signatures, which did not 
show clock-like behavior in previous studies [1, 5]. In 
our data, there was also no statistically significant cor-
relation between mutation count of APOBEC-related 
signatures in breast cancer and age at cancer diagnosis 
(Spearman’s ρ = − 0.01, p = 0.73, Fig. 2). The direction 

of this association did not alter in sensitivity analysis 
models. This inverse relationship may indicate that breast 
tumors in women with low breast cancer PRS are likely 
to have higher APOBEC mutation counts (due to yet-to-
be-determined biological mechanisms), but it may also 
be a result of collider bias. Collider bias arises when we 
condition on a common effect of the exposure and the 
outcome (Fig. 4a). The exposure and the outcome can be 
associated in one direction within levels of their common 
effect even if there is no causal effect of the exposure on 
the outcome or the causal effect is in the other direction 
[37]. In our case, if other breast cancer risk factors that 
are independent of the breast cancer PRS in the general 
population are positively associated with breast can-
cer risk and APOBEC mutation counts, then the breast 
cancer PRS and APOBEC mutation counts could be 
negatively correlated among cases (Fig.  4b). This nega-
tive relationship is supported by findings from Aschard 
et al. [38], but the direction may not always be negative 
especially if the association of the risk factor with cancer 
risk and mutation counts are not both positive. Few stud-
ies have directly assessed the associations between estab-
lished cancer risk factors and SBS signatures. A study 

Fig. 4  Hypothetical relationships between germline PRS, risk factor, mutational signature, and diagnosis of cancer. a Exposure is associated with 
the outcome due to collider bias. Exposure (A) will be associated with outcome (Y) within levels of their common effect (L) even if there is no causal 
effect of exposure (A) on the outcome (Y). b Cancer PRS is associated with mutational signature due to collider bias. Cancer diagnosis (D) may or 
may not have an effect on somatic mutations of certain mutational signature (M). The cancer risk factor (X) is independent of cancer PRS (G) in the 
general population and is also associated with mutational signatures (M). Conditioning on diagnosis (D, i.e., studying cancer cases only) would 
induce collider bias on the relationship between cancer PRS (G) and mutational signature (M). If the cancer risk factor (X) is positively associated with 
both cancer diagnosis (D) and mutational signature (M), then an inverse association between cancer PRS (G) and mutational signature (M) is likely 
to be observed. c Three possible relationships between cancer or non-cancer PRS, mutational signature, and cancer diagnosis assuming no reverse 
causation. (i) Indirect effect: PRS (G) has an indirect effect on tumor development and diagnosis (D) through inducing somatic mutations of certain 
mutational signature (M); (ii) non-carcinogenic effect: PRS (G) has an effect on inducing somatic mutations of certain mutational signature (M) but 
neither PRS (G) nor somatic mutations (M) has an effect on tumor development and diagnosis (D); (iii) direct (and indirect) effect: PRS (G) has a 
direct effect on tumor development and diagnosis (D) that is not through the effect of somatic mutations (M) and may or may not have an indirect 
effect through somatic mutations (M). In this case, conditioning on diagnosis (D, i.e., studying cancer cases only) would induce collider bias on the 
relationship between PRS (G) and mutational signature (M)
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reported no impact of BMI, cigarette smoking, and alco-
hol consumption on APOBEC signatures in TCGA [39].

In another simple setting assuming no reverse causa-
tion, there might be three possible causal relationships 
between cancer or non-cancer PRS, mutational signa-
ture, and cancer diagnosis given that a significant associ-
ation between a germline PRS and a mutational signature 
is observed (Fig. 4c). Collider bias would also arise if both 
the PRS and mutational signature have a direct effect (or 
effect through other pathways) on tumor development 
and cancer diagnosis. If that is the case, a non-causal 
association between germline PRS and mutational signa-
ture would be observed if we only include cancer cases 
in the study. This scenario is plausible for breast cancer, 
as many breast cancer susceptibility variants identified 
from GWAS are protein-coding variants or directly regu-
late the expression of cancer genes (e.g., missense variant 
rs35383942 in PHLDA3, which encodes a p53-regulated 
repressor of Akt [40]), thus have effects on breast cancer 
development through other functional pathways that are 
not mediated by the acquirement of somatic mutations 
[41–44]. To avoid the potential collider biases, somatic 
mutation profiling needs to be performed on both tumor 
and normal tissue at the cancer sites of interest and the 
sampling of the study population should be independ-
ent of cancer status. The Human Tumor Atlas Network 
[45], which seeks to construct comprehensive atlases of 
molecular and cellular features of cancers, starting from 
precancerous lesions to advanced disease, could address 
these questions. In addition to the breast cancer asso-
ciations, inverse relationships were also observed for 
other five cancer PRS associations (head and neck cancer 
PRS and glioblastoma PRS with SBS1 in prostate tumor, 
head and neck cancer PRS with SBS1 and TSMC in ER− 
breast tumor, and head and neck cancer PRS with TSMC 
in colorectal tumor), either adjusting or not adjusting 
for age at diagnosis. Interestingly, there was a significant 
inverse association between kidney cancer PRS and SBS1 
across cancers (Fig.  3), though none of the individual 
associations reached the significance threshold (small-
est p value: p = 3.65 × 10−4 for breast cancer). These 
observed inverse associations may reflect shared etiol-
ogy, but these may also be explained by the collider bias 
described above.

For non-cancer traits, germline PRS of age at menarche 
was found to be significantly associated with SBS1 count 
in both overall and ER+ breast tumor. Specifically, we 
found that breast cancer patients with higher age at 
menarche PRS, a surrogate for later menarche, tend to 
have more SBS1 mutations. It has been well established 
that early age at menarche is associated with increased 
breast cancer risk [46, 47]. Therefore, it is possible that 
breast cancer patients with higher age at menarche PRS 

thus lower breast cancer risk (most likely but not neces-
sarily) would tend to develop breast cancer at a later age 
which is mainly driven by the accumulation of somatic 
mutations. Indeed, we observed this positive association 
for the two clock-like signatures SBS1 and SBS5, but not 
for the APOBEC-related signatures (Additional file  1: 
Figure S4). We also observed a significant association 
between age at menarche PRS and SBS1 count in prostate 
tumor. Although males do not exhibit menarche, a previ-
ous study reported a strong genetic correlation (rg = 0.74) 
between female and male puberty timing, represented by 
age at menarche and age at voice breaking, respectively 
[47]. Therefore, we hypothesize that the effect of hormo-
nal factor PRS on the number of somatic mutations in 
prostate tumors may be explained by the shared regula-
tory mechanism of puberty timing in men and women. 
Prostate cancer has long been recognized as a hormone-
related cancer; previous studies have reported associa-
tions between various hormones (e.g., insulin-like growth 
factor 1 (IGF-1), testosterone) and the risk of prostate 
cancer [48–50]. Mendelian randomization studies also 
reported a consistent protective effect of later puber-
tal development on prostate cancer risk [47, 51]. All 
these suggest an etiological relevance between the tim-
ing of puberty and incidence of prostate cancer involv-
ing shared effect of hormonal factors. Previous findings 
highlighted the roles of androgen and IGF-1, of which the 
circulating levels increase dramatically during puberty, in 
prostate carcinogenesis [51–55]. They proposed that the 
concentrations of these hormones during this suscepti-
bility window when luminal cells start to appear and the 
prostate becomes mature may have an impact on prostate 
cancer risk in later life [56–58]. Our findings suggest a 
potential pathway through the hormone-related markers 
of puberty timing on the accumulation of SBS1 mutations 
in prostate tissue, which may drive tumor development.

Inflammatory bowel disease PRS were found to be 
associated with somatic mutational profiles in multiple 
hormone-related cancers (breast, prostate, and endo-
metrial cancer). Previous studies have established CD 
and UC as risk factors for overall cancer [59–61], but 
whether these associations are driven by shared genetic 
susceptibility or other common lifestyle and environ-
mental factors remains unanswered by these observa-
tional studies. In the present work, we found a positive 
association between IBD PRS and somatic mutations of 
APOBEC-related signatures in breast cancer; this IBD-
APOBEC association was broadly significant across can-
cers (Fig. 3). Prior evidence have shown an increased risk 
of breast cancer among UC and CD patients, and first-
degree relatives of CD patients [61, 62]. Several potential 
mechanisms have been proposed. Interleukin-1 poly-
morphism has been linked to the risk of many diseases, 
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including breast cancer and IBD [63–66]. A study [67] 
identified 53 common differentially expressed genes and 
the shared Interleukin-17 and NF-κB signaling pathways 
for breast cancer and CD patients compared with con-
trols. Hovde et  al. [61] suggested that the downregula-
tion of breast cancer resistance protein in UC patients 
may be related to breast cancer etiology. In addition to 
breast cancer, we also observed robust positive relation-
ships between IBD PRS (IBD, UC, and CD) and somatic 
mutation count of SBS1 in prostate tumor; the associa-
tion between CD and SBS1 was broadly significant across 
the 12 cancer types in our study (Fig.  3). Recent meta-
analyses and a large cohort study concluded that patients 
with IBD have an increased risk of prostate cancer [68–
70]; it has been proposed that shared risk alleles may par-
tially explain this association [68, 71]. Folate hydrolase 1 
(FOLH1) or prostate-specific membrane antigen (PSMA) 
is overexpressed in both IBD and prostate cancer [72–
74]. Studies have reported that inhibition of FOLH1/
PSMA ameliorates IBD symptom in mice models [72] 
and also leads to tumor regression in preclinical models 
[75]. Our results suggest there is a link between inherited 
genetic variants that contribute to the development of 
inflammatory bowel disease and acquired somatic muta-
tions in these hormonal-related cancers. Future studies 
need to further investigate the mechanisms underlying 
the associations between specific PRS and specific SBS 
signatures, especially between IBD PRS and APOBEC-
related signatures and CD PRS and SBS1. One direc-
tion might be looking at the associations between these 
mutational signatures and the measured immune-related 
markers in TCGA. This may also provide novel insight 
into the mechanism underlying the association between 
TMB and benefit from immunotherapy. Interestingly, we 
found a significant inverse association between CD PRS 
and SBS40 count in endometrial cancer. There are lim-
ited studies looking at the association between IBD and 
the risk of endometrial cancer. Our results may suggest 
potential mechanisms underlying SBS40 through inflam-
matory processes. We did not observe any significant 
association between IBD PRS and somatic mutation 
count in colorectal cancer (p > 0.05), though having IBD 
has long been recognized as a risk factor for developing 
colorectal cancer [76, 77]. It is possible that the observed 
link between IBD and colorectal cancer risk cannot be 
explained by any germline-somatic associations studied 
here, but this may also be a power issue given the small 
sample size for colorectal cancer.

A significant positive association was observed 
between BMI PRS and SBS1 count in prostate cancer. 
Obesity has been established as an independent risk 
factor for advanced or fatal prostate cancer [78–80]. 

Studies also have shown that high BMI is associated with 
a decreased risk of low-grade prostate cancer [78, 79, 81, 
82]. However, these associations may be due to diagnos-
tic bias. Men with higher BMI tend to have lower pros-
tate-specific antigen levels [83, 84], which makes them 
less likely to have a biopsy, and larger prostates, which 
makes it harder to find the tumor from biopsy [85, 86]. 
Mendelian randomization studies have found little evi-
dence for a causal relationship between BMI and pros-
tate cancer incidence [87, 88]. Therefore, it is likely that 
a higher BMI PRS is associated with an older age at diag-
nosis, and since SBS1 counts increase with age, people 
with higher BMI PRS would have higher SBS1 counts 
as well. We did not adjust for tumor stage or grade for 
prostate cancer cases, as it was unavailable in our data. 
We adjusted for age at diagnosis, and the BMI PRS is not 
significantly associated with age at diagnosis of prostate 
cancers in our study (Additional file  1: Figure S2), but 
we still observed this strong positive association. Future 
studies need to further investigate this association with 
SBS1 incorporating both tumor stage and grade informa-
tion, and carefully control for the potential biases. Never-
theless, this positive association for BMI may explain the 
observed inverse association between age at menarche 
PRS and SBS1 count in prostate tumor. While the lat-
ter association might be partially explained by hormo-
nal effect, it might also be explained by the fact that a 
higher BMI is associated with an earlier puberty [89]. If 
people with lower age at menarche PRS have higher BMI 
PRS, then the inverse association of age at menarche and 
the positive association of BMI with somatic mutations 
would be expected, but again, these hypotheses need to 
be confirmed by future studies.

In addition to the associations for non-cancer PRS 
mentioned above, we also observed an inverse associa-
tion between drinks-per-week PRS and SBS1 count in 
prostate tumor. A recent study showed that alcohol intake 
was inversely associated with lethal prostate cancer [90]. 
This observed inverse association in our study needs 
to be further investigated with tumor stage and grade 
information. Another inverse association was observed 
between cigarettes-per-day PRS and SBS1 counts in colo-
rectal tumor. However, this association became non-sig-
nificant after further adjusting for hypermutable status 
(Additional file  2: Table  S6). There exists inconsistency 
in the association results for BMI and IBD PRS between 
using genome-wide SNPs and SNPs passed a more strin-
gent p value threshold, but this is also expected given that 
these PRS may capture different effects. Using a small set 
of top SNPs may reflect more of the mechanism-related 
genetic effects of a trait compared with using a large set 
of genome-wide SNPs which may capture a substantial 
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amount of pleiotropic effect. Therefore, we chose to use 
parsimonious PRS in the main analysis to minimize the 
impact of pleiotropy and confounding.

Our study has limitations. The calculated PRS only 
explains a small proportion of the heritability thus may 
not fully represent the germline genetic variant bur-
den underlying a trait. The association of  germline 
PRS  and  somatic  mutations might be driven by only 
a few SNPs included in the PRS, while the remaining 
SNPs may involve in other biological pathways, unre-
lated to the  mutational processes. In particular, asso-
ciations involving a PRS for an exogenous exposure like 
drinks-per-week could only be interpreted as compel-
ling evidence for the association between the exposure 
itself and mutational signatures if the SNPs in the PRS 
only affect mutational processes thru their effects on 
exposure [91]. This need not be the case if some SNPs 
affect multiple biologic pathways (pleiotropy) [92, 93]. 
However, as discussed above, we used a parsimonious 
set of SNPs restricted to those exhibiting the strongest 
associations with the exposure or disease under study, 
minimizing the risk of pleiotropy. Nevertheless, it would 
still be of interest for future studies to look at the asso-
ciations of somatic mutations with genome-wide PRS 
and compare to the results of using parsimonious sets of 
SNPs. Another thing to be cautious of when interpret-
ing the results is that the associations were with somatic 
mutation counts in the developed tumor, but not can-
cer risk. Although we adjusted for tumor stage for most 
cancer types, we did not adjust for or perform subgroup 
analysis by tumor grade, as this information is not avail-
able for the selected TCGA patients. Although there was 
no substantial change of the directions of association or 
effect estimates in the sensitivity analysis compared to 
the main analysis, the p values of some associations fluc-
tuated up or down the significance threshold depend-
ing on the SNPs included in the PRS and the covariates 
included in the model. Bonferroni correction for mul-
tiple testing is conservative; we expect to identify more 
significant associations with a larger sample size. Our 
study population was restricted to individuals of Euro-
pean ancestry. We do not have data on country of origin. 
Given that environmental exposures can vary by geo-
graphical regions, which may lead to the different preva-
lence of certain mutational signatures across regions, 
we suggest future studies to account for these potential 
differences.

There are several strengths of our study. We per-
formed a comprehensive pan-cancer analysis of the rela-
tionship between 14 cancer PRS and 9 non-cancer PRS, 
and TSMC as well as the number of mutations attrib-
uted to 10 SBS signatures across 12 cancer types. Using 

PRS for exogenous exposures such as cigarettes-per-day 
allowed us to examine the association between these 
exposures (otherwise unmeasured) and mutational sig-
natures, avoiding bias from confounding and reverse 
causation in traditional observational studies—although 
concerns regarding pleiotropy mentioned above temper 
conclusions regarding causal associations between these 
exposures and mutational signatures. Also, we have a 
sufficient sample size for detecting associations of sim-
ilar strength as the previous study [19] in each cancer 
type with a high power, which may not be achievable 
using exposure data that usually have missing meta-
data. We assessed the impact of age at cancer diagnosis, 
tumor stage, hypermutable status, pathogenic variant 
carrier status, and established signature-associated vari-
ants on the germline-somatic associations. However, it 
would still be useful to collect and analyze epidemio-
logical data on exposures in future studies for a better 
understanding of the role of germline genetic variations 
underlying these associations. Future studies can also 
look at the association between signature-specific muta-
tion count and immune features, hormonal markers, 
and expression levels of cancer susceptibility genes to 
further investigate the underlying mechanisms.

Conclusions
In conclusion, our findings indicate that there are robust 
associations between somatic mutational profiles and 
germline PRS in human cancer. Our results demonstrate 
evidence for germline-somatic associations between 
inflammatory bowel disease PRS and somatic mutations 
(SBS1 and APOBEC-related signatures) in breast cancer 
and prostate cancer, and between age at menarche PRS 
and somatic mutations (SBS1) in breast and prostate can-
cer. Our results are relevant to the etiology of mutational 
signatures and the underlying biological mechanisms of 
cancer development.
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