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Abstract

Background: Solid tumors such as pancreatic ductal adenocarcinoma (PDAC) comprise not just tumor cells but also a
microenvironment with which the tumor cells constantly interact. Detailed characterization of the cellular composition
of the tumor microenvironment is critical to the understanding of the disease and treatment of the patient. Single-cell
transcriptomics has been used to study the cellular composition of different solid tumor types including PDAC.
However, almost all of those studies used primary tumor tissues.

Methods: In this study, we employed a single-cell RNA sequencing technology to profile the transcriptomes of
individual cells from dissociated primary tumors or metastatic biopsies obtained from patients with PDAC.
Unsupervised clustering analysis as well as a new supervised classification algorithm, SuperCT, was used to identify the
different cell types within the tumor tissues. The expression signatures of the different cell types were then compared
between primary tumors and metastatic biopsies. The expressions of the cell type-specific signature genes were also
correlated with patient survival using public datasets.

Results: Our single-cell RNA sequencing analysis revealed distinct cell types in primary and metastatic PDAC tissues
including tumor cells, endothelial cells, cancer-associated fibroblasts (CAFs), and immune cells. The cancer cells showed
high inter-patient heterogeneity, whereas the stromal cells were more homogenous across patients. Immune
infiltration varies significantly from patient to patient with majority of the immune cells being macrophages and
exhausted lymphocytes. We found that the tumor cellular composition was an important factor in defining the PDAC
subtypes. Furthermore, the expression levels of cell type-specific markers for EMT+ cancer cells, activated CAFs, and
endothelial cells significantly associated with patient survival.
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Conclusions: Taken together, our work identifies significant heterogeneity in cellular compositions of PDAC tumors
and between primary tumors and metastatic lesions. Furthermore, the cellular composition was an important factor in
defining PDAC subtypes and significantly correlated with patient outcome. These findings provide valuable insights on
the PDAC microenvironment and could potentially inform the management of PDAC patients.
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Background
The tumor microenvironment (TME) which includes
cellular and non-cellular components plays an important
role in the progression, metastasis, and drug resistance
of the tumors. The cellular components of TME (i.e.,
stromal cells) usually contain cells of hematopoietic ori-
gin (e.g., immune cells) and cells of mesenchymal origin
(e.g., fibroblasts) [1]. The non-cellular components of
TME include the extracellular matrix (ECM) and the
signaling molecules produced by the cancer cells and
stromal cells. Pancreatic ductal adenocarcinoma
(PDAC), which accounts for > 90% of all pancreatic can-
cer cases, is one of the solid tumor types known to have
a highly inflammatory and desmoplastic TME. The
highly reactive and dense stroma contributes to the ag-
gressiveness and drug resistance of PDAC, hence leading
to the high mortality rate of the disease [2].
Recently, many drug development programs focus on

developing stroma-remodeling agents for PDAC. Those
agents either target the non-cellular components such as
extracellular proteins (e.g., recombinant hyaluronidase
that degrades hyaluronan) or aim to modulate the activ-
ity of certain stromal cell types such as cancer-
associated fibroblasts and immune cells [3–6]. The ra-
tionale behind the development of these agents is that
they will modulate the TME to a less fibrotic and/or less
immunosuppressive state and thus lead to improved
drug penetration and/or antitumor T cell infiltration.
The accurate initial quantitative measurement of these
components and the on-going effects of these stoma-
targeted agents are critical to their successful develop-
ment and therapeutic optimization.
Traditionally, measuring and phenotyping of cells in a

solid tissue is done using immunohistochemical staining
(IHC) and/or flow cytometry. Both techniques require
high-quality antibodies against known cell type-specific
marker proteins. Although IHC can provide spatial in-
formation on the cells within a tumor section, it is low
throughput and not quantitative. FACS allows for single-
cell analysis and is highly quantitative; however, it re-
quires a large number of cells and, due to its reliance on
fluorescent tags, issues including autofluorescence and
spectral spillover can lead to loss of resolution. The re-
cently developed cytometry by time-of-flight (CyTOF)
has resolved the autofluorescence and spectral spillover

issues and significantly improved the multiplexity [7, 8].
However, CyTOF is limited by the catalog of available
isotope-labeled antibodies and generally also requires a
high number of cells [9]. Recent advances in next-
generation sequencing (NGS) technology have made the
deep RNA sequencing at single-cell level feasible [10].
This allows the interrogation of whole transcriptome in
individual cells within a tumor and the determination of
their states at exceptionally high resolution. In this
study, we employed a single-cell RNA sequencing
(scRNA-Seq)-based profiling method to quantitatively
determine the cell types and states within PDAC pri-
mary tumors and metastatic lesions to understand their
heterogeneity and complexity.

Methods
PDAC tumor specimens
Fresh tumors from PDAC patients (Additional file 1:
Table S1) were collected at HonorHealth Research Insti-
tute (Scottsdale, AZ, USA) and Samsung Medical Center
(Seoul, South Korea) under Institutional Review Board-
approved protocols. Signed informed consent was ob-
tained from each patient. Primary tissues from ten dif-
ferent patients with localized PDAC were obtained
during surgical resections, and the biopsies of six pa-
tients with metastatic PDAC (5 liver metastases and 1
omentum metastasis) were obtained by 19 gauge nee-
dles. Freshly harvested tissues were mechanically and en-
zymatically dissociated using a tumor dissociation kit
(Cat #130-095-929, Miltenyi Biotec, Bergisch Gladbach,
Germany) on a gentleMACS™ Dissociator (Miltenyi Bio-
tec). After dissociation, single-cell suspensions were fil-
tered using a 40-μm cell strainer to remove large pieces
of debris. Red blood cells (RBC) were removed by incu-
bating the cells with RBC lysis buffer (ThermoFisher Sci-
entific, Carlsbad, CA). Cells were then counted and
evaluated for viability using the trypan blue (0.4%) stain-
ing assay.

Single-cell RNA sequencing (scRNA-Seq)
Single-cell whole transcriptome profiling of the dissoci-
ated tumor tissues was carried out using the Chromium
Single Cell Gene Expression Solution system by 10x
Genomics (Pleasanton, CA, US). Single cells were resus-
pended in PBS buffer at 106 cells/mL and loaded onto
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the Chromium chips. The single-cell capturing, barcoding,
and cDNA library preparation were performed using the
Chromium Single Cell 3′ Library & Gel Bead Kit v2 by
10x Genomics by following protocols recommended by
the manufacturer. The final sequencing libraries were
checked for quality on Agilent 4200 Tapestation System
and quantified by fluorometry staining (QuBit) assay. The
libraries were sequenced on a HiSeq4000 (Illumina, San
Diego, CA, USA) at a depth of ~ 50,000 reads per cell.

scRNA-Seq data processing, quality control, and analysis
CellRanger (10x Genomics) was used to generate digital
expression matrixes from the FASTQ files obtained from
the Illumina sequencing runs. In addition to the filtering
of low-quality barcodes (cells), we also removed cells
with small library size (< 1000 UMI) or few expressed
genes (Shannon diversity index < 3, calculated using the
diversity function in the Vegan package in R) were ex-
cluded from further analysis. The digital expression
matrices for cells that passed the quality control were
then input into the Seurat R package (v3.0) [11, 12] to
generate Seurat objects for the comprehensive down-
stream analyses and visualization. The following Seurat
functions were used in the Seurat pre-processing pipe-
line: NormalizeData, ScaleData were used to calculate
the comparable expression values; FindVariableFeatures
were used to include the variable genes that contribute
to the overall similarity/variability of cellular transcrip-
tomic profiles; RunPCA, FindNeighbors, FindClusters,
RunTSNE, and RunUMAP were used to calculate the
dimension-reduction coordinates for visualization and to
perform unsupervised clustering. In the downstream
analyses, we used Uniform Manifold Approximation and
Projection (UMAP) coordinates to visualize the layout of
the cells.

Modular score calculation and signal visualization
AddModuleScore function in the Seurat package was
used to calculate the gene expression modular scores for
each cell. Cells in the same cluster have a similar level of
modular scores, indicating similar gene expression pro-
files and presumably similar cellular function or state.
Cells were mapped onto dimension-reduction plots
based on their modular scores using the FeaturePlot
function in Seurat. Signal distribution in each cluster
was evaluated and visualized using Violin plots using the
VlnPlot function in Seurat.

Cell type identification
To identify the cell types and subtypes that the tumors
contain, two different methods were employed. The first
method used the cell type markers that have been estab-
lished in the literature [13, 14]. Those include EpCAM
and KRT19 for ductal epithelial cells; COL1A1, ACTA2,

and SPARC for fibroblasts; CDH2, SNAI2, and ZEB1 for
EMT-like cells; CD3D, IL7R, and CD3G for lympho-
cytes; CD68 and G-CSF for monocytes/macrophages;
KDR and VWF for endothelial cells; and FCER1A and
CD1 for dendritic cells. The second was the supervised
learning algorithm, SuperCT, which we described previ-
ously [15]. Briefly, a training set of 10x Genomics
scRNA-seq data for ~ 200,000 cells representing 30 dif-
ferent cell types were used to train our SuperCT algo-
rithm to establish the cell type prediction model. Once
verified by additional datasets, the expression matrix files
for the current study were input into the program. Each
cell was assigned to one of the 30 different cell types (or
unknown if does not match any of the 30 types) based
on their expression profile. If the cells that were assigned
to a particular cell type clustered together on the
UMAP, then the cluster was identified as that cell type.
This method allowed the identification of cell types that
were not assigned using known cell markers.
Inferred copy number variation (CNV) analysis was

carried out using the InferCNV R Package [16]. The
stromal cancer-associated fibroblast cells were used as
reference cells and the hidden Markov model was
chosen to predict the CNV states.

Gene Ontology term enrichment analysis
The hypergeometric test that is implemented in the R
package “clusterProfiler” [17] was used to perform the
enrichment analysis of differentially expressed genes or
cell type-specific genes in Gene Ontology (GO) terms.
The visualization function “dotplot” provided by cluster-
Profiler was used to generate the GO enrichment plots.

Correlation analysis between cell type-specific gene
signature and patient survival
Bulk RNA-seq datasets and the corresponding patient
outcome (overall survival) data for PDAC patients were
obtained from International Cancer Genome Consor-
tium (ICGC) database (release 20 for US TCGA, Canada,
and Australia cohorts) [18, 19]. To evaluate the correl-
ation between the expression of cell type-specific signa-
ture genes and patient outcome, the top 20 signature
genes (Additional file 2: Table S2) were first identified
for each cell type (cluster) using the FindMarkers func-
tion in the Seurat package (FindMarkers ranks the genes
based non-parametric Wilcoxon rank sum tests between
the cell type of interest and the rest of the cell types).
An expression matrix was then generated for each of the
20 genes across the patients based on their expression
levels. For a given patient, if the expression level of a
given gene was equal to or greater than the median ex-
pression of the gene across all patients, then the matrix
value for that gene in that patient was assigned as 1. If
the expression level was less than the median expression
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value, then the matrix value was assigned as 0. For each
patient, the matrix values for the 20 signature genes
were then added up to obtain an overall expression score
for the gene signature (and thus the cell type). The pa-
tients were then classified as high and low for the spe-
cific cell types, if their overall expression score fell into
the top 25% quartile and the low 25% quartiles, respect-
ively. The overall survival of the patients in those two
high and low expression groups was finally compared
using the Kaplan–Meier curves and log-rank P value
analysis.

SuperCT cell type classification
SuperCT is a cell type classifier we previously described
[15]. It utilizes a machine-learning algorithm to establish
a cell type classifier from the published single-cell RNA-
seq datasets and then uses the classifier to predict the
cell types in the new single-cell RNA-seq datasets that
have a similar biological context. The cell-classifier is in-
dependent of the dimension-reduction and unsupervised
clustering methods, which allows the identification of
small cell populations that do not form distinct clusters.
In this study, we used the v1i version of SuperCT to
characterize the cell types for the total single-cell RNA-
seq datasets [15]. To further characterize the T cell pop-
ulations, we used the single-cell RNA-seq dataset of
melanoma-associated T cells reported by Li and co-
workers to train our SuperCT immune cell module and
then used it to predict the T cell subtypes in the PDAC
tumor tissues [20].

Statistical analysis
The Kaplan–Meier survival curves were plotted using
GraphPad Prism 8. The log-rank (Mantel–Cox) test was
used to determine the P value (< 0.05 is considered to be
significant), hazardous ratio (HR), and 95% confidence
interval (CI).

Results
scRNA-Seq profiling reveals heterogeneous cell
composition in PDAC tissues
We obtained fresh primary tumor tissues from 10 pa-
tients with resected PDAC and core needle biopsies
from the metastatic lesions (liver or omentum) of 6 pa-
tients with metastatic PDAC. The tumors were histologi-
cally confirmed as PDAC. The clinicopathological
characteristics of the patients are summarized in Add-
itional file 1: Table S1.
The tissues were processed and dissociated into single-

cell suspension and sequenced using the Chromium
single-cell RNA-Seq platform (10x Genomics). After
stringent quality control and normalization analysis, we
obtained high-quality transcriptomic profile data from a
total of 8000 cells from the 10 primary tumors and 6926

cells from the 6 metastasis samples. The number of cells
obtained from each patient ranges from 143 to 1570 for
primary tumors and 125 to 2885 for metastatic biopsies.
Using unsupervised clustering analysis and the Uni-

form Manifold Approximation and Projection (UMAP),
a dimension-reduction and visualization method [21],
we were able to identify segregated cell clusters in the
primary PDAC tissues. To identify the cell identities that
those clusters represent, we used known cell type
markers previously established to classify the major clus-
ters or the signature-enriched populations into different
cell types including epithelial cells, fibroblasts, endothe-
lial cells, and immune cells (Fig. 1).
The epithelial cells express epithelial cell adhesion

molecule (EpCAM) and cytokeratin 19 (KRT19). To ver-
ify that those cells are indeed epithelial tumor cells, we
determined their cell cycle status using validated genes
previously shown to identify cells in active cell cycling
phases (G1/S and G2/M) [22] and found that a much
higher fraction of those cells was in an active cell cycling
process in comparison to the normal epithelial cells and
the fibroblast cells. The fraction of the epithelial cells in
active cell cycling is also comparable to that reported for
pancreatic ductal tumor cells by Peng et al. [13], further
supporting the assignment of those epithelial cells as
tumor cells (Additional file 1: Fig. S2). Therefore, we
designated those cells as epithelial tumor cells (ETCs).
The fibroblast cells express the well-known fibroblast-
related genes such as collagens (COL1A1, COL1A4),
SPARC, and alpha smooth muscle Actin (ACTA2). We
designate those fibroblasts as cancer-associated fibro-
blasts (CAFs). We identified 3 major clusters of immune
cells that include BDCA-1+ dendritic cells (DC), CD14+/
CD68+ macrophages, and CD3+ T cells. We designated
the macrophages as tumor-associated macrophages
(TAMs) and the T cells as tumor-infiltrating lympho-
cytes (TILs). The endothelial cells (Endo) represented a
minor cell population that expressed CD34, VWF, and
KDR genes. Interestingly, a subset of clusters showed a
strong epithelial to mesenchymal transition (EMT) sig-
nal (Additional file 1: Fig. S3). This cluster also demon-
strated a high proliferative signal (Additional file 1: Fig.
S2). We therefore designated them as tumor cells with
EMT characteristics (EMT, Fig. 1). To further verify the
assignment of the cell types, we performed inferred gene
copy number analysis using the InferCNV software [16].
As can be seen in Additional file 1: Fig. S4, when using
CAF cells as the reference, the copy number profiles in-
ferred from the single-cell RNA sequencing are very
similar between the CAFs and the different subsets of
immune cells, whereas the cancer cells (both the epithe-
lial tumor cells and the tumor cells have undergone
EMT) showed substantial copy number variations (Fig.
S4). This result is consistent with the fact that pancreatic
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cancer cells are highly aneuploid with numerous copy
number alterations and the stromal cells are generally
diploid with few copy number variations.
Overall, the human primary PDAC tumors contained 7

major cell populations including ETCs, EMTs, CAFs,
DCs, Endos, TILs, and TAMs (Fig. 1a). The metastatic le-
sions contained 3 major cell populations including ETCs,
TILs, and TAMs. It is noteworthy that the tumor cells
(ETCs and EMTs) from different patients tend to form
separate clusters in both primary tumors and metastatic
lesions, suggesting that tumor cells from different patients
have significant heterogeneity (Fig. 1c, d). The CAFs and
immune cells from different patients are mostly mixed to-
gether. As a quality measurement, we also evaluated the
distribution of the fraction of mitochondrial genes in each
cell type. As shown in Additional file 1: Fig. S5, the frac-
tion of mitochondrial genes is very low (< 2.0% of the total
genes) with the TILs having a relatively highly percentage
than the other cell types.
The fraction of each cell type in a given patient varied

greatly from patient to patient (Table 1 and Fig. 1e),
which adds another level of heterogeneity among

patients. In human primary tumors, the percentage of
ETCs ranges from less than 1.7 to 85.1% (average
42.2%), the CAFs from 2.8 to 68.3% (average 21.7%),
TAMs from 0.5 to 53.7% (average 11.84%), and TILs
from 0 to 30.1% (average 4.3%). The metastases con-
tained a higher percentage of epithelial tumor cells
(30.4–97.6%) with varying percentage of immune cells
(TAMs and TILs). It is worth noting that patients with a
higher number of TILs also have a higher number of
TAMs (Table 1).
To identify minor cell types that do not form distinct

clusters, we also used a supervised classification method,
SuperCT [15]. This approach allowed more robust iden-
tification of cell types with small cell numbers and sub-
types of major cell types (Additional file 1: Fig. S1). A
small population of acinar cells was identified. Multiple
additional subtypes of immune cells such as B cells and
natural killer (NK) cells were also identified, even though
there are no obvious cluster segregations for those cell
types in the UMAP or tSNE plots. Interestingly, the
SuperCT algorithm assigned a significant number of epi-
thelial tumor cells (EpCAM+ and KRT19+) as an

Fig. 1 Multiple cell types were identified in PDAC primary tumors and metastatic lesions by single-cell RNA sequencing (scRNA-Seq). The cells
from PDAC primary tumors (a, c) or metastatic lesions (b, d) were analyzed using unsupervised clustering and visualized using a UMAP plot. The
clusters in a and b are color-coded based on cell types identified using known cell type-specific markers. The clusters in c and d are color-coded
based on the patients. e A box plot showing the distribution of each cell type in the primary tumors and metastatic biopsies (MET)
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unknown cell type. This is due to the fact that the
SuperCT v1i was trained on a dataset that only included
normal tissues and the majority of epithelial tumor cells
apparently did not resemble the normal epithelial cells
or other cell types defined in the classifiers. This obser-
vation demonstrates the high robustness of the SuperCT
tool.

Epithelial tumor cells in PDAC exhibit a high inter-patient
heterogeneity
To further characterize the tumor cells, we pooled the
tumor cells from all primary tumors and clustered them
unsupervised. As shown in Fig. 2a, the tumor cells clus-
tered together primarily by patient, indicating significant
inter-patient heterogeneity. Similar clustering patterns
have been seen in single-cell sequencing analysis of
other solid tumor types such as triple-negative breast,
melanoma, and glioblastoma [16, 22, 23]. Two of the
clusters have high expression of genes related to mesen-
chymal phenotype (e.g., CDH2, SNAI2, ZEB1, TWIST1,
and VIM) which were assigned as tumor cells with EMT
characteristics (EMT+). The two EMT clusters were
traced back to 2 different patients and well separated
from each other. Some of the tumor cells expressed stem
cell markers (e.g., PROM1) but did not form separate
clusters (Additional file 1: Fig. S6). The EMT cluster
looks to be more closely associated with CAFs than the
ETCs on the UMAP. We therefore performed pathway
enrichment analysis to further characterize their

differences. The unique signature genes (Additional file 3:
Table S3) that define the CAF and EMT cell populations
were input into the Ingenuity Pathway Analysis (IPA)
core analysis tool (Qiagen, Inc., Germantown, MD). As
shown in Additional file 1: Fig. S7, the top ten canonical
pathways enriched for the signature genes are very dif-
ferent between the two cell populations. The CAF signa-
ture genes are more enriched in pathways related to
extracellular matrix and fibrosis, whereas the EMT sig-
nature genes are more enriched in pathways related to
cancer signaling and cell cycle.
Similar to those from primary tumors, tumor cells

from metastatic biopsies also segregated by patient in
unsupervised clustering analysis (Fig. 2b). Notably, the
tumor cells from the metastatic lesions showed little
mesenchymal characteristics (Additional file 1: Fig. S8).
Interestingly, one of the tumors showed strong signal
characterized of acinar cells based on the SuperCT
model prediction (Additional file 1: Fig. S9A) and are
highly positive for expression of acinar cell maker genes
(Additional file 1: Fig. S9B-C).
When the cells from the primary tumors and metastatic

lesions were combined and clustered unsupervised, the
segregation pattern of the different cell types stayed the
same. The epithelial tumor cells from different patients
remained segregated (Additional file 1: Fig. S10). The stro-
mal cells were generally clustered together based on cell
types (TAMs, TILs, CAFs, etc.) regardless of their patient
of origin or tissue type (primary or metastatic).

Table 1 Cell types and abundancies in PDAC primary tumors and metastatic lesions detected by scRNA-Seq

Percentage of total cells detected

Patient ID Primary/metastasis CAF DC EMT Endo ETC TAM TIL

P01 Primary 8.6 3.7 73.1 3.2 9.3 0.5 1.2

P02 Primary 2.8 6.3 0.7 0.0 51.7 8.4 30.1

P03 Primary 10.7 0.1 82.0 3.7 1.7 1.6 0.1

P04 Primary 24.6 < 0.1 2.8 < 0.1 72.7 < 0.1 < 0.1

P05 Primary 68.3 1.8 < 0.1 2.3 17.7 8.1 1.8

P06 Primary 33.4 3.8 < 0.1 3.1 55.1 4.2 0.4

P07 Primary 14.1 4.5 < 0.1 1.0 17.6 53.7 9.1

P08 Primary 14.3 3.4 < 0.1 1.2 74.0 6.7 0.4

P09 Primary 27.2 1.8 < 0.1 2.8 37.0 31.1 0.2

P10 Primary 8.7 2.0 < 0.1 < 0.1 85.1 4.1 0.1

MET01 Liver Met < 0.1 < 0.1 < 0.1 < 0.1 97.6 2.1 0.2

MET02 Liver Met < 0.1 < 0.1 < 0.1 < 0.1 97.0 2.7 0.3

MET03 Omentum Met < 0.1 < 0.1 < 0.1 < 0.1 30.4 30.4 39.2

MET04 Liver Met < 0.1 < 0.1 < 0.1 < 0.1 45.8 36.5 17.7

MET05 Liver Met < 0.1 < 0.1 < 0.1 < 0.1 95.6 3.2 1.2

MET06 Liver Met < 0.1 < 0.1 < 0.1 < 0.1 93.4 3.8 2.8

Met metastasis, CAF cancer-associated fibroblast, DC dendritic cell, EMT epithelial to mesenchymal transition tumor cell, Endo endothelial cells, ETC epithelial tumor
cell, TAM tumor-associated macrophage, TIL tumor-infiltrating lymphocyte
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Cancer-associated fibroblasts support an inflammatory
and fibrotic tumor microenvironment in PDAC
To further investigate the biology of CAFs, we pooled
the CAF cells from the human PDAC primary tumors
for analysis. Figure 2c shows the unsupervised clustering
of 1753 CAF cells identified in Fig. 1a. The CAFs formed
3 major clusters: c0, c1, and c2 (Fig. 2c). Unlike the
tumor cells, the CAFs did not cluster by patient. Each
cluster contained CAFs from different patients (Fig. 2d).
This finding indicates that CAFs from different patients
were more similar in their gene expression profiles than
their companioning tumor cells. The CAFs expressed
high levels of collagen genes, SPARC, and α-smooth
muscle action (ACTA). Elyada and colleagues previously
described 3 subtypes of CAFs identified in PDAC tu-
mors: myofibroblasts (myCAFs), inflammatory fibro-
blasts (iCAFs), and antigen-presenting fibroblasts
(apCAFs) [24]. We therefore set out to determine
whether or not any of CAF clusters identified in our
analysis belong to those 3 subtypes. Cluster 0 expresses
POSTN and MMP11, which were reported to be
expressed mainly in myCAFs [25]. However, Clusters 1
and 2 do not seem to enrich the signature genes associ-
ated with iCAF or apCAFs. The signature genes that de-
fine cluster 1 are more enriched with genes associated

with quiescent (or normal) CAFs. Interestingly, cluster 2
displays an expression signature that resembles smooth
muscle cells (enriched for RGS5, NOTCH3, and CSRP2
expression) based on the SuperCT analysis (Add-
itional file 1: Fig. S11). These cells might be the mural
cells including pericytes and vascular smooth muscle
cells from the blood vessels [26].

Immune suppressive cells in PDAC maintain a tumor-
friendly environment
Three major immune cell types were identified in the
human primary tumors and metastatic biopsies: lympho-
cytes (TILs), macrophages (TAMs), and dendritic cells
(DCs) (Fig. 1a). To examine the functional activity of the
lymphocytes, we extracted the TILs and clustered the
cells using unsupervised clustering. As shown in Fig. 3a,
the TILs from primary tumors and metastases were
mixed together, indicating their similar functional states
and phenotypes. Only a few of TILs were CD8+ (Add-
itional file 1: Fig. S12A). However, TILs were separated
into two clusters (Fig. 3b). One of the clusters (c0)
showed higher levels of expression of exhaustion
markers such as TIGIT, CTLA4, PDCD1, HAVCR2,
LAG3, and LAYN (Fig. 3c), indicating that those cells
were exhausted with limited effector function. However,

Fig. 2 Unsupervised clustering analysis of tumor cells and cancer-associated fibroblasts (CAFs) in PDAC primary tumors and metastatic lesions. a
Tumor cells in the primary tumors are mostly segregated by patients. b Tumor cells in the metastatic lesions also cluster by patients. c Three
major clusters are formed by CAFs from primary tumors. d CAFs from different patients are mixed in the different clusters
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Fig. 3 Unsupervised clustering analysis of immune cells in PDAC primary tumors and metastatic lesions. Tumor-infiltrating lymphocytes (TILs)
from primary tumors and metastatic lesions are mixed together (a) and form two main clusters (b). One of the clusters (c0) showed higher
expression of genes associated with T cell exhaustion (c) and those cells also express a higher level of Ki67 gene (d). The tumor-associated
macrophages (TAMs) from primary tumors and metastatic lesions form separate clusters (e). Heatmap shows distinct gene expression patterns
between the two TAM populations (f) and the genes specifically express in the TAMs associated with the primary tumors are enriched in
processes related to extracellular matrix (left panel in g) and wound healing (right panel in g). The expression level (Y-axis) in c and d is the
logarithm-transformed ratio of the UMI counts of the gene(s) of interest over the total UMI counts in each individual cell. GO Gene Ontology
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those T cells were still proliferative as they were highly
Ki67 positive compared to the other T cell clusters (clus-
ter 1, Fig. 3d). We also utilized the SuperCT framework
to establish a predictive model for TIL subtypes based
on a scRNA-Seq dataset obtained from melanoma tis-
sues [20]. Using this SuperCT model, several TIL sub-
types including predictions provided more details on the
TIL subpopulations. (Additional file 1: Fig. 12B). The c1
cluster seemed to be enriched with the naïve-like T cell
subtype (Additional file 1: Fig. S12C).
In contrast to the TILs in which the cells from the pri-

mary tumors and metastases were mixed, macrophages
from the two different sample types clustered separately,
suggesting that the macrophages in the primary tumors
and in the metastasis are very different (Fig. 3e). The
macrophages from the primary tumors showed high ex-
pression of HIF1A, RHOB, AXL, C3, SERPING1, LUM,
COL1A1, and VEGFA (Fig. 3f). Gene set enrichment
analysis showed that those genes were enriched in extra-
cellular matrix and late stages of the wound healing-
related processes, which is characteristic of M2-like
macrophages (Fig. 3g) [27]. The macrophages in the me-
tastases, on the other hand, expressed genes such as
CD74, FCER1G, and MHC I/II-related genes that are re-
lated to the antigen-presenting function of macrophages
(Fig. 3f) [28]. Since besides hematopoietic stem cells
TAMs can also be derived from tissue-resident macro-
phages [29], the difference between the TAMs from liver
metastatic lesions and the primary tumors observed in
our study could be, in part, due to the intrinsic differ-
ences between liver-resident macrophages and pancreas-
resident macrophages. Further studies are needed to
verify this possibility.

Cell population composition might dictate PDAC subtype
Several recent studies have described the distinct PDAC
subtypes based on transcriptomic profiling of bulk tis-
sues. Collisson and coworkers defined three subtypes:
classic, quasi-mesenchymal (QM), and exocrine; Moffitt
and colleagues identified two subtypes: basal and classic;
and Bailey et al identified four subtypes: squamous, pan-
creatic progenitor, immunogenic, and aberrantly differ-
entiated endocrine exocrine (ADEX) [30–32]. To
investigate whether the gene expression signatures from
the bulk tissue analysis that define the subtypes are
enriched in certain cell types within the tumor, we used
modular scores (see the “Methods” section for details) to
evaluate the overall expression of signature genes that
define each subtype in those studies in each cell type
identified in our scRNA-Seq analysis of the 10 primary
PDAC tumors.
Figure 4 shows the violin plots of the modular scores

of genes defining the different subtypes in the 7 major
cell types identified in our scRNA-Seq analysis. It is

apparent that the genes defining the classic subtype in
the Collisson and Moffitt studies and the progenitor and
squamous subtypes in the Bailey study were enriched in
the epithelial tumor cell (ETC) population (Fig. 4a–d).
The QM subtype signature genes were highly enriched
in the EMT tumor cells, whereas the basal subtype genes
defined in the Moffitt study were enriched in both ETC
and EMT tumor cells (Fig. 4e, f). The signature genes
defining the immunogenic subtype seemed to enrich in
the dendritic cells and TILs (Additional file 1: Fig. S13).
However, this initial analysis of the 7 major cell types
did not identify cell types that were enriched for the exo-
crine and ADEX subtypes. We therefore examined the
additional cell types identified in our SuperCT analysis.
The signature genes for both the exocrine and ADEX
subtypes were highly enriched in the acinar cells (Add-
itional file 1: Fig. S14), indicating that the gene expres-
sion signals for these two subtypes might have come
from the acinar cells in the bulk tumor tissues.
Interestingly, within individual patients, the overall ex-

pression level for the classic, progenitor, and squamous
subtypes described by Collisson and Bailey, respectively
[30, 31], was similar for all three profiles (e.g., relatively
high expression levels in Patients P02, P06, P08, and
P10), further suggesting the similarity of gene signatures
among those subtypes (Additional file 1: Fig. S15). Pa-
tients P01, P04, P06, P08, P09, and P10 showed a high
number of cells that express those signature genes,
which is consistent with the fact that those patients have
high number of ETC cells. Similarly, the number of cells
expressing QM subtype signature was high in patients 1
and 3 whose tumor have high number of EMT tumor
cells (Additional file 1: Fig. S16A). Finally, 2 (patients 2
and 7) out of the 3 patients (patients 2, 7, and 9) whose
tumors had a relatively large number of immune cells
(Table 1) show high levels of expression of Immuno-
genic subtype signature genes (Additional file 1: Fig.
S16B). These results indicate that when using expression
data from bulk tumor tissues, the composition of differ-
ent cell types within the tumor might be a determining
fact in defining the tumor subtypes.
To further examine the relationship between cell type

composition and subtype classification, we used the ex-
pression levels of 144 signature genes that define the dif-
ferent PDAC molecular subtypes reported in Collisson
et al. [30], Bailey et al. [31], and Moffitt et al. [32] to per-
form unsupervised clustering analysis of the cells from
the primary tumors. As expected the signature genes
were able to clearly identify the epithelial tumor cells
and EMT cells (Additional file 1: Fig. S17A). More inter-
estingly, the signature genes were also able to separate
the CAFs and immune cells from each other and from
the cancer cells. When viewed by patients, the cancer
cells from the two patients with high number of EMT
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cells were well separated from ETCs from the rest of the
patients (Additional file 1: Fig. S17B). The immune cells
and CAFs from different patients are generally mixed
and did not form subclusters, indicating that the signa-
ture genes were not able to differentiate the subsets
within these two cell types. These results suggest that
some of signature genes are expressed in immune cells
or CAFs; therefore, their expression levels in bulk tissue
transcriptome analysis could be influenced by tumor
stromal content.

Tumor cellular composition is associated with patient
survival
To further test the hypothesis that the composition of cell
populations within a tumor is indicative of tumor progres-
sion and disease state, we next derived gene signatures
that defined each of the cell types identified in the primary
tumors based on the scRNA-Seq analysis (Additional file
2: Table S2). These gene signatures were then applied to
publicly available bulk RNA-seq profiles from PDAC pa-
tients whose survival outcomes are available (the US
TCGA, Canadian, and Australian cohorts in the ICGC
database). The expression levels (scores) of the cell type-
specific gene signatures were calculated from the bulk
RNA-seq data for each patient (see the “Methods”

section). When the expression scores of the cell-specific
signature genes were correlated with patient survival, we
observed statistically significant associations between the
gene expression and overall patient survival for certain cell
types. Firstly, high expression of EMT tumor cell signature
genes significantly associated with shorter patient survival
[P value < 0.0001, hazardous ratio (HR) = 2.76, Fig. 5a].
This is not surprising as EMT is generally considered to
be a process that leads to more aggressive and invasive
disease and tumor cells undergone EMT are associated
with drug resistance [33, 34]. However, the ETC gene sig-
nature was not associated with patient survival (Fig. 5b).
These findings are consistent with what was reported by
Collisson et al. that the QM subtype of PDAC (corre-
sponding to patients with high EMT cell population), but
not the classic subtype (corresponding to patients with
high ETC cell population), had shortened patient survival
[30]. Secondly, high endothelial cell signature is signifi-
cantly associated with better patient survival (P value =
0.017, HR = 0.6, Fig. 5c). This observation supports the
notion that PDAC is generally hypovascularized and that
improved vascularization could lead to higher drug perfu-
sion and thus higher treatment efficacy and patient sur-
vival. Thirdly, the correlation between the expression of
gene signature specific for the total CAFs and patient

Fig. 4 Expression of PDAC subtype signature genes in different cell types identified by single-cell transcriptomics. Violin plots are used to show
the modular expression scores of the signature genes that define subtypes described previously: the classic subtype described by Collisson et al.
(a) and Moffitt et al. (b), the progenitor (c) and the squamous subtypes by Bailey et al. (d), the QM subtype by Collisson et al. (e), and the basal
subtype by Moffitt et al. (f). Red boxes indicate cell types that have higher expression scores than the other cell types
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survival was not statistically significant (Fig. 5d). However,
when we examined the gene signatures that were specific
to the CAF subclusters, we found that high expression of
the signature genes for cluster 0 which were the activated
CAFs (Additional file 1: Fig. S18) was significantly associ-
ated with poorer patient survival (P value = 0.027; HR =
1.56, Fig. 5e). The gene signature for the other major CAF
cluster, cluster 1, was not significantly associated with pa-
tient survival (Fig. 5f). Finally, the expression of the gene
signatures for the TAMs, TILs, or DC immune cells was
not significantly associated with patient survival (Fig. 5g,
h). Collectively, these findings indicate that different cell
types within tumor display distinct biology and their
abundance can confer favorable or poor clinical outcomes
in patients with pancreatic cancer.

Discussion
In this study, we identified 7 predominant cell popula-
tions in the primary tumor tissues that included 2 tumor

cell populations, 3 immune cell populations, endothelial
cells, and fibroblasts, and 3 major cell populations in the
metastatic biopsies that included one tumor cell popula-
tion and 2 immune cell populations through single-cell
transcriptome analysis on patient-derived primary and
metastatic PDAC tumors. Although the expression pro-
files of the tumor cells in primary tumors and metastases
were very different, the immune cells (T cells and mac-
rophages) from different patients in those two tissue
types showed high similarity. Previous studies have used
scRNA-Seq to characterize the cell populations in hu-
man and mouse primary PDAC tumors [13, 24, 35]. Al-
though those studies have identified the similar major
cell types (e.g., tumor cells, fibroblasts, and immune
cells) and the heterogeneous nature of PDAC primary
tumors, our study revealed more detailed information on
each of the cell types with the identification of additional
cell subtypes. To our knowledge, this study is the first to
perform single-cell transcriptome analysis on fresh

Fig. 5 Kaplan–Meier survival curves for PDAC patients in the ICGC database by expression levels of cell type-specific gene signatures derived
from the single-cell transcriptomics analysis. a EMT cell gene signature. b ETC cell gene signature. c Endothelial cell gene signature. d CAF gene
signature. e CAF cluster 0 gene signature. f CAF cluster 1 gene signature. g CAF cluster 2 gene signature. h TIL gene signature. i TAM gene
signature. j Dendritic cell gene signature
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biopsies from PDAC metastasis. We revealed that the cel-
lular landscape of PDAC metastases might not be as com-
plex as the primary tumors with the identification of only
3 predominant cell populations. Interestingly, very few
cancer-associated fibroblasts were identified in the meta-
static tumor tissues. Although these observed cellular
compositions could have been resulted from the sampling
bias of core needle biopsy, the fact that they contain a sig-
nificant number of immune cells indicates that these find-
ings might have biological significance and could
potentially have implications in the selection of treatment
strategies for patients with metastatic disease.
We found that the tumor cells in both primary tumors

and metastases clustered based on their patient of origin
(Fig. 2). One plausible explanation for this segregation
pattern of the tumor cells is the potential batch effects
in the tissue dissociation and single-cell RNA sequencing
process. However, the fact that other cell types (fibro-
blasts, endothelial cells, and immune cells) did not dis-
play such patient-based segregation patterns indicates
that this was not a result of technical artifacts. In fact,
similar patterns have been observed in other tumor
types including breast, melanoma, and glioblastoma [16,
22, 23]. Despite their inter-patient differences in gene
expression patterns, the tumor cells can be classified into
two subpopulations: one with epithelial characteristics
and the other with EMT characteristics (Fig. 1c, d). The
existence of EMT+ tumor cell population seems to be
associated with more aggressive disease and poorer pa-
tient prognosis (Fig. 5). This observation is consistent
with a recent study in which authors identified two
tumor cell populations in murine PDAC primary tu-
mors: one enriched for epithelial markers and the other
enriched for mesenchymal markers with the later popu-
lation mainly existing in advanced PDAC [35]. We did
not identify a significant number of tumor cells with
mesenchymal characteristics in the metastatic tumor
specimens. This observation is consistent with the two-
step metastasis model in which tumor cells undergo
EMT first to gain the ability to migrate to and invade
surrounding tissues and travel through the circulation.
Once arrived at the distant organ, the tumor cells
undergo a process termed mesenchymal-epithelial tran-
sition (MET) to reverse their EMT characteristics and
regain its epithelial phenotype before they can colonize
and form metastatic lesions [36–39]. However, it is also
possible that the tumor cells at the metastatic sites were
derived from tumor cells that have never undergone
EMT [40]. Ligorio et al. recently demonstrated that
CAFs could drive cancer cells towards more EMT and
proliferative phenotypes. They further described that pa-
tient tumors with medium level (as oppose to low and
high levels) of stromal content had the highest number
of tumor glands with EMT characteristics [41]. In our

study, the two primary tumors with the highest numbers
of EMT cells did not have a high number of CAFs ei-
ther, which is somewhat consistent with Ligorio and col-
leagues’ findings.
In agreement with the notion that EMT+ tumor cells

tend to be more aggressive and resistant to chemother-
apies, we found that patients with a high number of
EMT+ cells have poorer outcomes (Fig. 5a). This is con-
sistent with previous studies using bulk tissue tran-
scriptomics that found PDAC subtypes with high
mesenchymal gene expression signals (i.e., QM, squa-
mous, or basal subtypes) have worse outcomes than the
rest of the subtypes [30–32]. We also found that PDAC
tumors have relatively low numbers of endothelial cells
(Table 1). However, if a patient’s tumor is enriched for
gene expression signals from endothelial cells, that pa-
tient would have a better survival than those who have
low endothelial signaling (Fig. 5c). This finding supports
the hypothesis that improved vascularity in PDAC can
lead to better patient outcomes possibly due to better in-
filtration of immune cells and/or delivery of therapeutics
[42]. Furthermore, we discovered that level of gene ex-
pression signals of all CAFs did not significantly correl-
ate with patient survival (Fig. 5d). However, the gene
expression signal of activated CAFs was significantly as-
sociated with patient survival (Fig. 5e), whereas the gene
expression signal of the quiescent CAFs seems to be as-
sociated with relatively better patient survival (although
it is not statistically significant) (Fig. 5f).
The three CAF subtypes (myCAF, iCAF, and apCAF)

described by Elyada and colleagues provided important
insights into the function of pancreatic CAFs [24, 25]. In
our study, we identified 3 major CAF clusters: cluster 0
was enriched for markers for myCAF, but the two other
clusters do not seem to enrich for markers for either
iCAF or apCAF. We did identify cells that express some
of the prominent markers for iCAF (e.g., IL6 and
CXCL12) and apCAF (e.g., CD74 and HLA-DQA1), al-
beit they were scattered across all the 3 clusters (Fig.
S19). The result for the apCAF is consistent with what
was described by Elyada et al. in which the apCAFs
formed a separate cluster among CAFs derived from
murine PDAC, whereas apCAFs detected in human
PDAC were scattered within the iCAF and myCAF clus-
ters. Therefore, our study still supports the existent of 3
functional subtypes of CAFs in PDAC tumors, but the
expression signatures of iCAFs and apCAFs are not dis-
tinct enough to drive the formation of separate clusters.
One possible explanation for this difference between our
study and those of Elyada et al. [24] and Ohlund et al.
[25] is the different methods used for single-cell prepar-
ation before RNA sequencing. In our study, tumor tis-
sues were dissociated by enzymatic digestion and
mechanical force and then directly used for scRNA-Seq,
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whereas in the studies by Elyada and colleagues, cells
were further processed after dissociation to enrich for
CAFs by either flow cytometry or in vitro culture before
scRNA-Seq.

Conclusions
In summary, our work identifies significant inter- and
intra-tumor heterogeneities in cellular compositions of
PDAC tumors and between primary tumors and meta-
static lesions. We also found that the cellular compos-
ition was an important factor in defining PDAC
subtypes and significantly correlated with patient out-
come. These findings provide valuable insights on PDAC
microenvironment and could potentially inform the
management of PDAC patients. Our study also suggests
that single-cell transcriptome analysis can offer import-
ant clinical insights on cell subpopulations to develop
novel therapeutic strategies for both targeted and
immunotherapies.
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