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Abstract

Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the
underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a
novel computational method HiSIF to identify genome-wide interacting loci. We illustrated HiSIF outperformed
other tools for identifying chromatin loops. We applied it to Hi-C data in breast cancer cells and identified 21 genes
with gained loops showing worse relapse-free survival in endocrine-treated patients, suggesting the genes with
enhanced loops can be used for prognostic signatures for measuring the outcome of the endocrine treatment.
HiSIF is available at https://github.com/yufanzhouonline/HiSIF.

Background
Chromosome conformation capture (3C)-based genome-
wide technologies, including Hi-C or TCC [1–5], ChIA-
PET [6, 7], HiCap [8], Capture-C [9, 10], and 3C-seq
methods [11], have greatly expanded our understanding
of the basic principles of three-dimensional (3D) genome
organization, providing new insights into how chromo-
somes fold within distinct territories [1, 3, 12]. Studies
further revealed chromosome territories are distributed
over spatial compartments or partitioned into topo-
logical associated domains (TADs) [2, 5]. However, such
a large domain usually embedded with multiple genes is
hard to associate chromosomal interactions with tran-
scriptional control at the individual gene level. Although
a recent study used an in situ Hi-C protocol to achieve
1–5 kb resolution of genomic interaction [5], such
protocol requires an extremely high sequencing depth of
~ 5 billion paired-end reads for each sample, making it

impractical for many studies. Computational and statis-
tical modeling on relatively low sequence depth data
showed that Hi-C data are able to identify interacting
genomic regions at a resolution of 10–20 kb [4, 5, 13].
To achieve such a high resolution, three major chal-
lenges are posed for any computational and statistical
modeling. The first is to filter out background ligations
and biases [14–16]. The second one is to remove ran-
dom ligation interactions from proximity-based ligations
since they artificially add a false count rate for the true
interactions. The last and most crucial one is to quantify
the significant chromosomal interactions. Methods in-
clude analyzing high-resolution contact frequency map
for significant pixel counts via graphical processing unit
enabled image analyzing algorithms [5], or searching for
pairs of regions that have more Hi-C reads between
them than would be expected by a background model
[15]. Typically, statistical models are dependent on the
sequencing depth used to prepare the Hi-C Library.
However, it is imperative to have better probabilistic
models in order to identify both statistically and bio-
logically significant interactions.
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One big advantage of identifying unbiased chromatin
interactions at a higher resolution is to allow us to asso-
ciate each pair of chromatin interaction fragments with
individual gene looping, a transcription paradigm
achieved by the combinatorial interactions of DNA-
binding transcription factors (TFs) bound to distal re-
gions with other TFs bound to proximal regions [17–
19]. Indeed, several studies have demonstrated that cell
type-specific gene expression processes may be intri-
cately related to the 3D organization of the genome [20–
28]. However, many of these large-scale structural stud-
ies were limited on domain-based analysis and thus
failed to unveil the underlying functional and mechanis-
tic relationship of higher order chromatin structure and
specific gene regulation. We recognized that some
anchored-specific 3C techniques such as ChIA-PET [6,
7], 5C [29], HiCap [8], or Capture-C [9, 10] can partially
address the above concerns. For example, a recent study
found that super enhancer-driven genes generally occur
within chromosomal domains formed by the looping
of genomic regions that are bound by CTCF and co-
hesion by using ChIA-PET [7]. However, one critical
question remains to be answered, i.e., does there exist
such non-promoter-centered chromatin interactions
or distal-distal loops, if yes, do they have any bio-
logical meaning? Therefore, it is imperative to develop
novel computational approaches to identify distinct
classes of chromatin interactions from all-all interac-
tions in Hi-C/TCC data.
Here, we develop a computational model, Hi-C Signifi-

cant Interacting Fragment (HiSIF), on Hi-C data ana-
lysis, including a Poisson Mixture Model (PMM) [30,
31], with an Expectation Maximization (EM) algorithm
[32, 33] followed by a power-law decay background
model [34] to filter out background-ligation events. We
test and evaluate HiSIF on publically available Hi-C [35]
and in situ Hi-C [5] data and compare its performance
to some existing programs. We then apply it on newly
generated in situ Hi-C data in breast cancer tamoxifen-
sensitive and resistant cells.

Methods
Pre-processing Hi-C data
Four publicly available human Hi-C datasets represent-
ing different experimental protocols and sequencing
depths were downloaded, including Hi-C data in
MCF10A and MCF7 cells [36], hESC cells [35], and in
situ Hi-C data in GM12878 cells and K562 cells [5]. Raw
and processed Hi-C data for MCF7 and MCF7-TamR
cells is deposited in GEO under accession number
GSE108787 [37]. All Hi-C data were aligned to human
genome hg19 and pre-processed using the hiclib pipeline
[16], and formatted as an appropriate input to HiSIF.
We kept high-quality PE reads with a criterion of MAPQ

> 30 during the iterative mapping process. A summary
of datasets was listed in the Additional file 1: Table S1.

Plotting the distribution of Hi-C data
Ultrasonic Fragments (USFs) are defined as those
uniquely mapped paired-end reads located within the
closest restriction enzyme digestion sites. The USF
counts are the sum of the mapped reads within USFs,
and the frequency of USF counts was plotted as distribu-
tion of USF counts frequency. The genomic distance be-
tween two end reads of the pair was calculated. The
ratio of the counts of each genomic distance to the total
counts of all genomic distances was computed as
ligation probability. The ligation probability in various
genomic distances was plotted as a distribution of gen-
omic distance.

Generating Hi-C subsets in specific sequencing depth
Public datasets represent limited cases of sequencing
depths. To evaluate the performance, HiSIF were tested
with different sequencing depths. The Reservoir Sam-
pling algorithm was used to randomly extract PE reads
from Hi-C data for generating subsets in specific se-
quencing depth [38]. To minimize the effect of uneven
sequencing depth of the subsets, each of subsets con-
tains 10 samples with the same sequencing depth. Here,
we simply define the sequencing depth as linearly pro-
portional to the number of PE reads.

Developing a PMM with a power-law decay background
We developed a PMM combined with a power-law
decay background to define chromatin interactions for
Hi-C data. In this model, the proximate ligation events
and random ligation events are considered as two inde-
pendent Poisson distributions and thus the overall
ligation events could be represented by a latent class
mixture model with two hidden variables. Here we de-
fine a proximate ligation as a ligation between two ends
that are spatially adjacent to each other and a random
ligation as a ligation between two randomly interacting
DNA fragments. The EM algorithm was used to estimate
the proportion and the parameters of the two independ-
ent Poisson distributions.
We considered each valid USF as an independent ob-

servation dl (score for the lth interaction of N number of
data points), ωk determines which component of the
mixture is yj originated (weight component), k represent
the kth component of the mixture model with k number
of mixtures. In HiSIF, k = 1,2 for random and proximate
ligation events. Using the sum of probability ωk can be
written as
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X2

k¼1
ωk ¼ 1 ð1Þ

The likelihood function for a two-component Poisson
mixture model can be written as

L D : θð Þ ¼
YN

l¼1

X2

k¼1
ωkgk Dl : λkð Þ ð2Þ

where gk(Dl : λk) is the probability density function of the
Poisson distribution with mean λk and Dl is the set of all
interaction scores. By maximizing the above likelihood
and assuming initial mixture parameters and mixing
proportions, the following recursive formulas could be
derived to update the parameters for the next iteration:

ωk ¼ 1
N

XN

l¼1
p k∨lð Þ ð3Þ

λk ¼
PN

l¼1p k∨lð ÞDlPN
l¼1p k∨lð Þ ð4Þ

where p(k ∨ l) denotes the conditional probability of
selecting component k given the observation Dl. We
used Bayesian Information Criterion (BIC) to determine
the number of components (target sites) within a score
enriched region. A detailed mathematical derivation of
the EM algorithm is explained in Supplementary
Methods. It is compulsory to achieve maximum likeli-
hood in certain iteration steps. We used this parameter
to measure the performance of the HiSIF algorithm.
We can also control the ratio of false-positive interac-

tions by false discovery rate (FDR) statistic. There are
two principal FDR statistic: global FDR and local FDR.
The global FDR, proposed by Benjamini and Hochberg,
consists of a procedure that controls the global propor-
tion of false-positive findings based on the p value rank.
The local FDR, a conceptually different approach, is
based on estimating the probability density function of
the FDR directly from the actual data. Since there is no
biological replication, no population inference can be
made and hence it is invalid for us to calculate the p
value [39]. Therefore, the local FDR method is used in
the HiSIF algorithm. For a given USF score, we can de-
fine its FDR as:

FDRd ¼ FPd
FPd þ TPd

ð5Þ

where FPd is the probability density function of false-
positive FP at USF score d and TPd is the probability
density function of true-positive TP. The fragment
threshold rate (FTR) is the count number threshold for
every fragment. If count number in a specific fragment
is far less than the FTR, the interaction will be consid-
ered as an amplification of noise. If the count number is
close to but less than the FTR, the interaction will be
considered as a weak interaction. Only when the count

number is larger than the FTR, the fragment will be
treated as a significant interaction fragment candidate.
There may be some false-positive events in the candi-
dates. Therefore, the FDR is designed to remove the
false-positive fragments from the significant interaction
fragment candidates.
Once determining the appropriate mixture parameters,

we can estimate the probability density function of sig-
nificant fragment scores and treat that as the true-
positive TP. To obtain the distribution of the false-
positive FP, HiSIF generates data sets by randomly
extracting one of the fragment scores. Repeating the
process a large number of times (Np), a set of test statis-
tics is obtained, whose probability density function de-
fines the empirical distribution of the null hypothesis or
false-positive.
Then we can eliminate random ligation events for a

user-specified FDR threshold. The likelihood function L
of two restriction fragments Fi and Fj forming an inter-
action can be written as follows:

L Fi : F j
� � ¼

YK

Fk∈F
1 − Eð Þk − jP Fi; F j

� � ð6Þ

where Fi, Fj, Fk, are the ith, jth, kth digested restriction
fragments, F represents a set of digested fragments sur-
rounding Fj, E is the digestion efficiency of the restric-
tion fragments, and P(Fi, Fj) is the probability of ligation
between Fi and Fj determined by the power-law distribu-
tion. This will allow us to remove further background
ligation events beyond a threshold of likelihood. A more
detailed procedure is described in Supplementary
Methods. The source codes for HiSIF can be accessed
from https://github.com/yufanzhouonline/HiSIF [40].

Defining the HiSIF resolution
The resolution of a Hi-C dataset highly depends on the
protocol used (Hi-C/TCC/in situ) and was poorly de-
fined in the literature thus far. In most Hi-C data ana-
lysis, restriction fragments were aggregated into a fixed
bin size defined as the resolution [41]. So the number of
reads corresponding to a particular bin size determines
the quality or the resolution of a Hi-C dataset. If the
number of unique Hi-C molecules in the sample is high,
extra sequencing will add more quality and a very high
resolution can be achieved. On the other hand, if the
total number of unique Hi-C molecules in the sample is
low, a good resolution cannot be achieved by high se-
quencing depth. Moreover, proximity-based Hi-C mole-
cules represent only a fraction of any Hi-C library and
are usually masked by molecules formed by random liga-
tions. Thus, depending on the protocol and particular
background filtering methods, two sequenced libraries
with the same number of reads may contain a different
number of informative interactions. If randomly ligated
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molecules present in large numbers, they may com-
pletely mask true interactions. Since HiSIF removes
most of the random ligations, highly specific informative
interactions can be preserved for the final data analysis.
Unlike defining a binned Hi-C interaction matrix, HiSIF
uses a range of resolutions and the optimal resolution
can be seen as a local maximum of the constructed reso-
lution range. To demonstrate the construction of resolu-
tions (Additional file 1: Fig. S1-right) we illustrated a
one-dimensional view of a segment of Hi-C interactions
with eight restriction fragments, F1–F8, with the re-
spective lengths, L1–L8. Particular USFs corresponding
to F1–F8 were shown in different colors above and
below restriction fragments (blue for F1–F8, green F2–
F7, red F3-F5, and purple F4–F6). If the corresponding
score related to the cut-off FDR threshold is 3, all the in-
teractions higher than score 3 is retained as proximate
ligation events and less than 3 is thrown out as random
ligation events. In this example illustration, F4–F6 is a
random ligation event (score = 3) and F1–F8 (score = 4),
F2–F7 (score = 4), F3–F5 (score = 5) are proximate
ligation events with fragment threshold rate (FTR) is
equal to 3. Resolution for the F3–F5 interaction is L3,
L5 for side 1 and 2, respectively. If consecutive frag-
ments have the same score we merge them (similar to
peak summit in ChIP-seq) together into one interaction.
Thus the resolution of the other interaction is L1 + L2,
L7 + L8 for side 1 and 2, respectively.

Receiver operating characteristic (ROC) curve and the
area under the curve (AUC)
The ROC curve analysis for the methods of HiSIF and
HICCUPS (Module of Juicer Tools Version: 1.13.02) and
Fit-Hi-C (Version: 2.0.7) [42] was performed on the
K562 Hi-C data [5], ENCODE K562 Histone, and ChIA-
PET data [14] with the CTCF ChIA-PET loops as the
reference. The putative loops were defined as interac-
tions of the anchor labeled by the promoter histone
marker H3K4me3 within +/− 5 kb of CTCF peak
summit and the enhancer labeled by histone marks
H3K27ac/H3K4me1 within +/−100 kb of CTCF peak
summit. The positive loops were defined as the over-
lapping loops with CTCF ChIA-PET. According to
the overlapping or not, all putative loops could be
classified as follows: true-positive (TP)—the methods
and ChIA-PET both identified; true-negative (TN)—
the methods and ChIA-PET both non-identified;
false-positive (FP)—the methods identified but ChIA-
PET not; and false-negative (FN)—the ChIA-PET
identified but the methods not. TPR is the ratio of
TP to the sum of TP and FN. FPR is the ratio of FP
to the sum of FP and TN. AUC score is the area of
ROC curve.

Chromosome conformation capture coupled with
quantitative PCR (3C-qPCR)
3C-qPCR experiments were referred to chromosome
conformation capture assay as previously described [37,
43]. Briefly, ten million cells were collected and then
fixed with 1% formaldehyde. Cells were lysed with 0.2%
Igepal CA630 to get the pelleted nuclei followed by
solubilization with 0.3% sodium dodecyl sulfate (SDS).
The solubilized nuclei were diluted with 2% Triton X-
100 and then digested with 400 U HindIII. After diluting
again, the genomic DNA were ligated with T4 DNA lig-
ase. The ligated DNA was de-crosslinked and purified
followed by dissolving in 10mM Tris-HCl to get 3C
DNA libraries. These libraries were used as the tem-
plates for the subsequent quantitative PCR. The primers
involved in the 3C-qPCR experiments were listed in the
Additional file 1: Table S2.

Reverse transcription quantitative PCR (RT-qPCR)
The total RNA was extracted from ten million MCF7 or
MCF7-TamR cells with Quick-RNA MiniPrep kit (Zymo
Research, # R1054). The extracted RNA was then used
as templates for qPCR performed with SuperScript III
Platinum SYBR Green One-Step qRT-PCR Kit (Invitro-
gen, # 11736-059). The primers involved in the RT-
qPCR experiments were listed in Additional file 1: Table
S3.

Results
Overview of HiSIF algorithm
We developed a novel computational and statistic algo-
rithm for processing Hi-C data, HiSIF, composed of two
main modules (Fig. 1a), Quality Control and Classifica-
tion of Hi-C interactions. HiSIF did not include the
mapping of initial FASTQ files due to various publicly
available genomic mapping tools. The Quality Control
module initializes the parameters for the PMM, opti-
mizes them based on the individual dataset, and charac-
terizes different Hi-C interactions into self-ligation, re-
ligation, and valid-ligation events. In the Classification
module, valid-ligation events are further quantified as
random-ligation and proximate-ligation interactions
using a PMM and a power-law decay background model.
Random ligations are eliminated based on a fragment
threshold rate (FTR). Significant Interacting Fragments
(SIFs) are then identified from proximate-ligations with
a false discovery rate (FDR) which can be defined by
users.

Detection of significant interactions
After the Quality Control of Hi-C sequencing fragments
(Supplementary Methods, and Additional file 1: Fig. S1–
2), i.e., any paired-end (PE) reads uniquely mapped to
two particular restriction fragments as Ultrasonic
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Fragments (USFs), a score (USF counts) was assigned to
a valid Hi-C interaction (Fig. 1b). We observed a clear
distinction of two Poisson means being visible in the fre-
quency distribution plot. However, the genomic distance
between every pair of ligated DNA segments, i.e., back-
ground ligations, follows a power law distribution
(Fig. 1c), consistent with the initial Hi-C study [1]. This
distribution also shows a high background ligation rate
between closely positioned restriction fragments. Thus,

we constructed a power law decay background model to
further filter out background ligations that are formed
due to linear closeness.
FTR and FDR are two inter-dependent measures used

for classifying highly specific proximate ligation events
from random ligation events. To determine the values of
FTR and FDR, we apply the EM algorithm to extract the
mean scores for random and proximate ligation events.
HiSIF pre-sets the initial Poisson means for random and

Fig. 1 An overview of the HiSIF algorithm. a Left: the schematic diagram of HiSIF. Right: the flowchart of the HiSIF algorithm including two
modules: Quality Control and Classification of Hi-C interactions. b A distribution of USF counts frequency where a clear distinction of two Poisson
means was observed in both MCF7 and MCF10a datasets. c Distribution of the genomic distance between every pair of ligated DNA segments
where the result showed that the probability of background ligations follows a power law distribution. d The percentage of overlaps of SIFs
between GM12878 replicate 1 and replicate 3–9 in various fragment sizes. e The percentage of overlaps of SIFs between GM12878 replicate 1
and replicate 3–9 in various FDR cutoffs
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proximate ligations, then uses a bootstrap-like scheme
to make the measures more robust. Suppose that we had
M data points (M USFs), we randomly picked one of the
data points and recorded it, then repeated this process
by M times and got M recorded data points. These M
points consisted of one re-sampling set of the original
dataset. Now, we applied the EM to this new data sam-
ple and measured the corresponding parameters. After
this, we started the second round, getting another re-
sampling set with M data points in it and measuring the
parameters using PMM again. We repeated this process
by N times resulting in N estimates of each parameter.
We discarded those outliers’ estimates (estimates beyond
the upper and lower inner fences) for each parameter
and used the mean of good estimates as the value of
each parameter. Using this scheme, the resulted param-
eter estimates were more optimized and robust at a cost
of a tolerable increase in computation time.

The overlapping of biological replicates
The overlapping of biological replicates could be used to
identify the reproducibility of the algorithm. We per-
formed the overlapping analysis for the SIFs of the repli-
cate 1 and the replicate 3–9 of GM12878 (Additional file
1: Fig. S3, Additional files 2 and 3). The overlaps of SIFs
increased from 65 to 91% with the extension of fragment
size from 3 K to 10 K at FDR < 0.1 (Fig. 1d). More than
80% overlaps of SIFs were obtained when FDR cutoff is
between 0.02 and 0.1 with the fragment size is 10 K
(Fig. 1e). These results suggest that HiSIF is highly re-
producible for the identification of significant interaction
fragments.

Performance of FTR and FDR
We further evaluated the performance of the FTR and
FDR by testing different Hi-C protocols (Hi-C with Hin-
dIII restriction enzyme vs in situ Hi-C with MboI/DpnII
restriction enzyme) and sequencing depths. For a given
FDR regardless of Hi-C protocols and sequence depths,
we found the number of SIFs rapidly decreases with an
increase of FTR and the log10 number of SIFs almost
linearly decreases (Fig. 2a), suggesting FTR is a proper
parameter for defining the significance level. However,
for a given FDR and a given sequence depth, we detected
much more SIFs for hESC Hi-C data (HindIII) [35] than
for GM12878 in situ Hi-C data (MboI) [5], illustrating
that in situ Hi-C with MboI lacks an advantage of de-
tecting more SIFs despite of its higher sequencing depth.
For a given FTR, the number of SIFs gradually increases
with an increase of FDR (Fig. 2b) but towards steady at a
FDR of 0.25 for both Hi-C protocols, demonstrating that
the performance of HiSIF is reliable and effective. We
also found that the number of SIFs increases rapidly
along with an increase of sequence depth (Fig. 2c, d).

However, for a given sequence depth, we detected nearly
ten times SIFs for hESC Hi-C data than for GM12878 in
situ Hi-C data. One possible reason is that MboI/DpnII
data have much more random ligation events which
would hinder the correct estimation of the significant in-
teractions in the mixture model.

Comparison with other available Hi-C tools
The performance of HiSIF was compared with two pub-
licly available software tools, HiCCUPS [5] and Fit-Hi-C
[13]. HiCCUPS assumes a significant interaction as a
peak at two-dimensional contact matrices and computes
its enrichment score comparing to its neighboring re-
gions. In this sense, HiCCUPS is very stringent and usu-
ally detects very small number of interactions. Fit-Hi-C
assigns statistical confidence estimates to mid-range
intra-chromosomal contacts by jointly modeling the ran-
dom polymer looping effect and previously observed
technical biases.
For K562 in situ Hi-C data with sequencing depth of

1.4 billion PE reads (Additional file 1: Table S1) [5],
6473 SIFs were identified by HiCCUPS, 172,084 by Fit-
Hi-C at resolution 20 K and q value < 1 × 10− 14 and 176,
078 by HiSIF at FDR < 0.001 and FTR 1 (Additional files
4, 5 and 6). We performed an aggregate peak analysis
(APA) of Hi-C loops on the K562 data, and found that
HiSIF, HICCUPS, and Fit-Hi-C have the APA value of
2.445, 2.283, and 1.288 in 5 K resolution and 9.032,
2.661, amd 1.450 in 10 K resolution, respectively (Fig. 3a),
demonstrating that HiSIF has the most enriched focal
point of chromatin loops.
Receiver operating characteristic (ROC) curve has been

widely used for the analysis of sensitivity and specificity in
evaluating the accuracy of an algorithm. The curve plots
the true positive rate (TPR) or sensitivity versus the false
positive rate (FPR) or 1—specificity. We performed the
ROC curve analysis of HiSIF, HICCUPS, and Fit-Hi-C on
the ENCODE K562 data [14] with the CTCF ChIA-PET
loops as the reference (Fig. 3b). Clearly, HiSIF has the
highest sensitivity than HICCUPS and Fit-Hi-C. We fur-
ther performed the area under the curve (AUC) of ROC
curve which is the probability of the classifier model.
HiSIF has the approximate value as HICCUPS but obvi-
ously higher value than Fit-Hi-C (Fig. 3C) indicating HiSIF
is a better tool for the looping identification.
CRISPRi-FlowFISH protocol could be used to identify

functional enhancer and gene/promoter connections
[44]. We used it as a standard to evaluate the quality of
the identified loops by all three tools. HiSIF covered 367
enhancer-gene connections identified by CRISPRi-Flow-
FISH, but HICCUPS and Fit-Hi-C only covered 46 and
11, respectively (Fig. 3d), suggesting that HiSIF identified
more biological meaningful loops than HICCUPS and
Fit-Hi-C did.
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We further investigated the enhancer-promoter inter-
actions, promoter-promoter interactions, enhancer-
enhancer interactions, and convergent CTCF motifs
among these method-shared and method-specific inter-
actions for GM12878 and hESC. HiSIF identified more
enhancer-promoter interactions than Fit-Hi-C in both
GM12878 and hESC (Additional file 1: Figs. S4–5, Col-
umns 6 and 8), HiSIF identified more enhancer-
promoter interactions than HICCUPS in GM12878 but
not in hESC (Additional file 1: Figs. S4–5, Columns 2
and 4). Method-shared interactions have more conver-
gent CTCF motifs than method-specific interactions

(Additional file 1: Fig. S6). These results suggest that
HiSIF could be used for the identification of putative
enhancer-promoter loops effectively. In addition, HiSIF
has less percentage of loops within TAD (topologically
associating domain) boundaries than HICCUPS, and Fit-
Hi-C as well (Additional file 1: Fig. S7).

The application of HiSIF to in situ Hi-C data in ERα +
breast cancer cells
We have applied our HiSIF in ERα + breast cancer cells
MCF7 and their tamoxifen-resistant cells MCF7-TamR
[37] (Additional file 1: Fig. S8–9). We applied HiSIF to

Fig. 2 Performance of FTR and FDR of HiSIF. a The number of SIFs at various FTR thresholds. The number of SIFs decreased rapidly along with
increasing FTR threshold. b The number of SIFs at various FDRs. It was clear that most SIFs detected by HiSIF were at FDR less than 0.25. c, d The
number of SIFs with various sequence depths in GM12878 and hESC cells. The number of SIFs increased rapidly along with increasing sequence
depth. However, for a given sequence depth, SIFs detected in hESC Hi-C data (HindIII) were nearly an order of magnitude higher than those
detected in GM12878 in situ Hi-C data (MboI)
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these data with the optimal parameters (FTR = 1 and FDR <
0.1) and detected a total of 224,353 SIFs for MCF7 and
253,579 for MCF7-TamR, respectively. Common and
unique SIFs of these two cells were also identified with 56,
707 (25%) MCF7-unique and 74,480 (29%) MCF7-TamR-
unique (Fig. 4a).
We further examined the promoter-centric SIFs or

promoter-distal loops (PDLs), whereas they are defined in
the following: one end of SIF is within a promoter (defined
as − 5 K/+ 1 K to transcription start site (TSS)) and the
other end is within a non-promoter region (defined as +/−
100 K to TSS). Thus, the PDLs are further classified into
two types, P1D1 and P1D2. If the non-promoter end is
closest to the same gene, this PDL is defined as P1D1; if the

non-promoter end is closest to the other gene, this PDL is
defined as P1D2 (Fig. 4b). Interestingly, we found 16,654
gained PDLs (22% of MCF7-TamR unique SIFs) and 3861
differentially expressed genes (DEGs) associated with
gained PDLs inMCF7-TamR cells (Fig. 4c, Additional file 7).
More than 55% DEGs with gained PDLs were upregulated
(Fig. 4d, Additional file 8) in MCF7-TamR cells, indicating
that these gained loops might functionally contribute to the
process of acquired tamoxifen resistance.

The characteristics of the genes associated with gained
loops
We further performed the experimental validations on
three selected genes with gained promoter-distal loops

Fig. 3 A comparison of performance of HiSIF with other available Hi-C tools. a Aggregate peak analysis (APA) of three tools. Four numbers in the
corners are the ratio of the central pixel to the pixels in the square of corner. The number of lower left corner is defined as the APA value. APA
was based on the ENCODE K562 data. b Receiver operating characteristic (ROC) curve of three tools. c The area under the curve (AUC) of ROC
curve. d The number of enhancer-gene connections of CRISPRi-FlowFISH in three tools
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within the 100 kb upstream of TSS, ACP1, HECTD1,
and MBIP, in MCF7-TamR vs MCF7 cells by 3C-qPCR
and RT-qPCR (Fig. 5a–c). Clearly, these gained loops
were confirmed and showed higher interaction frequen-
cies in MCF7-TamR cells than in MCF7 cells. Remark-
ably, these genes also showed higher expression in
MCF7-TamR cells than in MCF7 cells. Our results not
only validated the accuracy of HiSIF, but also demon-
strated the gained looping events further enhance the
gene expression in the resistant cells. We then per-
formed the KEGG pathway analysis and found that the
upregulated genes associated with gained loops in
MCF7-TamR cells were significantly enriched with three
signaling pathways: ECM receptor interaction, regulation
of actin cytoskeleton, and focal adhesion (Additional file
1: Fig. S10) [45]. Furthermore, these genes were the core
components of the signaling pathway networks (Fig. 5d)

by using GeneMANIA, an online tool to perform
functional network integration for gene prioritization
[46]. We thus identified two major superfamily genes
with gained loops, integrin superfamily (ITGA3,
ITGA5, ITGA6, ITGB1, ITGB2, and ITGB8) and
VEGF superfamily (VEGFA, VEGFC). Fibronectin 1
(FN1) is also a major component interacted with in-
tegrin and VEGF. We finally performed the K-M
relapse-free survival analysis and found that higher
expression of CD9 (Fig. 5e) and additional 20 genes,
including ACSL3, BDKRB2, BIRC7, CEACAM5,
DDX19B, DECR1, GDPD5, HEBP2, MGST3, MTHF
D2L, NDUFV2, NR1D1, NUDT9, RRBP1, SLC12A8,
SLC39A7, STYK1, TMEM184B, TRMT61B, and
TTC13 (Additional file 1: Figs. S11–17-left column),
which have gained loops in the resistant cells, were
able to predict worse survival probabilities in

Fig. 4 The application of HiSIF in Hi-C data in ERα + breast cancer sensitive cells MCF7 and resistant cells MCF7-TamR. a The Venn diagram of SIFs
of MCF7 and MCF7-TamR. There are two numbers in the regions separated with red dash lines because the overlapped regions have different
numbers of SIFs in various cells. b The diagram representing two categories of promoter-distal loops (PDLs) of the promoter-containing SIFs
according to their distance relative to the TSS of the promoter and whether the non-promoter end is closest to the same gene (P1D1 or P1D2).
The promoter region (P1/P2) was defined as − 5 K/+ 1 K to TSS. The distal region (D1/D2) was defined as +/− 100 K to TSS excluding the
promoter region. PDLs were indicated with red lines. c The number of gained PDLs and differentially expressed genes (DEGs) with gained PDLs
in MCF7-TamR cells. d The heatmap of gene expression of upregulated DEGs with gained PDLs
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endocrine-treated patients [47], but not in patients
without endocrine therapy (Fig. 5f and Additional file
1: Figs. S11–17-right column), suggesting the genes

with enhanced loops can be used for prognostic sig-
natures for measuring the outcome of the endocrine
treatment.

Fig. 5 The genes with gained PDLs in MCF7-TamR cells. a-c Experimental validation on the selected gained looping events in MCF7-TamR cells
by 3C-qPCR and RT-qPCR. Left top panel: illustration of primers applied in 3C-qPCR experiments. Left bottom panel: 3C-qPCR. Right panel: RT-
qPCR. TSS: transcription start site. GAPDH was used as the control for both relative interaction frequencies and relative gene expression. *p < 0.05
(two-sided t test). Error bars represent standard error of the mean (S.E.M.) with three experiments. Detected genes: a ACP1, b HECTD1, c MBIP. d
Signaling pathway networks of the core components of three signaling pathways: ECM receptor interaction, regulation of actin cytoskeleton and
focal adhesion enriched by GSEA with the upregulated genes of gained PLDs in MCF7-TamR cells. e Relapse-free survival analysis of CD9 mRNA
levels in ERα + patients receiving only Tamoxifen but without chemotherapy. The patients (n = 670) were stratified by mRNA levels at the top
quartile (25%) vs. the rest (75%). p value was determined by the log-rank test. Analysis was referred to the published paper [34]. HR, hazard ratio. f
Same analysis of CD9 mRNA levels in ERα + patients without endocrine treatment (n = 500)
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Discussion
In this study, we have developed a novel computational
method, HiSIF, to identify distinct classes of chromatin
interactions from all-all interactions in Hi-C data. In
addition, we demonstrated the performance and applic-
ability of our HiSIF method using Hi-C and in situ Hi-C
data publicly available [5, 35] as well as in situ Hi-C data
generated by our own in breast cancer tamoxifen-
sensitive and resistant cells (see the “Results” section).
Current computational efforts in analyzing Hi-C data

are mainly focused on the identification of mega-base-
size domains, i.e., TADs and compartments, and thus
those large-scale structural methods are very limited
when used to interpret the underlying functional and
mechanistic relationship of 3D chromatin structure and
individual gene regulation. Although HiCCUPS [5] and
Fit-Hi-C [13] were designed for detecting chromatin
interacting pairs, they have been reported to call only a
small fraction of true-positive interactions [48]. Further,
the accuracy of HICCUPS heavily relied on ultra-depth
sequencing Hi-C data; the statistical confidence estimate
assigned by Fit-Hi-C to intra-chromosomal contacts is
in mid-range [5, 13]. In contrast, our HiSIF statistically
models the distributions of the frequency and genomic
distance of pairs of ligated DNA segments and defines
two inter-dependent measures, FTR and FDR, used for
identifying SIFs. By optimizing these two measures,
HiSIF is able to identify chromatin interaction fragments
at a relatively higher resolution with a relatively lower
sequencing depth.
Remarkably, three enhanced looping genes in resistant

breast cancer cells, ACP1, HECTD1, and MBIP, identi-
fied and validated by HiSIF and 3C/RT-qPCR (Fig. 4a–
c), have been previously shown to be involved in breast
cancer cell transformation and progression. For example,
tyrosine-protein kinase receptor (EPHA2) is a prominent
substrate of ACP1 and its kinase activity regulated by
ACP1 can induce the cell transformation in breast can-
cer [49]. HECTD1 ubiquitinates phosphatidylinositol-4-
phosphate 5-kinase type 1 gamma (PIP5K1C) at lysine
97 resulting in PIP5K1C degradation, consequently lead-
ing to focal adhesions dynamics and cell migration in
breast cancer cells [50]. MBIP has also been found to
contribute to the development of breast cancer in a
genome-wide pathway analysis [51].
Intriguingly, two superfamilies, integrins and VEGFs,

identified with gained loops in resistant breast cancer
cells in this study have previously been shown to be
functionally linked to breast cancers progression, metas-
tasis, and treatment resistance. ITGB1, ITGB2, and
ITGB8 belonging to integrin β subunits are the key com-
ponents of the cell migration machinery and their major
cellular receptors facilitate cell-extracellular matrix
(ECM) adhesion. Indeed, ITGB1 is essential for cancer

chemo-resistance and metastasis mediated by aberrant
actin-bundling protein in breast cancer stem cells [52],
and its signaling foster resistance to inhibitors of HER2
and PI3K in HER2+ breast cancer [53, 54]. Upregulation
of ITGB2 promotes the migration and invasion in breast
cancer [55].
VEGFs, the important signaling proteins for vasculo-

genesis and angiogenesis act as autocrine signaling mole-
cules to stimulate the tumor growth and invasion [56–
58] and induce epithelial-mesenchymal transition (EMT)
to drive metastases of breast cancer [59]. VEGFs can also
function like chemokine to recruit regulatory T cells
resulting in the abasement of anti-tumor immune re-
sponse and enhancement of tumor progression [60].
Bevacizumab and aflibercept have been approved by
FDA for VEGF-targeted therapy for oncology [61]. Our
findings suggest that oncogenic activities of both super-
families may be regulated through promoter-distal loop-
ing mechanism.
Although FN1 and CD9 are not part of the above two

superfamilies, notably, both binds or interacts with
integrins and together have been demonstrated to func-
tionally and mechanistically drive breast cancer progres-
sion and metastasis. For example, overexpression of FN1
is associated with tumor aggressiveness, metastasis, and
poor prognosis of breast cancer [62, 63]. EMT transition
can be induced by FN1 in human breast cancer MCF7
cells [64]. Overexpression of CD9 has been found to be
related to invasiveness and metastases in breast cancer
cells [65, 66]. Our study further identified a higher inter-
action frequency of CD9 promoter-distal looping in re-
sistant breast cancer cells and illustrated that such
higher expression is evidently associated with lower sur-
vival probability in endocrine-resistant breast cancer pa-
tients (Fig. 5e, f). Future work may focus on
characterizing how chromatin looping of FN1 and CD9
functionally and mechanistically contributes to ERα +
breast cancer resistant to the endocrine therapy.

Conclusions
In summary, we developed a statistically modeled and
rigorously tested method, HiSIF, for the functional ana-
lysis of 3D chromatin structure and specific gene regula-
tion. With HiSIF, we identified two enriched signaling
pathways, integrins and VEGFs, showing enhanced
promoter-distal loops in endocrine-resistant breast can-
cer cells. Higher expression of 21 genes is associated
with worse relapse-free survival in endocrine-treated pa-
tients, suggesting they might be used for prognostic sig-
natures for measuring the outcome of the endocrine
treatment and developing therapeutic targets. HiSIF is
applicable for any Hi-C data in any normal and diseased
cells or tissues.
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