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Burden of tumor mutations, neoepitopes,
and other variants are weak predictors of
cancer immunotherapy response and
overall survival
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Abstract

Background: Tumor mutational burden (TMB; the quantity of aberrant nucleotide sequences a given tumor may
harbor) has been associated with response to immune checkpoint inhibitor therapy and is gaining broad
acceptance as a result. However, TMB harbors intrinsic variability across cancer types, and its assessment and
interpretation are poorly standardized.

Methods: Using a standardized approach, we quantify the robustness of TMB as a metric and its potential as a
predictor of immunotherapy response and survival among a diverse cohort of cancer patients. We also explore the
additive predictive potential of RNA-derived variants and neoepitope burden, incorporating several novel metrics of
immunogenic potential.

Results: We find that TMB is a partial predictor of immunotherapy response in melanoma and non-small cell lung
cancer, but not renal cell carcinoma. We find that TMB is predictive of overall survival in melanoma patients
receiving immunotherapy, but not in an immunotherapy-naive population. We also find that it is an unstable metric
with potentially problematic repercussions for clinical cohort classification. We finally note minimal additional
predictive benefit to assessing neoepitope burden or its bulk derivatives, including RNA-derived sources of
neoepitopes.

Conclusions: We find sufficient cause to suggest that the predictive clinical value of TMB should not be overstated
or oversimplified. While it is readily quantified, TMB is at best a limited surrogate biomarker of immunotherapy
response. The data do not support isolated use of TMB in renal cell carcinoma.
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Background
The advent of immunotherapy as a promising form of
cancer treatment has been accompanied by a parallel
effort to explore potential mechanisms and drivers of
therapeutic response. For instance, tumor mutational
burden (TMB; the overall quantity of aberrant nucleo-
tide sequences a given tumor may harbor) has been
associated with response to immune checkpoint inhibi-
tor therapy [1] and overall survival [2]. Similarly, the
quantity of nonsynonymous single nucleotide variants
was shown to be associated with immunotherapy re-
sponse in several independent clinical cohorts [3–6].
Other sources of sequence variation such as frameshift-
ing insertions/deletions [7] and tumor-specific alterna-
tive splicing (e.g., intron retention [8]) have also been
found to correlate with immunotherapy response. These
phenomena are widely accepted and appear to be par-
ticularly pronounced in patients harboring DNA repair
deficiencies [9]. Indeed, the checkpoint inhibitor, pembroli-
zumab, was granted accelerated disease-agnostic approval
by the FDA on this basis for any cancer patient-harboring
deficiencies in their capacity to perform DNA mismatch
repair [10]. Moreover, an expanding cohort of clinical im-
munotherapy trials (e.g., NCT03668119, NCT03178552,
NCT03519412) are actively utilizing TMB status as a key
inclusion criterion. However, there is wide variability
among techniques for measuring and interpreting TMB,
raising questions of utility and reproducibility [11].
Given the perceived critical importance of TMB in the

research setting and its emerging role in the oncology
clinic, we sought to quantify the robustness of TMB as a
metric and explore its deeper nuances using pooled
whole exome sequencing data from a variety of previ-
ously published studies. While TMB is generally corre-
lated with downstream metrics such as neoepitope
burden, we also explore the predictive capacity of neoe-
pitope burden and its derivatives including adjustment
for MHC binding robustness and peptide sequence nov-
elty, as well as RNA-derived sources of neoepitopes.

Methods
Variant identification and neoepitope prediction
We assembled a cohort of 457 tumor samples from 431
different cancer patients from publicly available data,
including 302 melanoma patients (326 tumor samples)
[1, 4–6, 12–16], 34 non-small cell lung cancer (NSCLC)
patients (34 tumor samples) [3], 10 prostate cancer pa-
tients (10 tumor samples) [17], 57 renal cell carcinoma
(RCC) patients (58 tumor samples) [18], and 28 mis-
match repair (MMR)-deficient (as determined by poly-
merase chain reaction or immunohistochemistry [9])
colon, endometrial, and thyroid cancer patients (29
tumor samples) [9] (see Additional file 1: Table S1). Des-
pite attempts to obtain these data, we unfortunately were

forced to omit tumor samples from 75 NSCLC patients
[19], for whom data was not available due to limitations
of patient consent at the time of the study. Alignment of
whole exome sequencing (WES) reads was performed as
described previously [20]. The Mbp of genome covered
was determined using bedtools genomecov (v2.26.0)
[21], where any base covered by a depth of at least six
reads was considered covered, as this is twice the mini-
mum read depth required for variant detection by Soma-
ticSniper [22] and VarScan 2 [23]. Somatic and germline
variant calling were performed as described previously
[20]. To obtain coverage-adjusted mutation burdens for
each patient, we divided the number of consensus somatic
variants by the Mbp of genome covered by sequencing. We
employed HapCUT2 for patient-specific haplotype phasing.
To do this, germline and consensus somatic variants were
combined into a single VCF using neoepiscope’s [20]
(v0.3.5) merge functionality. HapCUT2’s extractHAIRS
software was run with the merged VCF and the tumor
alignment file, allowing for extraction of reads spanning
indels, to produce the fragment file used with HapCUT2 to
predict haplotypes. Neoepitopes of 8–24 amino acids in
length were predicted for this cohort using neoepiscope, in-
cluding background germline variation and variant phasing,
and enumerating neoepitopes from protein coding, non-
sense mediated decay, polymorphic pseudogene, T cell re-
ceptor variable, and immunoglobulin variable transcripts.
Additionally, to better understand how the choice of variant
caller impacts downstream neoepitope predictions, we ran
neoepiscope excluding background germline variation and
variant phasing separately for our consensus somatic vari-
ants and variants produced by individual variant calling
tools, only enumerating neoepitopes from protein coding
transcripts. For patients with multiple tumor samples, the
median mutation and neoepitope burdens across samples
were retained. Variants that were pathogenic or likely
pathogenic in cancer according to ClinVar [24] were identi-
fied using Open-CRAVAT [25], and neoepitopes deriving
from these variants were flagged. We used the software
mSINGS [26] (bit bucket commit 030289381f3b7aee24-
d8eccbb69b3e66711f5bb0) to identify tumors with MSI-
positive status. The software was run on each tumor align-
ment file, and the provided TCGA msi_bed, msi_baseline,
msi_intervals were used.

RNA variant identification
Among the overall cohort, 106 patients (89 melanoma
patients [1, 4–6] and 17 RCC patients [18]) had comple-
mentary tumor RNA-sequencing (RNA-seq) data. We
aligned RNA-seq reads to both the GRCh37d5 and
GRCh38 genomes using STAR (v2.6.1c) [27], using the
‘intronMotif’ --outSAMstrandField option and specifying
NH, HI, AS, nM, and MD fields with the --outSAMattri-
butes option. To identify putative tumor-specific splice
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junctions, we first downloaded called junction data in-
cluding coverage and bed files for TCGA and GTEx
using recount2 [28]. GENCODE version 28 annotations
[29] were downloaded and parsed to collect full coordi-
nates and left and right splice sites of junctions from an-
notated transcripts. The TCGA phenotype file from
Rail-RNA [30] was parsed to collect sample type (pri-
mary, recurrent, or metastatic tumor vs. matched nor-
mal). A new SQLite3 database was created to index all
GTEx and TCGA junctions, with linked tables contain-
ing (1) sample ids and associated junction ids; (2) sample
ids and phenotype information for each sample; and (3)
junction ids and junction information including GEN-
CODE annotation status and location within protein
coding gene boundaries. Junctions were extracted from
the SJ.out output files generated by STAR; only junc-
tions with canonical splice motifs (GT-AG, GC-AG, and
AT-AC) were collected. No minimum read count was
imposed for a junction to be called in a sample. The
known junction index was queried to collect all junc-
tions found in normal tissue either in GTEx or in TCGA
matched normal samples and these normal junctions
were filtered out from the single-sample set. We used
the MetaSRA [31] web query interface to collect Se-
quence Read Archive (SRA) accession numbers for non-
cancerous melanocyte cell line [32] and primary cell [33]
RNA-seq experiments. The resulting accession numbers
were queried against the Snaptron junction database [34,
35] to download junctions from across the entire gen-
ome. All junctions found in these normal melanocyte
samples as well as all fully GENCODE-annotated junc-
tions were also eliminated from each single-sample junc-
tion set. Again, no minimum read support was required;
a single read covering a junction in a single non-cancer
sample (SRA, GTEx, or TCGA) eliminated the junction
from the patient set. Finally, we removed junctions
where neither end was found in GENCODE annotation,
yielding a list of putative tumor-specific splice sites for
each patient. Additional file 2: Figure S1 (rows 2–4) il-
lustrates the variety of splicing alterations captured.
We identified tumor-specific retained introns (see Add-

itional file 2: Figure S1, row 5) using Keep Me Around
(kma) [36]. We aligned RNA-seq reads to a modified ver-
sion of the GRCh37d5 using Bowtie 2 (v2.3.4.3) [37], and
quantified reads using eXpress (v1.5.1) [38], as per kma
recommendations. After computing intron retention, we
used kma’s filters to retain only transcripts that were
expressed at greater than or equal to 1 transcript per mil-
lion (TPM) in at least 25% of samples, transcripts that had
at least 5 unique counts in at least 25% of samples, and
transcripts that had greater than 0 and less than 100% of
introns retained. To prevent inclusion of artifacts from un-
processed transcripts, we identified outlier introns among
the distribution of transcript read counts, only retaining

introns with a read count greater than 3 median absolute
deviations above the median intron read count for a tran-
script, and greater than or equal to the read count for the
transcript itself. To filter out retained introns that may be
expressed in normal tissues, we performed the same ana-
lysis using publically available RNA-seq reads from mel-
anocyte samples of 106 newborns [39]. Any retained
introns identified from the melanocyte RNA-seq data were
then removed from the retained introns identified from the
tumor RNA-seq data. Neoepitopes deriving from retained
introns were predicted using the reading frame from the 5′
end of the transcript of origin prior to the intron, enumer-
ating peptides 8–24 amino acids in length.

HLA type prediction and related analyses
MHC Class I alleles for each patient were predicted from
tumor WES reads using Optitype (v1.0) [40], and MHC
Class II alleles for each patient were predicted from tumor
WES reads using seq2hla (v2.2) [41]. For each neoepitope
sequence predicted from phased variants (see above), a pa-
tient’s predicted MHC Class I and MHC Class II alleles
were used for binding affinity predictions with MHCnug-
gets (v2.1) [42]. Neoepitopes were counted toward a pa-
tient’s neoepitope burden if they bound at least one of a
patient’s MHC alleles with high affinity (≤ 500 nM). For
comparison with neoepitope burdens reported by the au-
thors of the five original manuscripts with reported neoe-
pitope burdens, we tallied binding predictions separately
based on their methodology, using binding affinity predic-
tions from NetMHCpan (v4.0) [43] for a more direct com-
parison. For patients from the studies by Carreno et al. [4]
and Rizvi et al. [3], we considered only 9mer epitopes; for
patients from the study by Van Allen et al. [1], we consid-
ered only 9mer and 10mer epitopes; and for the studies by
Hugo et al. [5] and Roh et al. [14], we considered 9mer,
10mer, and 11mer epitopes. For the epitopes from pa-
tients from the Carreno et al. study, we only considered
binding to HLA-A*02:01 as in their paper, while for the
other studies we considered binding to any MHC Class I
epitope. Additionally, we determined the burden of proc-
essed neoepitopes (those predicted to be cleaved by the
proteasome, transported by TAP, and presented on the
cell surface by an MHC Class I molecule) using NetCTL-
pan (v1.1) [44]. For each tumor sample, we ran NetCTL-
pan predictions for all 8mer, 9mer, 10mer, and 11mer
neopeptides with each MHC Class I epitope predicted by
Optitype. A neopeptide was counted toward the burden of
processed epitopes if its NetCTLpan combined score rank
was in the top 1% for at least one MHC allele.

Modified neoepitope burden
To better understand how different features of tumor
neoepitopes might influence response to immunotherapy,
we produced several normalized neoepitope burdens. We
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first calculated neoepitope burden for each patient
weighted by MHC allele presentation, where a predicted
neoepitope sequence counted toward the patient’s neoepi-
tope burden once for each of the patient’s MHC alleles
that was predicted to bind that neoepitope with high affin-
ity (≤ 500 nM). Second, neoepitope burden was calculated
for each patient weighted by amino acid mismatch as fol-
lows. The closest normal peptide in the human proteome
to each neoepitope was identified using blastp (v2.6.0)
[45], selecting for lowest E value or, in the case of a tie
among multiple peptide sequences, the selected peptide
was that with the highest weighted BLOSUM62 similarity
(as described previously [46]). A neoepitope sequence was
counted toward the patient’s neoepitope burden once for
each amino acid mismatch between the neoepitope and
its closest normal peptide. Third, neoepitope burden was
calculated for each patient weighted by TCGA transcript
expression of the transcript(s) of origin for each neoepi-
tope. We identified expressed transcripts in matched
TCGA cancer types for each disease type in our cohort
(SKCM for melanoma, LUAD/LUSC for NSCLC, COAD
for colon cancer, UCEC for endometrial cancer, THCA
for thyroid cancer, PRAD for prostate cancer, and KIRC
for RCC) from TPM values generated by the National
Cancer Institute [47]. A transcript was considered
“expressed” for a cancer type if the 75th quantile TPM
value for that transcript in that disease was greater than 1
TPM. Because these TPM values were based on GRCh38
transcripts, we used liftOver [48] to convert the coordi-
nates of a neoepitope’s mutation of origin to GRCh38 co-
ordinates and identify overlapping transcripts. A
neoepitope sequence was counted toward the patient’s
neoepitope burden once for each transcript of origin
expressed in TCGA. Note that for patients with tumor
RNA-seq data (see above), we also calculated neoepitope
burden weighted by patient-specific expression of the
transcript(s) of origin for each neoepitope. We used Rail-
RNA (v0.2.4b) [30] on RNA-seq alignments to the
GRCh37d5 genome to identify covered exons, and a tran-
script was considered “expressed” if at least 1 read covered
any exon in the transcript. A neoepitope sequence was
counted toward the patient’s neoepitope burden once for
each expressed transcript of origin. Finally, we multiplica-
tively combined these weighted burdens by multiplying
scores for each epitope and totaling all epitope scores: al-
lele presentation score by amino acid mismatch score, al-
lele presentation score by TCGA expression score, allele
presentation score by patient-specific expression score (if
relevant), amino acid mismatch score by TCGA expres-
sion score, amino acid mismatch score by patient-specific
expression score (if relevant), allele presentation score by
amino acid mismatch score by TCGA expression score,
and allele presentation score by amino acid mismatch
score by patient-specific expression score (if relevant).

Statistical analysis
Statistical analysis was performed in R (v3.5.1). The rlm
function from the MASS package (v7.3-51.4) was used
for robust linear model fitting, and the cor.test function
was used for determining Pearson product-moment cor-
relation values. To determine variability in TMB across
variant calling tools, the median of pairwise differences
in TMB between tools was divided by the median TMB
across tools for each patient; the median of these values
across patients was reported. The roc function from the
pROC package (v1.14.0) was used to generate ROC
curves for any predictors of immunotherapy response
and to determine their AUC for all patients with re-
ported immunotherapy response status (409/414, after
excluding 3 colon cancer, 1 prostate cancer, and 1 RCC
patient that lacked documented response status). Logis-
tic regression was performed using the glm function to
model therapeutic response as a linear function of TMB
(on log scale), and neoepitopes (log scale) on the 245
melanoma patients, 50 RCC patients, and 33 NSCLC pa-
tients with reported immunotherapy response status to
either aCTLA4 or aPD1 treatment alone (excluding
dual/combination checkpoint inhibitor therapy). For the
subset of these patients with available RNA-seq data (see
Additional file 1: Table S1), tumor variant burden (TVB;
the sum of somatic variants, tumor-specific splice junc-
tions, and tumor-specific retained introns; log2 scale)
was also modeled. The fit models were subsequently
used to estimate the odds of therapeutic response at the
25th and 75th TMB, TVB, and neoepitope percentiles.
Each cancer type was modeled separately, with the mel-
anoma model accounting for differences in aCTLA4 vs.
aPD1 response rates. P values were adjusted for multiple
comparisons using the Benjamini-Hochberg method
with the p.adjust function.

Survival analysis
Due to the low number of observed events for some
cancers, only melanoma and RCC patient cohorts were
appropriate for survival analysis. Patients were included
in survival analysis if they had information on both over-
all survival status, as well as either time to event or time
to censorship data. In total, 218 melanoma patients and
56 RCC patients were selected for analysis in R (v3.5.1).
The coxph function from the survival package (v2.44-
1.1) was used to fit proportional hazards regression
models, and the survfit function from the survival pack-
age was used to compute survival curves. For compari-
son with patients not treated with immunotherapy, we
also performed survival analysis with SKCM and KIRC
patients from TCGA. We obtained mutation annotation
format (MAF) files and clinical data for these patients
from the Broad Institute [49]. Patients with both muta-
tion information and survival information were used for
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analysis (320 SKCM patients and 415 KIRC patients). Mu-
tational burden was determined by counting the number
of somatic variants listed in each patient’s MAF file, and a
patient was considered to have survival information if they
had information on time to death or a non-zero and non-
negative value on time to last follow-up.

Results
Distribution of tumor variant and neoepitope burdens
We find that the median TMB (based on consensus
DNA variant calls; see “Methods”) varies by an order of
magnitude across disease types, ranging from 635.5 vari-
ants for prostate cancer to 5632.5 variants for MMR-
deficient cancers (Additional file 2: Figure S2). Adjusting
by genome coverage for each patient (see “Methods”),

the median TMB was 18.03 mutations/Mbp of genomic
coverage (ranging from 5.17 for prostate cancer to 26.82
for MMR-deficient cancers, see Fig. 1a). The majority of
variants were found to be single nucleotide variants (me-
dian 85.07% per patient), with the remainder from in-
frame and frameshift insertions and deletions (ranging
from a median 7.52% indels for RCC to 37.26% indels
for prostate cancer, see Additional file 2: Figure S3).
Note that RNA variants such as alternative exon-exon
junctions and retained introns were also assessed in the
subset of patients with corresponding RNA-sequencing
data (see “Methods”). Overall, tumor-specific junction
burden appeared to be less variable across cancer types
(ranging from 1301 for RCC to 2048.5 for melanoma).
While retained introns (RI) have also been described as

Fig. 1 Per-patient distribution of mutation and neoepitope burdens across 7 cancer types. a The number of somatic DNA variants per patient
(scaled for sequence coverage) are shown along the y-axis, with each dot representing an individual cancer patient (cancer types shown along
the x-axis). Note that MMR-deficient cancers here represent a cohort of three different cancer types including colon, endometrial, and thyroid
with evidence of mismatch repair deficiency as determined by polymerase chain reaction or immunohistochemistry [9]. Red colored dots
correspond to patients with microsatellite instability as determined by mSINGS (see “Methods”). b The number of putative neoepitopes per
patient are shown along the y-axis, with each dot representing an individual cancer patient (cancer types shown along the x-axis). Abbreviations
as follows: MMR =mismatch repair
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a source of neoepitopes [8], only 27 melanoma patients
with RNA-seq data had any predicted RIs, with a median
RI burden in those patients of 929 introns. Integrating
these tumor DNA and RNA variants (given matched
RNA-seq data) into a single combined tumor variant bur-
den (TVB) yielded a median increase of 2345 variants per
patient, with RNA sources of variation accounting for an
average 40.8% of overall variants (see Fig. 2). Moreover,
consideration of DNA variant burden alone neglects sub-
stantial somatic variation for some patients, as RNA
sources of variation can constitute up to 86.7% of TVB.
As TMB and TVB are indirect assessments of cancer

neoantigen load, we next calculated DNA-derived, RNA-
derived, and overall neoepitope burdens per patient from
putative protein-level variation (see “Methods”). The me-
dian per-patient DNA-derived neoepitope burden (for
peptides predicted to bind to at least one of a patient’s
MHC Class I or II alleles) was 13,512 peptides (ranging
from 5511.5 for NSCLC to 37,710.5 for MMR-deficient
cancers, see Fig. 1b) and was highly correlated with
TMB itself (Pearson’s product-moment correlation of

0.63, p < 2.2 × 10− 16; see Additional file 2: Figure S4).
There were generally more MHC Class I epitopes than
Class II epitopes, with a median Class I epitope burden
of 6337 peptides (ranging from 2366 for NSCLC to 15,
645.5 for MMR-deficient cancers) and a median Class II
epitope burden of 6027 peptides (ranging from 2167.5
for NSCLC to 23,554.5 for MMR-deficient cancers). We
also assessed the burden of Class I epitopes predicted to
be processed via the proteasome, transported through
TAP, and presented on the cell surface (see “Methods”),
with a median 771 such epitopes per patient (ranging
from 366 for prostate cancer and 2536.5 for MMR-
deficient cancers). While not all patients possessed RIs,
the median per-patient RNA-derived neoepitope burden
among the 27 melanoma patients with predicted RIs
(366,843 peptides) was an order of magnitude higher
than DNA-derived neoepitopes in the vast majority of
cases (Additional file 2: Figure S5).
In addition to reporting the bulk number of neoepitopes

per patient, we also analyzed the distribution of peptide
presentation by patient-specific HLA types. Overall, a me-
dian of 8.91% of possible peptides are presented by one or
more patient-specific MHC Class I or II alleles. Among
these, any given neoepitope is, on average, only presented
by a single MHC allele (Fig. 3a, Additional file 2: Figure
S6A). There are many additional degrees of freedom to
surveil the peptide-level consequences of an individual
variant (e.g., individual single nucleotide variants may give
rise to as many as 272 different peptides of 8-24aa lengths,
any of which might be presented via one or more MHC
Class I or II alleles). As such, we find that 83.4% of all
DNA variants resulting in peptide-level change(s) have at
least one neoepitope putatively presented by at least one
HLA allele, with a median of three different HLA alleles
able to present one or more neoepitopes from each indi-
vidual variant (Fig. 3b, Additional file 2: Figure S6B).
Moreover, the percentage of variants presented increases
with increasing MHC heterozygosity (Fig. 3c, Add-
itional file 2: Figure S7). Within the cohort, 329 patients
had pathogenic cancer-related mutations (see “Methods”),
with an average of 2.8 such variants per patient among
those patients. Consistent with prior work demonstrating
a relative paucity of peptide presentation from cancer
driver mutations [50], we find that a smaller number (ap-
proximately 68.5%) of driver variants in this cohort yielded
neoepitopes, with only 10.4% of neopeptides from these
variants on average being predicted to bind to any of a pa-
tient’s HLA alleles (Fig. 3).

Tumor variant and neoepitope burdens as predictors of
response and survival
We next sought to quantify immunotherapy response
rate as a function of TMB, TVB, and neoepitope burden.
Using disease-specific logistic regression models, we

Fig. 2 Per-patient distribution of overall tumor variant burden and
its components. The number of total tumor variants per patient is
shown along the y-axis, with the numbers of retained introns (RI),
tumor-specific exon-exon junctions (Jx), insertions/deletions (Indel),
and single nucleotide variants (SNV) shown in green, blue, red, and
purple, respectively. The data for each individual patient is displayed
as stacked bars along the x-axis, sorted from left to right by the
number of single nucleotide variants (from highest to lowest)
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found that neither TVB nor neoepitope burden were sig-
nificant predictors of immunotherapy response (see
Table 1). In contrast, for NSCLC patients there was a

120.8% increase in the odds of response per log2 fold
change in TMB (p = 0.034), though these results were
not significant upon adjustment for multiple hypothesis

Fig. 3 Robustness of putative neoepitope presentation. a The number of unique patient-matched HLA alleles that are predicted to present an
individual neoepitope is shown along the x-axis, with the y-axis (log scale) corresponding to the overall percent of neoepitopes sharing that same
robustness of HLA presentation. Red and blue curves denote the best fit line based on linear regression for all neoepitopes and those resulting from
cancer driver mutations, respectively. The surrounding red and light blue shading denotes the 95% confidence interval for all and driver-derived
neoepitopes, respectively. Individual data points are shown as open circles, whose diameter corresponds to the number of neoepitopes as shown by
the corresponding scale at right. b The total number of unique patient-matched HLA alleles that are predicted to present one or more neoepitopes
arising from a single DNA mutation is shown along the x-axis, with the y-axis corresponding to the overall percent of mutations sharing that same
robustness of HLA presentation. Red and blue curves denote the best fit line based on local polynomial regression for all mutations and cancer driver
mutations, respectively. The surrounding red and light blue shading denotes the 95% confidence interval for all and driver mutations, respectively.
Individual data points are shown as open circles, whose diameter corresponds to the number of mutations as shown by the corresponding scale at
right. c The percentage of total variants that are predicted to be presented by one or more patient-matched HLA alleles is shown along the y-axis,
with the x-axis corresponding to the number of unique HLA alleles for that patient. Red and blue curves denote the best fit line based on linear
regression for all mutations and cancer driver mutations, respectively. The surrounding red and light blue shading denotes the 95% confidence interval
for all and driver mutations, respectively. Individual data points are shown as open circles, whose diameter corresponds to the number of mutations as
shown by the corresponding scale at right. Note that a predicted HLA binding affinity threshold of ≤ 500 nM was used in all cases (see “Methods”)
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testing (p = 0.053). Similar effects were not seen for mel-
anoma (p = 0.267) or RCC (p = 0.973).
Coverage-adjusted SNV burden predicted response to

immunotherapy better than overall TMB or any indel bur-
den for all cancer types except RCC, for which coverage-
adjusted burden of in-frame indels was the most predict-
ive burden (see Additional file 2: Figure S8). Neoepitope
burden alone predicted response to immunotherapy com-
paratively well as TMB, calculated using both raw and
coverage-adjusted counts (see Fig. 4). There was no differ-
ence in predictive capacity between Class I vs Class II epi-
tope burdens (see Additional file 2: Figure S9). Similarly,
incorporation of proteasomal cleavage, TAP transport,
and cell surface presentation did not improve predictive
capacity compared to TMB and neoepitope burden (see
Additional file 2: Figure S10). We also weighted neoepi-
tope burden by several criteria hypothesized to be related
to increased immunogenicity, including number of amino
acid mismatches per peptide, number of MHC alleles pre-
dicted to bind each peptide, and number of TCGA-
expressed transcripts of origin for the peptide (see
“Methods”). In all cases, these weighted burdens yielded
similar predictive capabilities to TMB or unadjusted neoe-
pitope burden, though mismatch- and mismatch-by-
allele-weighted neoepitope burdens incrementally im-
proved predictive capacity for RCC patients, and allele-
weighted neoepitope burden incrementally improved pre-
dictive capacity for NSCLC patients (see Fig. 4). Interest-
ingly, global assessment of HLA presentation (unique
HLA allele count per patient) added slight predictive cap-
acity to TMB in melanoma, RCC, and NSCLC patients
(see Fig. 4). However, the capacity for any of these metrics
to predict patient-level immunotherapy response varied

substantially by cancer type, with the highest predictive
power for the NSCLC cohort, but a very limited predictive
capability in melanoma, RCC, or when pooled across all
cancer types (see Fig. 4). Indeed, TMB as calculated by
consensus variant calls predicts immunotherapy response
more poorly than the experimental noise of the breadth of
genomic coverage (Mbp) obtained via DNA sequencing in
melanoma, RCC, and when pooled across cancer types
(see Additional file 2: Figure S11).
For patients with tumor RNA-seq data, we also investi-

gated how TVB and RNA-derived neoepitopes predicted
response to immunotherapy (see Fig. 5). We specifically
considered tumor-specific junction burden, retained in-
tron burden, retained intron neoepitope burden, and
patient-specific expression-weighted neoepitope burdens
(see “Methods”). As before, the vast majority of metrics
(e.g., TMB, TVB) were all comparable in terms of predict-
ive performance. However, considering these RNA-
derived features did not increase predictive capacity over
TMB, with the exception of the burden of tumor-specific
splicing junctions, which yielded an increase in predictive
performance for RCC patients (see Fig. 5).
Using an established threshold for identifying tumors

with “high” TMB, namely TMB that exceeds the disease-
matched 80th percentile [2], we investigated the metric’s
capacity to predict overall survival in the context of im-
mune checkpoint blockade therapy. While not statistically
significant (p > 0.05, based on Cox proportional hazard
modeling), we saw a clear trend toward improved overall
survival among individuals with renal cell carcinoma and a
high TMB (Fig. 6a). Additionally, model comparisons using
different TMB percentile cutoffs suggest that differences in
overall survival for high and low TMB groups may be

Table 1 Immunotherapy (αPD1 and αCTLA4) response probability based on logistic regression models of tumor mutational burden
(TMB), neoepitope burden (Neoepitopes), and combined tumor DNA- and RNA- variant burden (TVB) for melanoma, non-small cell
lung cancer (NSCLC), and renal cell carcinoma (RCC). P values are reported on a per-model basis without correction for multiple
comparisons per cancer type

Cancer type &
Metric

aPD1 aCTLA4 p-value

N Response Probability
(25th %ile)

Response Probability
(75th %ile)

N Response Probability
(25th %ile)

Response Probability
(75th %ile)

Melanoma

TMB 50 0.456 0.507 195 0.298 0.342 0.267

Neoepitopes 50 0.470 0.507 195 0.302 0.334 0.378

TVB 27 0.367 0.490 61 0.307 0.424 0.079

NSCLC

TMB 33 0.291 0.578 0.034

Neoepitopes 33 0.345 0.583 0.053

RCC

TMB 50 0.656 0.666 0.894

Neoepitopes 50 0.662 0.66 0.973

TVB 17 0.641 0.538 0.600
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threshold dependent and alter model significance (see
Additional file 2: Figure S12). Notably, the lack of a signifi-
cant TMB effect may be due to insufficient sample size as
the number of patients qualifying as high TMB decreases
steadily with increasing threshold. In contrast, the same
trend is not seen between TMB and overall survival among
a separate cohort of patients (TCGA) in the absence of im-
munotherapy (Fig. 6a). We also observed no differences in
survival among individuals with metastatic melanoma
(Fig. 6b). In both cases, TVB and neoepitope burden dem-
onstrate comparable capacities to stratify overall survival as
TMB (Additional file 2: Figures S13 and S14).

Metric instability of tumor variant and neoepitope burdens
We find, however, that TMB is not robust across variant
calling methods. TMB as reported by individual variant
calling tools was moderately similar to that reported by
consensus calls (see Additional file 2: Figure S15), but vari-
ability in per-caller TMB increased with increasing number
of variants (see Additional file 2: Figure S16). Additionally,
the difference in TMB between the highest and lowest
counts from individual callers per patient (median differ-
ence of 1840 variants per patient) reflects a substantial frac-
tion of the overall TMB, accounting for a median 59.3% of
the value in the metric overall (see “Methods”).

Fig. 4 Receiver operating characteristic curves of predictive capacity of 11 different mutation/neoepitope burden metrics. The upper panels depict the
true positive rate (sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each metric across all probability thresholds. The four panels represent
models for four different cohorts based on different subsets of patients: All Cancers, which includes all patients, and Melanoma, RCC, and NSCLC, which
include only melanoma, RCC, and NSCLC patients, respectively. The table in the lower panel reports the area under the curve (AUC) for each metric
(columns) applied to a different cancer cohort (rows), with colors above the methods indicating the color of the corresponding curve in the upper
panels. TMB is used as a predictor in both raw (TMB1) and coverage-adjusted (TMB2) forms, as well as in a multiplicative combination with patient HLA
allele count (TMB1*HLA). Neoepitope burden (NB) is used as a predictor in both raw and extended formats (see “Methods”). Extended neoepitope
burden metrics include number of amino acid mismatches (M), number of HLA alleles predicted to bind each epitope (A), and number of transcripts
expressing each epitope in TCGA (T), along with their multiplicative combinations. Bold-faced values indicate the best value for each cancer cohort
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We also compared tumor mutational burden as re-
ported by the authors of the original manuscripts from
which our cohort originated with our standardized con-
sensus approach. While author-reported and consensus
values for TMB were significantly correlated (Pearson’s
product-moment correlation of 0.35, p = 1.99 × 10− 7; see
Additional file 2: Figure S17), we note that author-reported
values have a universally higher predictive capacity than we
observe using consensus data (Additional file 2: Figure
S18). We also find important discrepancies in per-patient
classification. Approximately 26.2% of patients are incon-
gruously determined to be TMB “high” or “low” (using a

TMB threshold > 80th percentile as per [2]); however, as
many as 42.23% of patients may be dubiously classified
using alternative thresholds (e.g., 29th–65th percentiles;
see Additional file 2: Figure S19). Consensus and author-
reported nonsynonymous mutation burdens exhibited a
similar extent of correlation as well as per-patient instabil-
ity of classification (Pearson’s product-moment correlation
of 0.58, p < 2.2 × 10− 16; see Additional file 2: Figures S18
and S20). The correlation between consensus-derived
neoepitope burden and that reported by the original manu-
scripts was weak and not statistically significant (Pearson’s
product-moment correlation of 0.026, p = 0.70; see

Fig. 5 Receiver operating characteristic curves of predictive capacity of nine different variant/neoepitope burden metrics. The upper panels
depict the true positive rate (sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each metric across all probability thresholds. The
three panels represent models for three different cohorts based on different subsets of patients: All Cancers, which includes all patients, and
Melanoma, and RCC, which include only melanoma and RCC patients, respectively. The table in the lower panel reports the area under the curve
(AUC) for each metric (columns) applied to a different cancer cohort (rows), with colors above the methods indicating the color of the
corresponding curve in the upper panels. TMB and TVB are used as predictors in the raw formats. Jx represents the number of tumor-specific
junctions per patient, and RI represents the number of retained introns per patient, with RI epitopes representing neoepitopes derived from
those retained introns. Neoepitope burden is used as predictor in its RNA-feature-extended formats (see “Methods”). Extended neoepitope
burden metrics include number of expressed transcripts for each epitope (E), number of amino acid mismatches (M), number of HLA alleles
predicted to bind each epitope (A), and number of transcripts expressing each epitope in TCGA (T), along with their multiplicative combinations
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Additional file 2: Figure S21). Moreover, we find that re-
sponse hazard ratios are not stable based on TMB thresh-
olds, a phenomenon especially dramatic in the RCC cohort
(see Additional file 2: Figure S12), and consistent with prior
findings that a single TMB threshold is inappropriate to
apply across different cancer types [2].

Finally, we find that the predictive performance of
TMB is sensitive to the method(s) used to perform vari-
ant calling (see Fig. 7). Note that the same phenomenon
holds true for raw TMB counts (see Additional file 2:
Figure S22). While outside the scope of the current
manuscript, note also that the identity of resulting

Fig. 6 Overall survival among cancer patients with high and low TMB. a Kaplan-Meier curves for immunotherapy-treated (+ICI) and immunotherapy-
naive (−ICI) Stage III-IV melanoma patients with high TMB (> 80th percentile) are shown in red, and dark gray, respectively, while immunotherapy-
treated (+ICI) and immunotherapy-naive (−ICI) patients with low TMB (≤ 80th percentile) are shown in blue and light gray, respectively. The underlying
table corresponds to the number of patients at risk of death at each timepoint. Note: TCGA SKCM patient data (−ICI) is censored at 2885 days (maximal
follow-up in immunotherapy-treated cohort) to emphasize comparable time-scales. b Kaplan-Meier curves for the immunotherapy-treated (+ICI) and
immunotherapy-naive (−ICI) metastatic (Stage IV) renal cell carcinoma patients with high TMB (> 80th percentile) are shown in red, and dark gray,
respectively, while immunotherapy-treated (+ICI) and immunotherapy-naive (−ICI) patients with low TMB (≤ 80th percentile) are shown in blue and
light gray, respectively. The underlying table corresponds to the number of patients at risk of death at each timepoint. Note: TCGA KIRC patient data is
censored at 1724 days (maximal follow-up in immunotherapy-treated cohort) to emphasize comparable time-scales
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neoepitopes is also highly sensitive to the variant calling
method (see Additional file 2: Figure S23).

Discussion
To the best of our knowledge, this is the first study to
evaluate TMB and correlated downstream metrics such
as neoepitope burden from whole exome sequencing
data using a gold standard ensemble approach [55, 56]
applied to a meta-cohort of immunotherapy-treated
cancer patients across multiple studies and disease
types. This study also introduces the concept of tumor
variant burden, incorporating potential RNA-derived
sources of variants where available, and is the first

study to estimate immunotherapy response rate as a
function of TMB, TVB, and neoepitope burden. More-
over, this study is the first to quantitatively evaluate the
stability of TMB as a metric, and the first to directly
compare the predictive capacities of multiple TMB and
related metrics.
Ultimately, we show that TMB is a dubious predictor of

immunotherapy response, with substantial caveats regard-
ing: (1) predictive capacity differences among different
cancer types, with RCC being no better than random
chance, (2) sensitivity of TMB and downstream metrics to
variant calling methodology, and (3) stability of TMB
thresholds and their ability to classify patients in a

Fig. 7 Receiver operating characteristic curves of predictive capacity of coverage-adjusted TMB from 7 different variant calling methods:
consensus calling (see Methods), MuSE [51], MuTect [52], Pindel [53], RADIA [54], SomaticSniper [22], and VarScan 2 [23]. The upper panels depict
the true positive rate (sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all probability thresholds. The four
panels represent models for four different cohorts based on different subsets of patients: All Cancers, which includes all patients, and Melanoma,
RCC, and NSCLC, which include only melanoma, RCC, and NSCLC, respectively. The table in the lower panel reports the area under the curve
(AUC) for each method (columns) applied to a different cancer cohort (rows), with colors above the methods indicating the color of the
corresponding curve in the upper panels. TMB as determined by consensus calling (see “Methods”) is compared to the individual variant calling
tools used in consensus calling. RCC = renal cell carcinoma, NSCLC = non-small cell lung cancer
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population. This suggests that the prospective clinical
utilization of TMB is likely subject to many of these same
issues and may result in unintended harms, whether due
to omission of therapy for individuals with “low” TMB
who might nonetheless benefit, or due to increased risk of
toxicity in a “high” TMB population subject to overuse of
immunotherapy. Indeed, a recent study of metastatic mel-
anoma patients [57] found significantly different burdens
of nonsynonymous mutations between disease subgroups,
but not between progressors/responders, highlighting the
instability of this metric.
With rare exception, we find no added predictive

benefit to evaluating more complex bulk metrics down-
stream of TMB. Akin to prior observations, incorpor-
ation of HLA genotype diversity adds slightly to the
predictive capacity of TMB [58]. Given the added tech-
nical effort and costs required to perform these analyses,
we conclude that TMB is likely the optimal bulk assess-
ment of tumor variation among those tested, though in-
clusion of HLA diversity data may marginally improve
estimates. However, such bulk measurements neglect
the potential importance of individual cancer neoanti-
gens, which recent evidence suggests may be the driving
force behind response to cancer immunotherapy by eli-
citing tumor-antigen-specific T cell responses [59].
This study has several limitations. First, numerous

sampling based assays have also been used to assess
TMB (e.g., [2, 60, 61]); however, we did not evaluate
these data in this study, instead focusing on whole ex-
ome sequencing data as the prevailing gold standard for
accurate mutational assessment. Note that these targeted
assays would not enable incorporation of HLA allelic di-
versity data into a predictive model. Note also that there
is wide variability among TMB assay design, analysis,
and performance, with the potential for overestimation
of TMB when using gene-targeted assays [62]. Ultim-
ately, along with the substantial variability among widely
used targeted assays [11], and the futility of expecting
universal adoption of a single technique, this study high-
lights the need for increased standardization of TMB in-
terpretation, a subject of active pursuit by the TMB
Harmonization Project [63]. Second, we did not compare
TMB in this dataset with other potential predictors of
immunotherapy response (e.g., based on gene expression
[64] or copy number instability [65]); however, it is pos-
sible that TMB could be synergistic with such orthog-
onal metrics. Third, by virtue of the retrospective nature
of these data and limited availability of whole exome se-
quencing cohorts, this study cannot be assumed to
translate to emerging immunotherapies and instead is
interpretable exclusively for αPD1 and αCTLA4 therapy.
While this study is consistent with multiple prior re-

ports demonstrating the importance of TMB in predict-
ing immunotherapy response (e.g., [2, 66]), the caveats

raised herein are of high concern for the field overall.
Our collective emphasis on TMB is understandable
given its relative ease of quantification using various
techniques; however, it is indeed a dubious and indirect
predictor. Tumors with higher TMB have been hypothe-
sized to have more neoantigens that can be recognized
by the immune system in response to checkpoint inhib-
ition, yet the data presented here and data previously
published [2] support the use of substantially different
“absolute” TMB thresholds for immunotherapy response
prediction across different diseases. Further, evidence
suggests that other genomic factors, such as tumor pur-
ity and clonal heterogeneity, may further modulate the
relationship between TMB and immunotherapy response
[57, 67]. This suggests an added layer of as-of-yet un-
defined complexity not captured in the current bulk
metrics, and likely related to disease-specific biology.

Conclusions
In conclusion, we find sufficient cause to suggest that
the predictive clinical value of TMB should not be over-
stated or oversimplified. While it is readily quantified,
TMB is at best a limited surrogate biomarker of im-
munotherapy response. The data confirms TMB as a
reasonable predictor in non-small cell lung cancer, and a
weak predictor in melanoma. The data does not support
TMB in isolation as a predictive biomarker for RCC,
though it may be feasibly combined with HLA allelic di-
versity to achieve marginal performance.
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