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Abstract

Background: Human cancer cell lines are fundamental models for cancer research and therapeutic strategy
development. However, there is no characterization of circular RNAs (circRNAs) in a large number of cancer cell lines.

Methods: Here, we apply four circRNA identification algorithms to heuristically characterize the expression landscape
of circRNAs across ~ 1000 human cancer cell lines from CCLE polyA-enriched RNA-seq data. By using integrative
analysis and experimental approaches, we explore the expression landscape, biogenesis, functional consequences, and

drug response of circRNAs across different cancer lineages.

Results: We revealed highly lineage-specific expression patterns of circRNAs, suggesting that circRNAs may be powerful
diagnostic and/or prognostic markers in cancer treatment. We also identified key genes involved in circRNA biogenesis
and confirmed that TGF-B signaling may promote biogenesis of circRNAs. Strikingly, we showed that clinically actionable
genes are more likely to generate circRNAs, potentially due to the enrichment of RNA-binding protein (RBP) binding sites.
Among these, circMYC can promote cell proliferation. We observed strong association between the expression of
circRNAs and the response to drugs, especially those targeting chromatin histone acetylation. Finally, we developed a
user-friendly data portal, CircRNAs in cancer cell lines (CircRiC, https://hanlab.uth.edu/cRic), to benefit the biomedical

research community.

Conclusions: Our study provides the characterization of circRNAs in cancer cell lines and explored the potential
mechanism of circRNA biogenesis as well as its therapeutic implications. We also provide a data portal to facilitate the

related biomedical researches.

Background

CircRNA, a class of non-coding RNA characterized by a
covalently closed circular structure [1], is emerging as a
surprising, pervasive feature of gene expression with the
discovery of its abundance among species [2, 3]. CircRNAs
are generated by a “backsplicing” process in which a
downstream 5 splice site backsplices to an upstream 3’
splice site [4], and this process is regulated by both cis ele-
ments and frans protein factors [4]. For example, some
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RNA-binding proteins (RBPs), including QKI and MBL, can
enhance circRNA formation via bridging flanking introns
together [5, 6], while some RBPs (e.g., PTBP1) can reduce
the formation of circRNAs [7, 8]. CircRNAs may also be
regulated by specific biological processes, such as epithelial—
mesenchymal transition (EMT) [6]. However, the detailed
mechanism underlying circRNA biogenesis remains largely
unknown.

Emerging evidence has shown important roles of cir-
cRNAs in human diseases, e.g., cancer [9, 10]. CircRNAs
derived from oncogenic fusion genes, such as circMLL/
AF9, can contribute to tumor-promoting properties [11],
while circ-FBXW7, which is derived from a tumor-
suppressive E3 ligase, can repress tumorigenesis [12].
Several databases have been developed for exploring the
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link between circRNAs and human diseases, such as the
cancer-specific circRNA database (CSCD) [13]. Recent
studies characterized the circRNAs, suggesting their
functional roles to promote cell proliferation [14-16]
and could serve as biomarkers in cancer [17, 18].

Human cancer cell lines are important experimental
models and have facilitated fundamental discoveries in can-
cer research [19, 20]. Several large-scale drug sensitivity
studies have been conducted in cancer cell lines to explore
the diversity of therapeutic response [19, 21, 22]. These
studies have systematically characterized multiple layers of
genomic data in large numbers of cancer cell lines, includ-
ing mutations, copy number variations, mRNA expression
[19, 23], protein expression [21], alternative polyadenylation
[22], and metabolism [24], coupled with pharmacological
drug response profiles. These studies represent valuable
resources to guide rational cancer therapeutic strategies.
There is limited knowledge about the biogenesis, functional
consequences, and therapeutic liability of circRNAs in
cancer cell lines; to fill this gap, we systematically analyzed
global circRNA expression in a large panel of cancer cell
lines from the Cancer Cell Lines Encyclopedia (CCLE) [19]
to enlarge the translational utility of cancer cell lines.

Methods

Data resources

We downloaded paired-end RNA-seq BAM files of 935 can-
cer cell lines from The NCI's Genomic Data Commons
(https://portal.gdc.cancer.gov/legacy-archive) [19] as previ-
ously described [25]. We downloaded the CCLE gene ex-
pression data from the Cancer Target Discovery and
Development Network (https://ocg.cancer.gov/programs/
ctd2/data-portal) [26], mutation data from CCLE data portal
(https://portals.broadinstitute.org/ccle) [19], and reverse-
phase protein array data from the MD Anderson Cell Lines
Project (http://tcpaportal.org/mclp) [21]. Sequencing depths
of 935 CCLE cancer cell line RNA-seq samples ranged from
34 M reads to 4553 M reads with medium as 167.3M
reads. We downloaded drug sensitivity data and compound
annotation information from three pharmacogenomic re-
sources: Genomics of Drug Sensitivity in Cancer (GDSC,
http://www.cancerrxgene.org/) [27], Cancer Therapeutics
Response Portal (CTRP, https://portals.broadinstitute.org/
ctrp/) [28], and CCLE (https://portals.broadinstitute.org/
ccle) [19] as previously described [29, 30]. Gene expression
z-scores of canonical EMT markers were obtained from
CCLE database to calculate EMT score [31].

Identification of circRNAs in cancer cell lines

To achieve the most reliable precision and sensitivity, as
well as balanced performance [32], we combined four
circRNA prediction methods, CIRI2 [33], CIRCexplorer2
[34], circRNA_finder [35], and find_circ [3], with default
settings, to identify circRNAs from the CCLE RNA-seq
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dataset. We further required each circRNA to be de-
tected by at least two methods, with backsplicing reads
>2 in each cancer cell line. For each circRNA detected
by at least two detection tools with at least 2 backspli-
cing reads, we calculated the average number of back-
splicing reads across detectable tools. The average
number of backsplicing reads was normalized by total
number of reads in each cell line.

Identification of lineage-specific mRNAs and lineage-
specific circRNAs
To identify the lineage-specific mRNAs, we compared the

median expression level med(ey)) of a gene (j) in a particu-
lar cancer lineage (/) to the median and interquartile range

of its expression across all samples, as described by Sona-
wane et al. [36]:

s§l> = (med (ey)) -med (eﬁau)) ) /IQR (egall)) .

0

We defined a gene with specificity score s;° > 0.5 as

being specific to cancer lineage /. The cutoff 0.5 was
determined dynamically under that approximately half
of all genes are identified as tissue-specific in our dataset
[36]. We defined the circRNAs that can be detected in
only one cancer lineage as lineage-specific circRNAs.

Analysis of the biogenesis of circRNAs

To examine the effect of genes on circRNA biogenesis,
we assessed the correlation between gene expression and
normalized backsplicing read numbers by normalizing to
the total number of reads (library size) in each cancer
cell line. We defined significant correlation between
gene expression level and normalized backsplicing reads
as the absolute value of Spearman’s correlation > 0.3 and
false discovery rate (FDR) adjuested P value < 0.05.

To assess the gene expression signatures or pathway as-
sociated with circRNA biogenesis, we first classified the cell
lines into two groups (circRNA-low and circRNA-high)
based on the backsplicing read numbers of all circRNAs.
We then used GSEA (http://software.broadinstitute.org/
gsea/index.jsp) [37] to test whether any hallmark gene sets
are significantly enriched in the circRNA-high group. We
considered the gene signatures or pathways with FDR <
0.05 as significantly enriched.

TGF-f treatment

Human lung carcinoma cells (A549) were purchased from
the American Type Culture Collection. This cell was used
until between passages 2 and 5. SIS3, the Smad3 inhibitor
for phosphorylation on serine 423/425, was purchased
from Tocris. TGF-p1 was purchased from GenDEPOT.
A549 cells were pretreated with 5uM of SIS3 for 1h,
followed by TGF-B1 treatment at 5 ng/mL in the presence
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or absence of SIS3 for 30 min. Collagen 1 was used as a
positive maker for the TGF- experiment as described in
previous studies [38, 39]. The cells were lysed by RIPA
buffer that contained protease inhibitors (Thermo Scien-
tific). The concentration of proteins was measured by
BCA assay and used for western blot analysis.

RNA sequencing

Cells were treated with TGF-P1 and SIS3, and RNAs were
extracted by using the Quick-RNA MiniPrep kit from
ZYMO Research. rRNA depletion was performed in NEB-
Next Ultra II Directional RNA Library Prep Kit imple-
mented by Novogene prior to RNA-seq. RNA-seq was
performed on an Illumina HiSeq platform by Novogene.
RNA-seq data was analyzed using our analytic pipeline for
CCLE samples as described in the previous section. The
RNA-seq data have been submitted to the NCBI Gene
Expression Omnibus (GSE119145).

Permutation test

We randomly selected the same number of genes as the
number of clinically actionable genes (total number 135)
from the list of background genes (human protein-
coding genes with circRNA expressed in at least five
samples, excluding clinically actionable genes, n = 3693),
with similar gene length, exon length, intron length,
exon count, or expression level (within the range of
those of clinically actionable genes). For testing enrich-
ment of generation of circRNA from clinically actionable
genes, we examined the frequencies of the circRNAs
detected in the randomly selected gene sets from back-
ground genes. For testing enrichment of RBP binding
peaks in clinically actionable genes, we retrieved RBP
binding sites from CLIP-seq datasets for 37 RBPs depos-
ited in starBase (http://starbase.sysu.edu.cn/) [40]. We
collected binding peaks and calculated the number of
peaks for each clinically actionable gene and background
protein-coding gene. We repeated this process 10,000
times, and based on the observed distributions of these
permutations, we assessed the statistical significance of
enrichment of circRNAs in clinically actionable genes
relative to random expectation.

PCR amplification of linear MYC and circMYC upon RNase
R treatment

We used specific primers to PCR linear MYC [F 5'- TA
GTGGAAAACCAGCAGCCT-3" R 5'- AGAAATACGG
CTGCACCGAG-3'] and circMYC [F 5° CTCACAGCCC
ACTGGTCCTC-3" and R 5'- TCCAGCAGAAGGTGAT
CCAG-3']. RNAs were isolated from the MDA-MB-231
that were transfected with either circMYC or control plas-
mids. Two micrograms of RNAs was incubated with RNase
R (VWR) for 3 h to degrade linear RNAs, followed by TRI-
zol™-chloroform-based RNA purification. ¢cDNAs were
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generated from the RNAs and were used for PCR reactions.
No reverse transcriptase (No RT) was used as a negative
control and the circMYC was used as a positive control to
localize the appearance of circMYC. The treatment with
RNase R and without circMYC overexpression was send
out for Sanger sequencing with the primer as 5'-CATCAG
CACAACTACGCAGC-3".

Overexpression and knockdown of circMYC

¢DNA of MYC was amplified via PCR from the human
c¢DNA using the following primers: F 5'-GGTCAGAGTC
TGGATCACCTTC-3" and R 5'-ACTGTCCAACTTGA
CCCTCTTG-3'. After the PCR amplification and purifica-
tion, the ¢cDNA part that undergoes circularization was
cloned into the pcDNA3.1 circRNA mini vector which in-
duces circularization of mRNA via the Gibson cloning [41].
MDA-MB-231 cells were transfected with the control or
circMYC plasmid for 6 h by the JetPRIME™ reagent from
Polyplus-transfection®. After 6 h of the transfection, the cells
were further cultured with high-glucose DMEM media
(GenDEPOT).

The MDA-MB-231 cells were plated onto TTP culture
dishes. The cells were transfected with control siRNA or
siRNA specific targets the junction of circular MYC for 8
h (INTERFERin® from PolyPlus-transfection®). The siRNA
sequence is 5° ACAGUGUCAGAGUCUGGAUCACCTT
3'+ 5" AAGGUGAUCCAGACUCUGACACUGUCC 3'-.
One day after the siRNA transfection, the cells were
further transfected with control or circMYC plasmids for
6 h (JetPRIME™ from PolyPlus-transfection®).

Western blot, RT-qPCR, and WST-1 cell proliferation

After 1 day with overexpression of circMYC, the RIPA buf-
fer with protease inhibitor (Thermo Scientific) from Boston
BioProducts was used to harvest protein lysates from the
transfected MBA-MD231 cells. The cell lysate was centri-
fuged at 13,000¢ for 5 min followed by the removal of pre-
cipitates. The supernatant was subjected to BCA protein
assay to determine the protein concentration. For western
blot analysis, 30 pg of protein was used.

The transfected cells were harvested, and the RNAs
were purified at day 4 via the TRIzol™-chloroform ex-
traction. For one well in a six-well plate, 500 uL of
TRIzol™ was added into the well to lyse cells and
stabilize RNAs, followed by addition of chloroform.
The upper layer of the phenol-chloroform was used
for column-based RNA purification (RNeasy from
Qiagen). One microgram of total RNA was used for
c¢DNA synthesis by iScript™ cDNA synthesis kit from
Bio-Rad, which contains both oligo dT and random
hexamers. The levels of circMYC were detected by
the following divergent primers which detect only cir-
cularized MYC transcript using RT-qPCR: F 5'-CAT-
CAGCACAACTACGCAGC-3" and R 5'-TCCAG
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CAGAAGGTGATCCAG-3". 18s rRNA was used as
internal control: F 5'-GTAACCCGTTGAACCCCATT
-3" and R 5'-CCATCCAATCGGTAGTAGCG-3'. For
the cell proliferation assay, WST-1 from Sigma Al-
drich was used from days 1, 2, 3, and 4.

Associations between drug response and expression of
circRNAs

We analyzed matched cell lines with both circRNA profil-
ing and drug response data. For each individual circRNA,
we first classified the cell lines into two groups based on
the expression pattern of the circRNAs, based on if it
exceeded the median value of backsplicing reads of all cell
lines. We applied the Wilcoxon rank-sum test to identify
individual drugs associated with the circRNA expression
profile and quantify the difference in the mean AUC be-
tween the two groups. To correct the outcome of multiple
tests, we used the Benjamini-Hochberg corrections. We
defined a significant association between drug sensitivity
and the circRNA profile with FDR < 0.05.

Results

Expression landscape of circRNAs across ~ 1000 cancer
cell lines

To systematically investigate the global circRNA landscape
in cancer cell lines, we combined four well-established,
user-friendly computational algorithms [13, 32], CIRI2
[33], Find_circ [3], CircExplorer2 [34], and CircRNA_
finder [35], to identify backsplice-spanning reads from 935
cancer cell lines across 22 cancer lineages. The number of
cell lines in each cancer lineage and names of the cancer
lineages are listed in Additional file 1: Table S1. Since dif-
ferent algorithms identified varied numbers of circRNAs
[42] (Additional file 1: Figure S1A), we required the cir-
cRNAs to be supported by at least two methods with back-
splicing reads =2, and we identified in total 92,589
circRNAs (Fig. 1la and Additional file 1: Figure S1B). In
each cancer cell line, we identified an average of 374 cir-
cRNAs, ranging from 78 in WSU-DLCL, a B cell lymph-
oma cell line (DLBC), to 1341 in JHUEM-1, an
endometrial adenocarcinoma cell line (UCEC, Fig. 1b). For
example, MCF7, the most studied human breast cancer cell
line (BRCA), contained 379 circRNAs, and MDA-MB-231,
a triple-negative breast cancer cell line, contained 226
circRNAs, while A549, the cancer cell line most widely
used for non-small cell lung cancer research, contained
893 circRNAs.

We further examined the expression pattern of circRNAs
across cancer cell lineages. We identified 1108 circRNAs
(1.20%) ubiquitously expressed in > 15 cancer lineages. For
example, circDNMT1 derived from DNMT1, which is a
DNA methyltransferase with essential roles in mammalian
development [43], was expressed in all the lineages.
CircNotch2 derived from Notch2, an important therapeutic
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target in cancer treatment [44], was also expressed in all
the lineages. Interestingly, 69,656 (75.2%) of the circRNAs
were expressed exclusively in one cancer lineage, indicating
that circRNAs are more likely to be lineage-specific (Fig. 1c).
The lineage-specific circRNAs ranged from 627 (22.9%) in
thyroid carcinoma to 16,533 (54.1%) in lung squamous cell
carcinoma. Notably, these lineage-specific circRNAs cover
a number of cancer-related genes. For example, circPIK3CB
is specifically identified in the colon adenocarcinoma cancer
lineage. PIK3CB is involved in the phosphoinositide 3-
kinase (PI3K) pathway, which is frequently genetically
altered in human colon and rectal cancer and has been
identified as a potential therapeutic target [45]. Another
attractive therapeutic target is ROS1, a proto-oncogene
receptor tyrosine kinase [46]; we found circROS1 to be
specifically identified in the sarcoma. This lineage-specific
circRNA pattern can indicate important clues about its
physiological function.

To examine whether lineage-specific circRNAs are in-
troduced by their linear mRNA genes, we obtained
lineage-specific mRNA genes as previously described
[36]. We observed that only 0.02 to 6.66% of lineage-
specific circRNAs are derived from the lineage-specific
mRNA genes (Fig. 1d), suggesting that lineage-specific
circRNAs are independent from the expression of their
parental mRNA gene. We also examined the correlation
between the average number of lineage-specific cir-
cRNAs and the average total number of mappable reads
across cancer lineages and observed no significant cor-
relation (Rs =0.08 and p = 0.70; Additional file 1: Figure
S1C), indicating that the coverage is not a potential bias
in identifying lineage-specific circRNAs.

Identification of key genes and biological processes for
the biogenesis of circRNAs

The biogenesis of circRNAs is regulated by multiple fac-
tors, including cis-regulatory elements and trans-acting
proteins [4]; however, the underlying mechanisms are
still not fully understood. Here, we take advantage of
this large-scale circRNA profile to identify key regulators
in circRNA biogenesis. We focused on several groups of
genes that have been reported as being involved in cir-
cRNA biogenesis, including spliceosome factors (n = 51)
[47], 3" end processing factors (n=22) [47], RNA heli-
cases (n =71) [8], and a subset of RNA-binding proteins
with potential effects on the biogenesis of circRNAs
(RBPs, n =104) [48]. Nine genes were significantly corre-
lated with total backsplicing reads across all cancer cell
lines (|Rs| > 0.3, FDR < 0.05), suggesting their significant
roles in the biogenesis of circRNAs (Fig. 2a). We also
identified RBPs negatively correlated with total backspli-
cing reads, which is consistent with a previous study [7].
Most of these genes showed strong positive correlations
across multiple cancer lineages (Fig. 2b). For example,
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QKI showed positive correlation with the biogenesis To further explore other potential biological processes
of circRNAs in six cancer lineages (Fig. 2b). This is involved in circRNA biogenesis, we performed gene set
consistent with the previous discovery that upregula- enrichment analysis (GSEA) using 50 “hallmark” gene
tion of QKI can induce de novo circRNA biogenesis  sets from the Molecular Signature Database that repre-

in breast cancer cells [6].

sent major biological processes [37]. All protein-coding
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may contribute to the biogenesis of circRNAs, such as
EMT, which is consistent with a previous report [6]
(Fig. 2¢). Indeed, the number of circRNA reads is highly

genes (n=23,714) available in the gene expression
matrix of CCLE are used as background for GSEA. We
identified 16 significant related biological processes that
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correlated with EMT score based on canonical EMT
markers [31] (Spearman correlation Rs=0.37, p<2.2 x
10~ '% Additional file 1: Figure S2A). The number of cir-
cRNA reads is also significantly higher in cancer cell
lines with higher EMT score (Wilcoxon rank-sum test
p=55x10"' Additional file 1: Figure S2B). Interest-
ingly, we also found that the TGF-} pathway, an import-
ant signaling pathway in cancer development [49], is
significantly enriched in cancer lineages with high num-
bers of backsplicing reads (Fig. 2d). We treated the A549
human lung carcinoma cells with TGF- and confirmed
the activation of TGF-B signaling by the induction of
Collagen 1 (Fig. 2e, left panel). Indeed, the total num-
ber of backsplicing reads increased significantly with
TGEF-p treatment (Student’s ¢ test, p=0.022; Fig. 2e,
right panel). Treatment with SIS3, a TGF-f signaling
inhibitor [50], markedly reduced the induction of
COL1A1 and decreased the total number of backspli-
cing reads, suggesting that SIS3 reversed the TGF-p-
mediated enhancement of circRNA formation (Stu-
dent’s ¢ test, p=0.048; Fig. 2e, right panel). This is
consistent with a previous study using TGF-B treat-
ment to induce epithelial-mesenchymal transition
(EMT), which increased the circRNA abundance
(Additional file 1: Figure S2C) [6]. Taken together,
our data further confirmed that activation of the
TGEF-p signaling pathway could promote the biogen-
esis of circRNAs.

Characterization of circRNAs generated from clinically
actionable genes

Clinically actionable genes in cancer research are genes
and/or associated genes that have been approved by the
US Food and Drug Administration as drug targets for
cancer therapy [46]. We identified 59 (43.7%) clinically
actionable genes that could form circRNAs in at least
one cancer cell line (Fig. 3a). For example, Notch2, the
key gene in the notch signaling pathway [51], has had
circRNAs identified in 349 (37.3%) cancer cell lines.
MYC, an oncogene that contributes to the progression
of many human cancers, has had circRNAs identified in
208 (22.2%) cancer cell lines. Interestingly, clinically
actionable genes are more likely to generate circRNAs
(43.7% vs. 19.4%, Pearson’s chi-squared test p < 2.2 x
107 ' Additional file 1: Figure S3A), and this enrich-
ment is not introduced by gene length (permutation
test, p <1 x 10 %), intron length (p <1 x 10”*), number
of exons (p < 1x 10~ %), or gene expression level (p <1 x
10~ %, Fig. 3b). To further understand the enrichment of
circRNAs in clinically actionable genes, we examined a
batch of experimentally validated RNA-binding protein
(RBP) binding peaks [40] because RBP could potentially
affect the biogenesis of circRNA [48]. We found clinic-
ally actionable genes have more RBP binding sites
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(median 853 vs. 210, Wilcoxon rank-sum test p < 2.2 x
10~ '%; Additional file 1: Figure S3B), and this is not in-
troduced by confounding factors of gene length (per-
mutation test, p <1 x 10~ %), exon length (p<1x10™%),
or number of exons (p<1x10~% Fig. 3c). This result
suggested that the enrichment of circRNAs in clinically
actionable genes is possibly due to the enrichment of
RBP binding sites.

Functional effects and drug response of circMYC in

cancer

To further explore the functional effects of circRNAs in
human cancer, we focused on circMYC (chr8:
128752711-128752871), which is derived from one of
the most important cancer genes. Interestingly, circMYC
is significantly more abundant than its paralogous genes
(22.2% vs. circMYCL 2.4% and circMYCN 0.2%, Pear-
son’s chi-squared test p<2.2x 10”6, Additional file 1:
Figure S4A). We found that both the MYC mRNA level
(Student’s ¢ test p<2.2x 10" '®) and protein level (Stu-
dent’s ¢ test p=0.005) are significantly higher in the
group with circMYC expression (Fig. 4a). To further
experimentally verify the effect of circMYC on MYC
protein expression, we overexpressed circMYC by
transferring a synthetic circMYC expression vector
into MDA-MB-231, a human breast cancer cell line.
We observed the signal for circMYC with or without
treatment of RNase R (Additional file 1: Figure S4B),
and the Sanger sequencing further confirmed that the
PCR products spanned the circular junction of predict
circMYC (Fig. 4b), suggesting that our circMYC is a
bona fide circRNA. We then confirmed the overex-
pression of circMYC by using divergent primers that
specifically amplified the backspliced sites of circMYC
(Fig. 4c, upper panel). We observed the overexpres-
sion of MYC mRNA (Fig. 4c, lower panel) and
protein (Additional file 1: Figure S4C) upon overex-
pression of circMYC. Furthermore, the overexpression
of circMYC led to a significant increase in cell prolif-
eration, compared to cells transfected with a control
vector (Fig. 4d). SiIRNA knockdown of circRNA led to
a decrease in cell proliferation, confirmed the specific
effects of overexpressed circMYC (Fig. 4d). Taken to-
gether, these results suggest that circMYC play sig-
nificant roles in cell proliferation, potentially through
mediating MYC gene.

We further explored the effects of circMYC on drug
response from Genomics of Drug Sensitivity in Cancer
(GDSC) with 265 drugs for 644 human cancer cell lines
[27], and Cancer Therapeutics Response Portal (CTRP)
with 481 drugs for 860 cancer cell lines [28]. CircMYC
are significantly associated with drug response of mul-
tiple drugs, including Belinostat, THZ-2-102-1, Cetuxi-
mab among the top ones in GDSC (Fig. 4e). Among
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these significantly associated drugs, Belinostat, a HDAC  multiple adjustment, FDR = 0.0016, Fig. 4f) and CTRP
inhibitor, showed consistent sensitive with circMYC in  (FDR =0.0057, Fig. 4f). We also observed that circMYC
both datasets of GDSC (Wilcoxon rank-sum test with  expression was consistently sensitive towards treatment
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with Vorinostat, another HDAC inhibitor in both data-
sets of CTRP (FDR = 0.0032) and GDSC (FDR = 0.00048,
Additional file 1: Figure S4D). However, due to the na-
ture of drug response data with large spread [19, 52],
further in vitro and in vivo investigation is necessary to
select appropriate treatment options. Our results
highlighted the possibility that circMYC generated from
MYC may affect drug response in ways that are beyond

known mechanisms, including genomic variation [23]
and transcriptomic variation [22].

Therapeutic liability of circRNAs

We further performed systematic analysis to examine
the effects of circRNAs on drug response from the
GDSC drug dataset. We identified 4564 circRNA-drug
pairs with statistically significant association (false
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discovery rate [FDR] <0.05). For example, cellular
sensitivity to the drug Vorinostat, a HDAC inhibitor, is
positively associated with 48 circRNAs and negatively as-
sociated with 25 circRNAs (Fig. 5a). We focused on drugs
highly associated with circRNAs (#>30) and examined
the pharmaceutical targets of these drugs. Interestingly,
we found that the top drug category is drugs that target
chromatin histone acetylation. For example, 6 of 11
HDAC inhibitors are associated with circRNAs (Fig. 5a).
To further validate this finding, we examined the effects of
circRNAs on drug sensitivity using another independent
dataset from CCLE, which included 24 drugs on 468 can-
cer cell lines [19]. We identified 343 significantly associ-
ated circRNA-drug pairs (FDR <0.05). The top drug
associated with circRNAs is Panobinostat, a HDAC inhibi-
tor (Fig. 5b). The high correlations between circRNAs and
HDAC inhibitors are also identified in drug response data-
base of CTRP (Additional file 1: Figure S5). For instance,
Vorinostat, a HDAC inhibitor, is positively associated with
100 circRNAs and negatively associated with 48 circRNAs
in CTRP. This consistency highlighted the close link
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between chromatin histone acetylation inhibition drugs
and circRNA expression.

A user-friendly data portal for integrative analysis of
circRNAs with multi-omics data in cancer cell lines

To facilitate the exploration of the function of circRNAs
across ~ 1000 cancer cell lines by the wider research
community, we developed a user-friendly data portal,
CircRNAs in cancer cell lines (CircRiC, https://hanlab.
uth.edu/cRic). In this portal, we provide circRNA ex-
pression data and the association between circRNA ex-
pression and multi-omic data, including mRNA
expression, proteomic, mutation, and drug sensitivity
data. CircRiC enables users to examine the features of
circRNAs in cancer cell lines in a flexible and interactive
way. CircRiC provides four interactive modules: expres-
sion landscape, biogenesis, drug response, and integra-
tive analysis (Fig. 6a). The expression landscape module
provides the circRNA expression profile across all cancer
cell lines (Fig. 6b, Additional file 1: Figure S6A). The
biogenesis module shows the genome-wide correlation
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of the expression of individual genes with the total back-
splicing reads (Fig. 6¢, Additional file 1: Figure S6B),
which indicates the potential role of genes in circRNA
biogenesis. The drug response module provides the asso-
ciation between circRNAs and drug sensitivity using
GDSC, CCLE, and CTRP drug response datasets (Fig. 6d,
Additional file 1: Figure S6C). In the integrative analysis
model, we systematically analyze the associations be-
tween circRNAs and mRNA, proteins, or mutations. We
identified 2649 significant circRNA—protein associations,
9604 circRNA-mRNA associations, and 117,258 cir-
cRNA-mutation associations (Fig. 6e). With the module,
users can easily examine whether one circRNA is associ-
ated with various types of molecular data. For example,
circKRT19 expression derived from KRT19, a notch
signaling regulator in breast cancer [53], is significantly
associated with higher ERBB3 expression in mRNA
(Wilcoxon rank-sum test, FDR < 2.2 x 107 1°) and pro-
tein levels (Wilcoxon rank-sum test, FDR = 7.91 x 10~ 1)
(Additional file 1: Figure S6D). The expression of
circKRT19 is negatively associated with ERBB3 mutation
(FDR = 6.66 x 10 '2) (Additional file 1: Figure S6D), sug-
gesting latent mutual exclusivity. ERBB3 is a member of
the receptor tyrosine kinase family and is involved in the
development of numerous types of human cancer [54].
This result has implicated circKRT19 in the regulation
of ERBB3 function and in cancer development. In
addition, we provide predicted miRNA- and RNA-
binding protein binding sites for each circRNA. In
summary, CircRiC provides multiple layers of circRNA-
related data for browsing, analyzing, visualizing, and
downloading. This valuable resource will significantly
contribute to research on circRNAs.

Discussion

CircRNAs have been found to be ubiquitous in human
cancers [12, 55]. Using large cancer cell-line datasets, we
systematically characterized circRNA profiles across mul-
tiple cancer lineages. Different algorithms adopt distinct
strategies to detect backsplicing events (where circular
RNAs are produced) from RNA sequencing reads [56, 57].
In particular, CIRI2 examines the paired chiastic clipping
signals from the mapping information, while Find_circ pre-
dicts the backsplicing events from the first and last 20-bp
anchors of unmapped reads. In addition, CircExplorer2
and CircRNA_finder both employed split-alignment
aligners to parse backsplicing events. These algorithms
have been comprehensively evaluated in previous litera-
tures [32, 33, 56]. As expected, these algorithms yielded di-
vergent circRNA predictions. Therefore, we combined the
outputs of these four tools to reduce false positive predic-
tions of circRNAs. We found that the majority of circRNAs
can only be identified in one cancer lineage, and the
lineage specificity is independent from the parental mRNA
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gene expression. This result revealed that circRNAs are
specifically generated in different cancer lineages, which
may further contribute to tumor heterogeneity.

We further explored the key genes involved in circRNA
biogenesis. We identified 9 RBPs that are significantly asso-
ciated with global circRNA biogenesis, which is consistent
with a previous study, that RBPs are key regulators of
tissue-specific pattern in circRNAs [7]. Other than known
factor QKI, we identified several novel RBPs that could po-
tentially contribute to promote circRNA biogenesis. Besides
individual factors, we also confirmed TGEF- signaling to be
involved in circRNA formation as previously described [6].

Furthermore, we observed that clinically actionable
genes are more likely to generate circRNAs. This is pos-
sibly due to the enrichment of RBP binding sites, which
is independent from gene length, intron length, number
of exons, or gene expression level. Further investigation
is necessary to understand the underlying mechanism
and clinical utility of the enrichment of circRNAs in
clinically actionable genes. Among those clinically ac-
tionable genes, we demonstrated the functional roles of
circMYC to increase cell proliferation through mediating
MYC gene, a key oncogene across multiple cancer types
[58]. Our results suggest a new regulatory layer of the
MYC gene through circRNAs and highlight the signifi-
cant roles of circMYC in tumorigenesis.

CircRNAs may also affect the efficacy of drug treatments.
In this study, we validated the drug response through mul-
tiple large-scale pharmacologic data. In particular, we ob-
served that the circMYC expression is correlated with the
drug response of Belinostat and Vorinostat, two HDAC in-
hibitors, in both GDSC and CTRP datasets. We observed
strong association between the response to drugs that tar-
get chromatin histone acetylation and the expression of
circRNAs. Previous studies showed a significant association
between circRNA abundance and chromatin-bound [5],
which might explain our observations. Further investiga-
tion is necessary to understand the connections between
circRNAs and chromatin epigenetic changes.

CCLE generated RNA-seq data based on polyA-selection
library, which may not be the ideal library preparation strat-
egy for circRNA. However, CCLE RNA-seq data represents
the only resource in such a large magnitude, and we did de-
tect a considerate number of circRNAs across cell lines
(median number 339, and maximum number 1341). Fur-
thermore, the recent release of next-generation CCLE facili-
tates the development of novel therapeutic strategies [19].
With the appropriate RNA library, sequence depth, and
read length, it is possible to identify more circRNAs [56],
but it is appropriate to compare the same circRNAs across
cell lines instead of comparing different circRNAs.

To facilitate circRNA research in the community, we
constructed an interactive and user-friendly data portal,
CircRiC, which provides comprehensive analysis of
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circRNAs with multidimensional data across ~ 1000
cancer cell lines. Our data resource is a complement to
MiOncoCirc, which covered circRNA expression from
more than 2000 tumor samples and a few cancer cell
lines (n =28) [17]. We expect that CircRic will help re-
searchers to better select the appropriate cancer cell
lines to understand the role of circRNAs in cancers.

Conclusions

In conclusion, we systematically characterized circRNAs
in ~ 1000 cancer cell lines and demonstrated the lineage
specificity of circRNAs across multiple human cancer
lineages. We identified potential factors involved in cir-
cRNA biogenesis and confirmed that TGF-$ signaling
promotes circRNA formation. We observed that clinic-
ally actionable genes are likely to generate more cir-
cRNAs, potentially due to the enrichment of RBP
binding sites. We further characterized the functions of
circMYC in promoting cell proliferation and revealed
the potential link between circRNA expression and
pharmaceutical profiling. Finally, we developed a user-
friendly data portal CircRic that integrates our data to
benefit the research community.
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