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Abstract

We introduce quanTIseq, a method to quantify the fractions of ten immune cell types from bulk RNA-sequencing
data. quanTIseq was extensively validated in blood and tumor samples using simulated, flow cytometry, and
immunohistochemistry data.
quanTIseq analysis of 8000 tumor samples revealed that cytotoxic T cell infiltration is more strongly associated
with the activation of the CXCR3/CXCL9 axis than with mutational load and that deconvolution-based cell scores
have prognostic value in several solid cancers. Finally, we used quanTIseq to show how kinase inhibitors
modulate the immune contexture and to reveal immune-cell types that underlie differential patients’ responses
to checkpoint blockers.

Availability: quanTIseq is available at http://icbi.at/quantiseq.
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Background
Cancer immunotherapy with antibodies targeting immune
checkpoints has shown durable benefit and even curative
potential in various cancers [1, 2]. As only a fraction of pa-
tients respond to immune checkpoint blockers, efforts are
underway to identify predictive markers for cancer
immunotherapy and mechanistic rationale for combination
therapies. We have previously shown that the immune
contexture—the type and density of tumor-infiltrating im-
mune cells—has a prognostic value in colorectal cancer
(CRC) [3]. Later, the association between the densities of
tumor-infiltrating immune cells and patient overall survival
was confirmed in different primary and metastatic cancers
[4]. In particular, cytotoxic CD8+ T cells, which can

specifically recognize and kill tumor cells, are associated
with a good clinical outcome in different cancer types [5]
and have a pivotal role in anti-PD1 immunotherapy [1].
Therefore, the quantification of the immune contexture of
human tumors can not only unveil prognostic markers,
but also provide relevant information for the prediction of
response to checkpoint blockade.
Moreover, the quantification of the immune contexture

of archived tumor samples holds the promise to identify
drugs having additive or synergistic potential with immune
checkpoint blockers. For example, since certain chemother-
apeutic drugs induce immunogenic cell death [6], the ana-
lysis of a large number of samples could pinpoint patient
subgroups that would benefit from the combination with
immune checkpoint blockers. Similarly, as a number of tar-
geted anticancer agents exhibit immunostimulatory activity
[6], the quantification of the immune contexture could pro-
vide mechanistic rationale for the design of combination
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therapies. However, comprehensive and quantitative im-
munological characterization of tumors in a large number
of clinical samples is currently hampered by the lack of sim-
ple and efficient methods. Cutting-edge technologies like
single-cell RNA sequencing and multi-parametric flow or
mass cytometry are technically and logistically challenging
and cannot be applied to archived samples. Multiplexed im-
munohistochemistry (IHC) [7] or immunofluorescence (IF)
assays can be performed only in specialized labs and require
sophisticated equipment and extensive optimization of pro-
tocols for specific cancer entities. Moreover, manual and
semi-automatic image analysis is required, which is highly
time consuming and laborious. For an overview of imaging
techniques for quantitative analysis of the tumor micro-
environment, we refer to two recent reviews [8, 9].
Computational methods for quantitative immunopheno-

typing of tumors from bulk RNA sequencing (RNA-seq)
data hold potential for efficient and low-cost profiling of a
large number of samples, but currently suffer from several
limitations. Bioinformatics methods based on immune-
cell-specific markers like MCPcounter [10], xCell [11], or
other approaches based on gene set enrichment analysis
(GSEA) [12–14] compute only semi-quantitative scores
that predict the enrichment of specific immune cell types
in a sample, but that cannot be neither interpreted as cell
fractions nor compared between cell types [15]. Deconvolu-
tion algorithms (reviewed in [16]) enable to quantitatively
estimate the proportions of the cell types of interest. How-
ever, currently available deconvolution algorithms for
immune cell quantification have several drawbacks [16].
For instance, CIBERSORT, a popular method based on
support-vector regression for the deconvolution of 22 im-
mune cell phenotypes, can only infer cell fractions relative
to the total immune cell population and has been devel-
oped and validated using microarray data [17]. TIMER per-
forms deconvolution of six immune cell types, but the
results cannot be interpreted directly as cell fractions, nor
compared across different immune cell types and data sets
[18]. EPIC, a deconvolution method recently developed
using RNA-seq data, estimates absolute fractions referred
to the whole cell mixture, but does not consider immune
cells relevant for cancer immunology like regulatory T cells
(Treg) cells, dendritic cells, and classically (M1) and alterna-
tively (M2) activated macrophages [19]. Hence, there is a
need for a validated deconvolution-based algorithm that es-
timates absolute proportions of relevant immune cell types
from RNA-seq data, thereby enabling inter-sample as well
as intra-sample comparisons.
We therefore developed quanTIseq, a computational

pipeline for the characterization of the tumor immune
contexture using bulk RNA-seq data and imaging data
from whole tissue slides. quanTIseq can quantify the abso-
lute fractions of immune cells using a novel deconvolution
approach and performs in silico multiplexed

immunodetection of the same cell types by integrating the
deconvolution results with total cell densities extracted
from images of IF, IHC, or hematoxylin and eosin (H&E)-
stained tissue slides. We performed extensive validation
using simulated data, published data sets, and de novo
generated flow cytometry data. In addition, we validated
quanTIseq using RNA-seq data and histological images
from IHC/IF-stained slides from three independent cancer
data sets. We then applied quanTIseq to analyze over
8000 solid tumors of The Cancer Genome Atlas (TCGA)
[20] and show that the activation of the CXCR3/CXCL9
axis, rather than the mutational load, is associated with
the infiltration of intratumoral cytotoxic T cells. Moreover,
we observe highly heterogeneous immune contextures
across and within tumors and show that the immunoscore
and a T cell/B cell score computed from quanTIseq de-
convolution results have prognostic values in several solid
cancers. Finally, we demonstrate that the immune contex-
ture of human tumors is pharmacologically modulated by
kinase inhibitors and show that quanTIseq can be used to
shed light on the features of the tumor immune contex-
ture that underlie differential patients’ responses to check-
point blockade.

Methods
Collection of RNA-seq data from immune cell types and
tumor cell lines
To build the signature matrix, we collected 51 data sets
generated from paired-end Illumina RNA-seq of
blood-derived immune cells (Additional file 1). In addition,
we downloaded from the Cancer Genomics Hub (CGHub,
accessed on February 2016) RNA-seq data from a breast
(G41726.MCF7.5) and a colorectal (G27202.SW480.1) can-
cer cell line. BAM files of mapped reads gathered from the
CGHub were converted to FASTQ with samtools [21],
whereas SRA files downloaded from the Sequence Read
Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/) were
converted to FASTQ with the “fastq-dump” function of the
SRAToolkit.

RNA-seq data pre-processing
FASTQ files of RNA-seq reads were pre-processed with
Trimmomatic [22] to remove adapter sequences and
read ends with Phred quality scores lower than 20, to
discard reads shorter than 36 bp, and to trim long reads
to a maximum length of 50 bp. This analysis is imple-
mented in the “Preprocessing” module of quanTIseq
(step 1 in Fig. 1c), which also allows selecting different
parameters for data preprocessing.

Quantification of gene expression and normalization
The pre-processed RNA-seq reads were analyzed with Kal-
listo [23] to generate gene counts and transcripts per mil-
lions (TPM) using the “hg19_M_rCRS” human reference.
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For single-end data, the following Kallisto options were
used: “--single -l 50 -s 20”. After gene expression quantifica-
tion, gene names were re-annotated to updated gene sym-
bols defined by the HUGO Gene Nomenclature
Committee (http://www.genenames.org, annotations down-
loaded on April 2017). In case of duplicates, the median
expression per gene symbol was considered. The final ex-
pression value xgl for each gene g in library l was
computed from TPM with the following formula:

xgl ¼ TPMgl ∙106P
iTPMil

ð1Þ

For microarray data, before the normalization of Eq. 1,
expression data were transformed from logarithmic to
natural scale (when needed) and quantile-normalized.
TPM can be computed from RNA-seq reads with the

“Gene Expression Quantification” module of quanTIseq
(step 2 in Fig. 1c). Gene re-annotation and expression
normalization are performed by the quanTIseq “Deconvo-
lution” module before deconvolution (step 3 in Fig. 1c),
and quantile normalization is performed if the “--arrays”
option is set to “TRUE”.

Generation of the simulated data sets
We simulated RNA-seq data from breast tumors with
different purity values and immune infiltrates by mixing
pre-processed reads from immune cell types and from a
tumor cell line (G41726.MCF7.5) of the RNA-seq com-
pendium. We simulated 100 different immune cell mix-
tures by sampling the cell fractions from a uniform
distribution in the [0–1] interval. The cell fractions were
combined with 11 different tumor purity scenarios:
0:10:100% tumor purity, defined as the fraction of read

a b c

d e

Fig. 1 quanTIseq method and validation based on blood-cell mixtures. a quanTIseq characterizes the immune contexture of human tumors from
expression and imaging data. Cell fractions are estimated from expression data and then scaled to cell densities (cells/mm2) using total cell densities
extracted from imaging data. b Heatmap of quanTIseq signature matrix, with z scores computed from log2(TPM+1) expression values of the signature
genes. c The quanTIseq pipeline consists of three modules that perform (1) pre-processing of paired- or single-end RNA-seq reads in FASTQ format; (2)
quantification of gene expression as transcripts-per-millions (TPM) and gene counts; and (3) deconvolution of cell fractions and scaling to cell densities
considering total cells per mm2 derived from imaging data. The analysis can be initiated at any step. Optional files are shown in grey. Validation of
quanTIseq with RNA-seq data from blood-derived immune cell mixtures generated in [46] (d) and in this study (e). Deconvolution performance was
assessed with Pearson’s correlation (r) and root-mean-square error (RMSE) using flow cytometry estimates as ground truth. The grey and blue lines
represent the linear fit and the “x = y” line, respectively. B, B cells; CD4, non-regulatory CD4+ T cells; CD8, CD8+ T cells; DC, dendritic cells; M1, classically
activated macrophages; M2, alternatively activated macrophages; Mono, monocytes; Neu, neutrophils; NK, natural killer cells; T, T cells; Treg, regulatory
T cells
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pairs from the tumor cell line over total read pairs. Each
simulated data set consisted of one million paired-end
reads. In addition, for the data set with 60% purity
(which is the minimum value considered by the TCGA
consortium for tumor specimen inclusion [24]), we
simulated different sequencing depths, namely, 1, 2, 5,
10, 20, 50, and 100 million read pairs. In total, we gener-
ated 1700 simulated RNA-seq data sets.

Generation of the TIL10 signature matrix
An expression matrix was generated from the compendium
of RNA-seq data as described in “RNA-seq data pre-pro-
cessing” and “Quantification of gene expression and
normalization” and consisted in 19,423 genes and 53 im-
mune and tumor cell libraries. From this matrix, we filtered
out the genes that were not detected in at least two im-
mune libraries and selected the genes specific for each cell
type considering the criteria described in the following.
Gene expression is here considered in terms of normalized
values xgl (Eq. 1) on a natural scale, if not differently stated.

Cell-specific expression
We quantized the expression of each gene into three
bins representing low, medium, and high expression,
computed as in [25]. For each immune cell type, we se-
lected the genes having (i) high quantized expression in
all libraries belonging to the considered immune cell
type and (ii) low or medium quantized expression in all
other libraries.

Expression in tumors
We filtered the signature genes that were highly expressed
also in tumor cells by discarding the genes having a me-
dian log2 expression larger than 7 in all non-hematopoietic
cancer cell lines assayed in the Cancer Cell Line
Encyclopedia (CCLE) [26], as done in [17]. Moreover,
RNA-seq data from 8243 TCGA solid tumors were used
to remove genes that provide little support for bulk-tissue
deconvolution because their expression in tumor samples
is generally low or null. More precisely, we discarded the
genes having an average expression across all TCGA sam-
ples lower than 1 TPM.

Specificity of marker genes
Since signature genes specific for a certain cell type
should not be associated to another cell type, we consid-
ered a compendium of 489 gene sets specific for 64 cell
types recently proposed in [11] and removed the signa-
ture genes that were listed in a gene set specific for an-
other cell type. CD4+ T cell gene sets were not used to
filter Treg cell signature genes, as the CD4+ T cell popu-
lation may contain bona fide Treg cell expression
markers such like the forkhead box P3 (FOXP3).

Range of expression
As genes with high expression can bias deconvolution re-
sults, we excluded the genes whose expression exceeded
700 TPM.

Correlation with true cell fractions
The 1700 simulated RNA-seq data sets (see the “Gener-
ation of the simulated data sets” section) were then used to
identify the signature genes that provide valuable informa-
tion over cell fractions and are more robust to the sequen-
cing depth and unknown tumor content. For each cell type,
we selected the genes whose expression levels had a correl-
ation with the true cell fractions equal or greater than 0.6.

Restricted expression
We considered four external expression data sets from
enriched/purified immune cells: two microarray data sets
(GEO accession: GSE28490 and GSE2849) [27], an
RNA-seq data set [28], and a microarray compendium that
was used to build the CIBERSORT LM22 signature matrix
[17]. All data sets were preprocessed and normalized as ex-
plained in the previous paragraphs. For each gene g specific
for a cell type c in the signature matrix, we computed the
ratio Rgd between the median expression across all libraries
in data set d belonging to the cell type c and the median ex-
pression across all libraries in data set d not belonging to
the cell type c. For each cell type, the top 30 ranked signa-
ture genes (or less, when not available) with mediand(Rgd) ≥
2 were selected for the final signature matrix. When pro-
cessing the Treg signature genes, the data sets belonging to
CD4+ T cells were not considered. Treg signature genes
were further filtered with a similar approach, but consider-
ing the RNA-seq data of circulating CD4+ T and Treg cells
from and selecting only the genes with mediand(Rgd) ≥ 1.
The final signature matrix TIL10 (Additional file 1) was

built considering the 170 genes satisfying all the criteria re-
ported above. The expression profile of each cell type c was
computed as the median of the expression values xgl over
all libraries belonging to that cell type:

xgc ¼ medianlϵc xgl
� �

For the analysis of RNA-seq data, quanTIseq further re-
duces this signature matrix by removing a manually curated
list of genes that showed a variable expression in the con-
sidered data sets: CD36, CSTA, NRGN, C5AR2, CEP19,
CYP4F3, DOCK5, HAL, LRRK2, LY96, NINJ2, PPP1R3B,
TECPR2, TLR1, TLR4, TMEM154, and CD248. This default
signature considered by quanTIseq for the analysis of
RNA-seq data consists of 153 genes and has a lower condi-
tion number than the full TIL10 signature (6.73 compared
to 7.45), confirming its higher cell specificity. We advise
using the full TIL10 matrix (--rmgenes=“none”) for the
analysis of microarray data, as they often lack some
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signature genes, and the reduced matrix (--rmgenes= “de-
fault”) for RNA-seq data. Alternatively, the “rmgenes” op-
tion allows specifying a custom list of signature genes to be
disregarded (see quanTIseq manual).

Deconvolution
The quanTIseq deconvolution module takes as input:

� A mixture matrix Mgj of expression values over g =
1,… , I genes and j = 1,… , J samples

� A signature matrix Sgc of expression values over g =
1,… , G signature genes and c = 1,… , C cell types

After re-annotation of gene symbols and normalization
of the mixture matrix (see the “Quantification of gene
expression and normalization” section), quanTIseq per-
forms deconvolution of the unknown cell fractions Fcj
over C immune cell types and J samples. For each sam-
ple j, the following system of equations is solved to esti-
mate the cell fractions Fc (the subscript j is omitted):

Mgjg∈G� ¼ Sgjg∈G� � Fc

where G∗ is the set of signature genes that are present in
the mixture matrix. quanTIseq solves this inverse prob-
lem using constrained least squares regression, i.e., by
minimizing the formula ‖S × F −M‖2, imposing the
constraints:

Fc≥0 for c ¼ 1;…;C

XC
c¼1

Fc≤1

To account for the differences in the average mRNA
content per cell type, which might otherwise bias decon-
volution results [19, 29–31], the estimated cell fractions
are normalized by a cell-type-specific scaling factor nc:

F 0
c ¼

Fc

nc

Then, the cell fractions are scaled so to sum up to the
original percentage of total cells, as:

Fc″ ¼ F 0
c � f
f 0

where

f ¼
XC
c¼1

Fc

f 0 ¼
XC
c¼1

F 0
c

Finally, the proportion of “other” (uncharacterized)
cells is estimated as:

Fother ¼ 1−
XC
c¼1

Fc″

As the population of other cells might include different
types of malignant and normal cells with various mRNA
contents [32] depending on the sample under investigation,
quanTIseq does not scale these estimates. The scaling
factors nc were computed as the median expression of the
Proteasome Subunit Beta 2 (PSMB2) housekeeping gene
[33] across the immune cell types of the RNA-seq
compendium and were highly correlated with
experimentally-derived scaling factors used in the EPIC ap-
proach [19] (Pearson’s correlation r = 0.86 considering the
immune cells in common). In the analysis of the simulated
RNA-seq data, where the true fractions represented mRNA
fractions and not cell fractions, deconvolution was
performed without mRNA-content normalization
(Additional file 2: Table S3).
The deconvolution of Treg cells and CD4+ T cells is in-

herently hampered by the high correlation of their ex-
pression signatures (namely, multi-collinearity [17]) and
can result in the underestimation of Treg cells present in
low fractions. Thus, we adopted a heuristic strategy to
specifically address the issue of Treg cell underestima-
tion. First, quanTIseq estimates the Treg cell fractions
F1
reg considering all cell types together. Then, for the

samples with F1
reg < 0:02 , quanTIseq re-estimates the

Treg cell fractions F2
reg removing from the signature

matrix the expression profiles of the CD4+ T cells. The
final Treg cell fractions are then estimated by averaging
the results:

F reg ¼ mean F1
reg; F

2
reg

� �

whereas CD4+ T cell fractions are scaled to:

FCD4 ¼ max F1
CD4−F reg; 0

� �

Finally, all cell fractions are normalized to sum up to 1.
The analysis described in this section is implemented

in the “Deconvolution” module of quanTIseq (step 3 in
Fig. 1c).
The full quanTIseq pipeline can be applied to single or

multiple samples and can be initiated at any step. For
instance, pre-computed expression matrices can be ana-
lyzed directly with the deconvolution module (step 3 in
Fig. 1c), although particular care must be taken when
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performing data pre-processing and annotation of signa-
ture genes.

Deconvolution of bulk tumor expression data
Aberrant de-methylation and sequence duplication can
lead to over-expression of immune signature genes.
Tumor RNA-seq data can be analyzed with quanTIseq
setting the “--tumor” option to “TRUE”. This setting dis-
cards the signature genes whose log2(xgl + 1) expression
in the TCGA RNA-seq data exceeds 11 TPM, which are
NUPR1, CD36, CSTA, HPGD, CFB, ECM1, FCGBP,
PLTP, FXYD6, HOPX, SERPING1, ENPP2, GATM,
PDPN, ADAM6, FCRLA, and SLC1A3. All tumor data
sets presented in this work have been analyzed with this
parameter setting (Additional file 2: Table S3).

Publicly available validation data sets
To benchmark quanTIseq, we considered the expression
data sets listed in Additional file 2: Table S1, using the
options reported in Additional file 2: Table S3. Normal-
ized microarray data were downloaded from the Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo) with the GEOquery R package [34]. Probes
were mapped to gene symbols with the biomaRt R pack-
age [35]. In case of multiple probes mapping to the same
gene symbol, the probe with the highest average expres-
sion across all samples was selected. Immune cell frac-
tions estimated with flow cytometry, Coulter Counter, or
from images of stained tissue slides were used as ground
truth to validate quanTIseq. Where necessary, different
functional states of an immune cell type were aggregated
by summing up the corresponding cell fractions (e.g., for
the Newman’s data set [17], B cells were quantified sum-
ming up the fractions of naïve and memory B cells).

Generation of flow cytometry and RNA-seq data from
blood-derived immune cell mixtures
Blood samples from healthy human donors were ob-
tained from the Blood Bank Innsbruck under approval
of the local ethics committee. Peripheral blood mono-
nuclear cells (PBMC) were isolated from human whole
blood by density centrifugation using Lymphocyte Separ-
ation Medium (Capricorn, Ebsdorfergrund, Germany).
The PBMC fraction was collected and washed three
times with Dulbecco’s phosphate buffered saline. To iso-
late polymorphonuclear (PMN) cells, the cells on top of
the erythrocytes were collected and contaminating red
blood cells were removed by two rounds of lysis with
0.2% NaCl solution at 4 °C. PMN were added to the
PBMC fractions in low abundance (3–6% of total cells),
and aliquots were taken for RNA extraction and flow cy-
tometry analysis. Total RNA was extracted with the Qia-
gen RNeasy mini kit (Qiagen GmbH, Hilden, Austria),
including on-column DNAse I treatment. INVIEW

polyA RNA library preparation, and Illumina 50 bp SR
sequencing at > 60 Million reads per library, was ob-
tained from an external provider (GATC Biotech, Kon-
stanz, Germany).
The fractions of the following cell types in the immune

cell mixtures were determined by flow cytometry using spe-
cific marker combinations: CD4+ T cells (CD3+CD4+),
CD8+ T cells (CD3+CD8+), Treg cells (CD3+CD4+CD25+

CD127−), B cells (CD19+), NK cells (CD3−CD16+CD56+),
myeloid dendritic cells (Lin−HLA-DR+CD11c+), monocytes
(CD14+), and neutrophils (CD15+CD16+). Labeled anti-
bodies specific for the following antigens were purchased
from BD Biosciences (San Jose, CA, USA) and Biolegend
(San Diego, CA, USA): CD3 (UCHT1), CD4 (RPA-T4),
CD8 (HIT8a), CD11c (3.9), CD14 (M5E2), CD15 (W6D3),
CD16 (3G8), CD19 (HIB19), CD20 (2H7), CD25 (BC96),
CD56 (B159), CD127 (A019D5), HLA-DR (L243), Lin:
CD3, CD14, CD19, CD20, CD56. The measurements were
performed on a BD LSRFortessa flow cytometer, and the
data were evaluated with FlowLogic 7.1 software (Inivai
Technologies, Melbourne, Australia).

Leiden validation data set
Fresh frozen and formalin-fixed material was available
from 19 colorectal cancer patients (Additional file 3).
Their usage was approved by the local ethics committee
(P15.282). All the specimens were anonymized and han-
dled according to the ethical guidelines described in the
Code for Proper Secondary Use of Human Tissue in the
Netherlands of the Dutch Federation of Medical Scientific
Societies. RNA was isolated with the NucleoSpin RNA kit
(Macherey-Nagel, Düren, Germany) including on-column
DNAse I treatment. Library preparation was preceded by
rRNA depletion with the NEBNext rRNA depletion kit
(New England Biolabs, MA, USA). PE 150 bp sequencing
was performed at GenomeScan (Leiden, The Netherlands)
on a HiSeq 4000 (Illumina, San Diego, CA, USA).
Four-micrometer sections of formalin-fixed paraffin-em-

bedded tissues were deparaffinized and underwent
heat-mediated antigen retrieval in 10mmol/L citrate buffer
solution (pH 6). Unspecific antibody binding was pre-
vented with the SuperBlock PBS buffer (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufac-
turer’s instructions. Immunofluorescence detection was
performed using two panels. Firstly, the T cell panel con-
tains the following antibodies: pan-cytokeratin (AE1/AE3,
Thermofisher scientific and C11, Cell Signalling Technol-
ogy), anti-CD3 (D7A6E), and anti-CD8 (4B11, DAKO).
Secondly, the myeloid panel contains the following anti-
bodies: pan-cytokeratin (AE1/AE3, Novusbio and C11,
Biolegend), anti-HLA-DR (TAL1B5, Thermo Fisher Scien-
tific), anti-CD68 (D4B9C, Cell Signalling Technology), and
anti-CD163 (10D6, Thermo Fisher Scientific). Immuno-
fluorescent detection was performed directly and indirectly
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with Alexa488, Alexa594, Alexa647, Alexa680, CF555, and
CF633 using an in-house methodology [36].
For immunohistochemical detection, 4-μm sections

were deparaffinized after which endogenous peroxidase
was blocked with a 0.3% hydrogen peroxide/methanol
solution. Following heat-mediated antigen retrieval in
10 mmol/L citrate buffer solution (pH 6), overnight
labeling was performed with anti-CD4 (EPR68551,
Abcam), anti-FOXP3 (236A/E7), and CD20 (L26, Dako)
respectively. After washing in PBS, Tissue sections were
incubated for 1 h with Poly-horseradish peroxidase solu-
tion (Immunologic Duiven, The Netherlands) at room
temperature. The slides were developed with the DAB+
chromogen (DAKO, Agilent Technologies, Santa Clara,
CA, USA) solution and counterstained with hematoxylin
(Thermo Fisher Scientific).
Image analysis for both immunofluorescence and im-

munohistochemistry was performed with the Vectra 3.0
Automated Quantitative Pathology Imaging System and
the inFORM Cell Analysis software (Perkin Elmer,
Waltham, MA, USA) including spectral separation of
dyes, tissue, and cell segmentation, and automated cell
counting of immune phenotypes.
Low-quality samples/images due to excessive IF back-

ground due to formalin fixation or loss of tissue integrity
during the experimental procedures were discarded from
the automated cell quantification analysis.

Vanderbilt validation data sets
Seventy melanoma and 8 lung cancer patient samples
were procured based on the availability of tissue and
were not collected according to a pre-specified power
analysis (Additional file 3). Included in these, 42 melan-
oma samples and 7 lung cancer samples were baseline
pre-anti-PD1 therapy. Remaining patients were treated
with either anti-CTLA-4 alone or combinations of
anti-PD-1 and anti-CTLA-4. Finally, 10 samples were
obtained from progressing tumors in patients experien-
cing an initial response. Clinical characteristics and ob-
jective response data were obtained by retrospective
review of the electronic medical record. Patients were
classified in responders (complete response and partial
response) and non-responders (progressive disease,
mixed response, and stable disease) according to
investigator assessed, RECIST defined responses. All pa-
tients provided informed written consent on
IRB-approved protocols (Vanderbilt IRB # 030220 and
100178).
Total RNA quality was assessed using the 2200

Tapestation (Agilent). At least 20 ng of DNase-treated
total RNA having at least 30% of the RNA fragments
with a size > 200 nt (DV200) was used to generate
RNA Access libraries (Illumina) following the manu-
facturer’s recommendations. Library quality was

assessed using the 2100 Bioanalyzer (Agilent), and li-
braries were quantitated using KAPA Library Quanti-
fication Kits (KAPA Biosystems). Pooled libraries were
subjected to 75 bp paired-end sequencing according
to the manufacturer’s protocol (Illumina HiSeq3000).
Bcl2fastq2 Conversion Software (Illumina) was used
to generate de-multiplexed Fastq files.
For FOXP3, CD4, and CD8 IHC staining, slides

were placed on a Leica Bond Max IHC stainer. All
steps besides dehydration, clearing, and coverslipping
were performed on the Bond Max. Heat-induced anti-
gen retrieval was performed on the Bond Max using
their Epitope Retrieval 2 solution for 20 min. Slides
were incubated with anti-CD4 (PA0427, Leica, Buffalo
Grove, IL), FOXP3 (14-4777-82, eBiosciences), or
anti-CD8 (MS-457-R7, ThermoScientific, Kalamazoo,
MI) for 1 h.

Analysis of IHC images with IHCount
We considered 75 bright-field immunohistochemistry
images from 33 melanoma patients and 16 images
from 8 lung cancer patients (Vanderbilt cohorts).
However, 3 melanoma patients had to be excluded
from the analysis due to the low quality of the stain-
ing or poor tissue preservation. In total, we analyzed
72 images stained for CD4, CD8, and FoxP3 from 32
melanoma patients and 16 images stained for CD4
and CD8 from 8 lung cancer patients. To quantify
both the number of total cells and tumor-infiltrating
immune cells from the melanoma and lung cancer
IHC images, we implemented a computational work-
flow, called IHCount, using free open-source software
tools. In this workflow different analytical tasks were
performed, including image pre-processing, training of
pixel classifiers, image segmentation, and analysis, to-
gether with cell counting and additional measure-
ments of the tumor-covered area. The methodology
of the analysis is described as follows.
To prepare the IHC images for further analysis, we

used the script collection (bftools) from the consortium
of Open Microscopy Environment (OME) [37]. First, the
bright-field images were extracted as TIF files with the
highest resolution from the image containers, available
in Leica (SCN) format. Each of these high-resolution im-
ages (0.5 μm/pixel, × 20 magnification) was then subdi-
vided into equally sized, non-overlapping image tiles
(2000 × 2000 pixels) in order to limit the computational
costs of the subsequent analytical tasks. The open-
source software ilastik [38] and its “Pixel Classification”
module were used to manually annotate objects of inter-
est and generate classifiers that distinguish positively
stained cells and nuclei from background and stromal
tissue. For each sample, a set of 3 to 5 representative
image tiles was randomly selected for training,
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considering the diverse nature of the obtained images
(caused, for instance, by the presence of artifacts, differ-
ences in illumination, and staining intensities). As a re-
sult, we obtained two classifiers, one to classify pixels
belonging to positively stained cells and the other to
classify pixels belonging to nuclei. In addition, both
could classify background and stromal tissue. The classi-
fiers were subsequently used in a batch process to obtain
two sets of probability maps for each tile. Both sets were
exported as multichannel TIF (32-bit float), where each
channel represented the probabilities of one of the given
classes (positively stained cells or nuclei, together with
stromal tissue and background). Finally, we developed a
Cellprofiler [39] pipeline (IHCount.cppipe) that runs in-
tensity-based operations to segment and identify posi-
tively stained cells, nuclei, and the area of total tissue
using the previously generated probability maps together
with the original image tiles as input files. The overall
results for each image were obtained by summing up the
results of the single image tiles.
All previously described steps of the analysis were im-

plemented in a python script (runCP.py) and can be run
from the command line. The pipeline, together with a
description of the workflow, is publicly available at
https://github.com/mui-icbi/IHCount. IHCount results
for the Vanderbilt cohorts are reported in Additional file
3. Total cell densities per tumor sample to be used to
scale quanTIseq cell fractions were estimated as the
median number of nuclei per mm2 across all images
generated from that tumor.
IHCount analysis of IHC images from CRC patients

(Leiden cohort) was performed using the same approach
adopted for the Vanderbilt cohorts.

Benchmarking of deconvolution and marker-based
methods
All methods were run in R using their original code or R
package, except TIMER, which was run from the web inter-
face (https://cistrome.shinyapps.io/timer). All methods were
run with their default parameter settings. EPIC was run
with the “BRef” signature on PBMC data and with the
“Tref” signature on the tumor data. TIMER signatures for
COAD, LUAD, and SKCM were used to analyze tumor
data from CRC, lung, and melanoma patients, respectively;
TIMER was not applied to PBMC data as the web interface
only allows the analysis of tumor data. CIBERSORT
estimates were aggregated across the major subtypes
considered in the benchmarking (e.g., naïve and mem-
ory B cells were summed up to obtain total B cell
estimates). For EPIC and xCell, T cell estimates were
obtained by summing up CD4+ and CD8+ T cells.
xCell “DC” scores were considered for dendritic cells,
whereas the MCPcounter estimates from the “Mono-
cytic lineage” were used to quantify monocytes.

Computation of the deconvolution-based immunoscore
and TB score from quanTIseq cell fractions
For the calculation of the deconvolution-derived immuno-
score, we considered the fractions of CD8+ T cells and
CD3+ T cells, where the latter was computed as the sum of
CD8+ T cell, CD4+ T cell, and Treg cell fractions. CD3

+ and
CD8+ T cell fractions were dichotomized considering their
median across all patients, computed separately for each
cell type and cancer type, and used to identify two groups
of patients: (1) “Lo-Lo” patients, with both CD3+ and CD8+

T cell fractions lower or equal to the median; (2) “Hi-Hi”
patients, with both CD3+ and CD8+ T cell fractions higher
than the median. The “Hi-Hi” and “Lo-Lo” classes for the T
and B cell (TB score) were derived in an analogous manner,
but considering the fractions of B cells and CD8+ T cell es-
timated by quanTIseq.

t-SNE plots
t-SNE plots of the TCGA solid cancers were generated with
“Rtsne” R package. The t-SNE algorithm was run on the
immune cell fractions estimated by quanTIseq, excluding
the fraction of uncharacterized cells. We retrieved the an-
notation about microsatellite instability (MSI) from a recent
paper [40], considering both the MSI categories of the
TCGA consortium and the MSI/MSS classes predicted at a
confidence level of 0.75. Unambiguous predictions were
used to identify the MSI or MSS samples, whereas ambigu-
ous predictions (MSI:1 and MSS:1), null predictions (MSI:0
and MSS:0), or unavailable samples were assigned to the
“unknown” MSI state. Gene expression represented as z
scores of log2(TPM+1). Before plotting, z scores higher
than 3 (or lower than − 3) were saturated to 3 (or − 3).

Statistical analysis
Correlation between numeric variables was assessed with
Pearson’s correlation. The area under the receiver operating
characteristic curve (AUROC) for multi-class classification
was computed with the “multiclass.roc” function of the
pROC R package. Constrained least squares regression was
performed with the “lsei” function from the “limSolve” R
package. The root-mean-squared error was computed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanððXestimated−X trueÞ2Þ

q
. Statistically signifi-

cant differences between two groups were tested with
two-sided Wilcoxon’s test. For comparisons across multiple
groups, Kruskal-Wallis test followed by two-sided Dunn’s
pairwise post hoc was used. Normality of the data distribu-
tion was tested with Shapiro-Wilk test. Overall survival
analyses were performed using the R package survival on
TCGA survival data (“vital_status”, “days_to_death”, and
“days_to_last_followup”). For each cancer type, patients
were dichotomized in two groups according to the
deconvolution-based immunoscore or TB score. The
Kaplan-Meier estimator was used to generate survival
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curves and logrank tests (corresponding to two sided z test)
were applied.

Results
Development of quanTIseq deconvolution algorithm
We developed quanTIseq, a computational pipeline for
the analysis of raw RNA-seq and tissue imaging data
that quantifies the fractions and densities of ten different
immune cell types relevant for cancer immunology
(Fig. 1a). We first designed a novel signature matrix
using RNA-seq data (Fig. 1b and Additional file 1). To
this end, we collected a compendium of 51 publicly
available RNA-seq data sets (Additional file 1) from ten
different immune cell types: B cells, M1 and M2 macro-
phages, monocytes (Mono), neutrophils (Neu), natural
killer (NK) cells, non-regulatory CD4+ T cells, CD8+ T
cells, Treg cells, and myeloid dendritic cells (DC). These
data were integrated with additional large-scale data re-
sources from immune and non-immune cells and used
to select the signature genes with the highest specificity
and discriminative power to construct the immune cell
signature matrix (details in the “Methods” section).
We then developed a deconvolution algorithm to esti-

mate the absolute proportions (i.e., cell fractions referred
to the total cells in the sample under investigation) of
ten different immune cell types from bulk RNA-seq data.
quanTIseq performs deconvolution using constrained
least squares regression [41] to force the cell fractions to
be non-negative and their sum not to exceed 1. By
allowing this sum to be lower than 1, quanTIseq esti-
mates also the proportion of uncharacterized cells (re-
ferred to as “other” cells from here on), namely cells that
are present in the cell mixture of interest but that are
not represented in the signature matrix (e.g., cancer
cells). After regression, quanTIseq normalizes the im-
mune cell fractions by a scaling factor in order to cor-
rect for differences in total mRNA content per cell. The
deconvolution of closely related cell types (e.g., Treg cells
and non-regulatory CD4+ T cells) is inherently hampered
by the high correlation of their expression signatures
(multicollinearity) and can result in the underestimation
or “dropout” of low-abundance Treg cells [17]. As there
is currently no consensus on whether regularization
methods can overcome multicollinearity in regression-
based deconvolution [42, 43], we adopted a heuristic
strategy to specifically address the issue of Treg cell drop-
outs. Further details on quanTIseq algorithm are
reported in the “Methods” section.
Deconvolution methods usually take as input a matrix

summarizing the gene expression levels of the mixtures of
interest [15] computed from raw expression data. These
data can be profoundly different from the signature matrix
used for deconvolution, both in terms of gene annotation
and normalization of gene expression values. To avoid

issues arising from missing signature genes and different
data-normalization procedures, quanTIseq implements a
full pipeline for the analysis of raw RNA-seq data that
builds the mixture matrix using the same approach
employed for the signature matrix (described in the
“Methods” section). The quanTIseq pipeline consists of
three analytical steps, as depicted in Fig. 1c: (1)
pre-processing of raw RNA-seq reads (single- or
paired-ends) to remove adapter sequences, trim low-qual-
ity read ends, crop long reads to a maximum length, and
remove short reads; (2) quantification of gene expression
as transcripts per millions (TPM) [44]—which are suitable
for expression deconvolution based on linear regression
[45]—and raw counts; and (3) expression normalization,
gene re-annotation, and deconvolution of cell fractions. A
unique feature of quanTIseq is the possibility to perform
in silico multiplexed immunoprofiling by complementing
the deconvolution results with information from image
analysis of IHC, IF, or H&E tissue slides. If total cell dens-
ities estimated from images are available, they are used by
quanTIseq to scale the fractions of all the deconvoluted
immune cell types to cell densities (step 3 in Fig. 1c).
quanTIseq was containerized using Docker (https://

www.docker.com) and Singularity (https://www.sylabs.
io/singularity) to simplify the installation and usage of
all tools and dependencies, thereby standardizing data
analysis and making it easily accessible by a broader
audience. quanTIseq can be run on Mac OS X and
Linux systems and is available at http://icbi.at/quantiseq.

Validation of quanTIseq using simulated RNA-seq data
and published data sets
To benchmark quanTIseq on well-defined cell mixtures,
we simulated 1700 RNA-seq data sets of human breast
tumors characterized by different immune infiltrate sce-
narios. The data were generated by mixing different pro-
portions of RNA-seq reads from tumor and immune
cells and by simulating different sequencing depths (de-
tails in the “Methods” section). In order to avoid the use
of the same data set for the mixture and signature
matrix in the benchmarking, we adopted a leave-K-out
cross-validation approach. Briefly, for each simulated
mixture to be deconvoluted, a signature matrix was built
excluding the K RNA-seq data sets included in the simu-
lated mixture. quanTIseq obtained a high correlation be-
tween the true and the estimated fractions and
accurately quantified tumor content, measured by the
fraction of “other” cells (Additional file 2: Figure S1).
We then validated quanTIseq using experimental data

from a previous study [46], in which peripheral blood
mononuclear cell (PBMC) mixtures were subjected to
both RNA-seq and flow cytometry. A high accuracy of
the quanTIseq estimates was also observed for this data
set (Fig. 1d and Additional file 2: Figure S2).
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Additionally, we tested quanTIseq on two published
microarray data sets used to validate previous deconvo-
lution methods [17, 47]. Although quanTIseq is designed
for RNA-seq data and might show lower accuracy on
pre-computed expression data due to the lack of import-
ant signature genes and due to the different dynamic
range of hybridization-based and RNA-seq technologies,
it showed good deconvolution performance also on
these data sets (Additional file 2: Figures S3 and S4).
We then applied quanTIseq to over 8000 TCGA sam-

ples across 19 solid malignancies. As no gold-standard
measures were available for these samples, we consid-
ered previous estimates of lymphocytic infiltration [48]
and tumor purity [24] available for a subset of the TCGA
patients to further assess the validity of quanTIseq re-
sults. First, we compared the fraction of lymphocytes es-
timated by quanTIseq, computed by summing up the
cell fractions of B cells, NK cells, CD4+ and CD8+ T
cells, and Treg cells, with the “lymphocyte score”, a semi-
quantitative measure of the number of tumor-infiltrating
lymphocytes estimated previously from H&E-stained sec-
tion slides of melanoma tumors (n = 468) [48]. Although
the two approaches were based on different features of the
immune contexture, i.e., molecular vs. morphological, and
sequencing data and images are usually generated from
different tumor portions, their estimates showed a high
agreement (Additional file 2: Figure S5a).
Second, we considered TCGA tumor purity values es-

timated in a previous work with a consensus approach
integrating four computational methods based on
RNA-seq, methylation, and mutational data [24]. We
compared these purity values with the fraction of “other”
cells inferred by quanTIseq for all cancer types for which
both estimates were available for at least 100 patients.
Although the fraction of “other” cells does not directly
represent tumor purity as it can include different cell
types (e.g., stromal cells), we reasoned that a large pro-
portion of these cells are tumor cells and therefore a
positive correlation between these two variables in solid
tumors should be expected. Indeed, the fraction of
“other” cells estimated by quanTIseq had a significant
positive correlation with tumor purity in all cancer types,
with a correlation ranging from 0.29 in glioblastoma
(GBM) to 0.72 of skin cutaneous melanoma (SKCM)
(Additional file 2: Figure S5b).

Validation of quanTIseq with flow cytometry
immunoprofiling and IHC/IF data
As most of the validation data sets available in the litera-
ture are based on microarray data or consider a limited
number of phenotypes, we generated RNA-seq and flow
cytometry data from mixtures of circulating immune cells
collected from nine healthy donors. The mixtures were
generated by admixing low fractions of

polymorphonuclear (PMN) cells with PBMC extracted
from the same donor samples (see the “Methods” section).
Flow cytometry was used to quantify all the immune
sub-populations considered by quanTIseq except macro-
phages, which are not present in blood. Comparison of
quanTIseq estimates with the flow cytometry cell fractions
showed a high correlation for all the single cell types
(Fig. 1e and Additional file 2: Figure S6) and an overall
correlation of 0.87. In particular, quanTIseq accurately
quantified closely related cell types like non-regulatory
CD4+ T and Treg cells, as well as low-abundance dendritic
cells (Additional file 2: Figure S6).
Finally, we validated quanTIseq using three independ-

ent cancer data sets (Additional file 2: Table S1). The
first data set was generated from 70 tumor samples col-
lected from melanoma patients. We carried out
RNA-seq and, wherever possible, IHC staining for CD8+,
CD4+, or FOXP3+ cells from consecutive whole-tissue
slides. To quantify specific immune cells from the
scanned images, we developed an analysis pipeline
(available at https://github.com/mui-icbi/IHCount) to
perform semi-automatic cell counting. The second data
set was generated in an analogous manner using eight
lung cancer samples and IHC images stained for CD8+

and CD4+ T cells. The third data set was generated from
tumor samples of ten CRC patients. RNA-seq data,
IF-stained slides for CD8+ T cells and M2 macrophages
(CD68+HLA-DR−CD163+), and IHC slides for CD4+ T
and Treg cells were generated and analyzed, wherever
possible. Cell densities were then quantified with Perkin
Elmer (http://www.perkinelmer.com) proprietary soft-
ware for automated quantitative pathology (details in the
“Methods” section). For all the three cancer cohorts, the
cell fractions obtained with quanTIseq showed a good
agreement with the IF/IHC-based estimates, computed
both as cell fractions (i.e., ratio between positive cells
and total nuclei) (Fig. 2a–c) and cell densities (positive
cells per mm2) (Additional file 2: Figure S7). CD8+ T
cells were estimated robustly in all the three data sets
(r = 0.74–0.86, p ≤ 0.0012), whereas Treg cells, B cells,
and M2 macrophages showed a lower agreement, with
positive but non-significant correlations, likely due also
to the small sample size and limited dynamic range of
cell fractions. It is worth noting that these discrepancies
might be also due to the different tumor portions used
to generate images and RNA-seq data, as well as to the
intrinsic limitation of using 1-to-3 cell markers for iden-
tifying distinct cell types from IHC/IF images.
We also used the IHC images from CRC patients’ sam-

ples to benchmark our IHCount pipeline. We compared
the cell fractions and densities obtained with IHCount
for CD4+ T cells, Treg cells, and B cells with those ob-
tained using Perkin Elmer (http://www.perkinelmer.com,
details in the “Methods” section) proprietary software
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Fig. 2 (See legend on next page.)

Finotello et al. Genome Medicine           (2019) 11:34 Page 11 of 20



for automated quantitative pathology—used here as gold
standard for quanTIseq validation. The two approaches
showed a high positive correlation both for cell fractions
(Additional file 2: Figure S8a) and cell densities (Add-
itional file 2: Figure S8b), although with a slight lower
estimation of CD4+ T and B cells for IHCount.
Finally, we used the unique validation data set generated

in this study also to compare quanTIseq performance with
that of recent methods for the quantification of immune
cells from expression data: CIBERSORT [17], MCPcounter
[10], EPIC [19], xCell [11], and TIMER [18]; the latter was
applied only to tumor data (details in the “Methods”
section). Compared to deconvolution and marker-based
methods, quanTIseq robustly obtained positive correlations
across all cell types and data sets and scored amongst the
top performers in all the assessments (Fig. 2d, Additional
file 2: Figure S9 and Table S2). It is worth noting, however,
that comparison of different deconvolution methods
strongly depends on data type and pre-processing, on the
number and type of immune cells considered (e.g., rare and
similar cell types, considered by some methods but not by
others, are more difficult to quantify), and on whether the
estimates can be interpreted as cell fractions or not (see
also a recent review [16]). Overall, our extensive bench-
marking demonstrates the high accuracy and robustness of
quanTIseq for quantification of immune cells from blood
and tumor samples.

Activation of the CXCL9/CXCR3 axis is associated with
immune infiltration in solid cancers
A comprehensive inventory of the molecular determinants
that shape the tumor immune contexture has yet to be de-
termined. In an attempt to identify promising candidates,
we examined the association between the immune contex-
ture and a set of features describing the genotypes of hu-
man cancers. For this purpose, we used quanTIseq to
reconstruct the immune contexture of solid tumors from
RNA-seq data of more than 8000 TCGA samples across 19
solid malignancies, and we assessed the correlation between
absolute cell proportions and different genomic features:
mutational load, neoantigen load, tumor heterogeneity, and
fractions of mutations with clonal and subclonal origin.
Surprisingly, there was either low or no correlation between
these genetic correlates and the abundances of

tumor-infiltrating immune cells (Additional file 2: Figure
S10). Moreover, the overall lymphocytic infiltration and the
sum of all adaptive or innate immune cell fractions were
only weakly associated with the mutational features in our
pan-cancer and cancer-specific assessments.
We have previously used biomolecular-network recon-

struction to identify T cell homing factors associated
with survival in CRC and pinpointed specific chemo-
kines (CX3CL1, CXCL9, CXCL10) and adhesion mole-
cules (ICAM1, VCAM1, MADCAM1) associated with
high densities of intratumoral T cell subsets [49]. There-
fore, we assessed the association between the expression
of relevant chemokines, chemokine receptors, and adhe-
sion molecules and the abundances of individual im-
mune cell types (Additional file 2: Figure S11). We
observed a high correlation between CD8+ T cell frac-
tions and the expression of CXCL9 chemokine (Fig. 3a)
and chemokine receptor CXCR3 (Additional file 2: Fig-
ure S11b) and, for some cancer types, with CXCL10 ex-
pression (Additional file 2: Figure S11a). The CXCL9/
CXCR3 axis regulates immune cell migration, differenti-
ation, and activation and is therefore an important target
for cancer therapy [50].
In summary, our results obtained using quanTIseq on

bulk RNA-seq data from the TCGA suggests that the ac-
tivation of the CXCR3/CXCL9 axis, rather than the
genotype of the tumor, is associated with intratumoral
cytotoxic T cells infiltration, and challenges the previous
notion that the mutational burden is strongly associated
with an increased infiltration of immune cells [51].

Pan-cancer analysis reveals highly heterogeneous
immune contextures within and across solid cancers
We have previously shown that mutation and neoan-
tigen profiles are highly heterogeneous on a sample
by sample basis, being mostly characterized by pas-
senger alterations that are rarely shared between pa-
tients [13]. However, despite this huge variability in
their genotypes, tumors present common transcrip-
tional signatures describing few molecular subtypes.
For instance, analyses of a large number of samples
identified four CRC subtypes with clear biological in-
terpretability, called consensus molecular subtypes
(CMS) [52]. Similarly, the immune profiles of human

(See figure on previous page.)
Fig. 2 Validation of quanTIseq using tumor RNA-seq data and IF/IHC images. Comparison of quanTIseq cell fractions with those inferred for IF/IHC images
from melanoma (a), lung cancer (b), and colorectal cancer (c) patients. Deconvolution performance was assessed with Pearson’s correlation (r) and root-
mean-square error (RMSE) considering image cell fractions (ratio of positive cells to total nuclei) as ground truth. The line represents the linear fit.
d Performance of quanTIseq and previous computational methods obtained on the three validation cohorts: melanoma, lung cancer, and colorectal
cancer patients. Methods performance was quantified using Pearson’s correlation (r) considering image cell fractions as ground truth. Correlations for single
cell types are displayed as dots, together with whiskers and horizontal bands representing median and 95% confidence intervals. Missing cell types are
visualized as triangles at the bottom of the plots. Diamonds indicate the overall correlation obtained considering all cell types together; not shown for
marker-based methods, which do not allow intra-sample comparison. B, B cells. CD4, total CD4+ T cells (including also CD4+ regulatory T cells); CD8, CD8+

T cells; M2, M2 macrophages; T, Treg: regulatory T cells
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Fig. 3 quanTIseq analysis of RNA-seq data from 19 TCGA solid cancers. a Pearson’s correlation between cell proportions estimated by quanTIseq and
expression in TPM of the CXCL9 chemokine. t-SNE plot of the immune contextures of 8243 TCGA cancer patients, colored by: b cancer type or c
expression of immune-related genes and microsatellite instability state. The line in the t-SNE plots qualitatively indicates the separation of the putative
inflamed, immune-desert, and immune-excluded phenotypes. Adaptive, total adaptive immune cells; B, B cells; CD4, total CD4+ T cells (including also CD4+

regulatory T cells); CD8, CD8+ T cells; DC, dendritic cells; Innate, total innate immune cells; Lym, total lymphocytes; M1, classically activated macrophages;
M2, alternatively activated macrophages; Mono, monocytes; MSI, microsatellite instable; MSS, microsatellite stable; Neu, neutrophils; NK, natural killer cells;
Other, uncharacterized cells; T, T cells; Treg, regulatory T cells
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cancers can be grouped into three major phenotypes,
which are associated with response to PD1/PDL1
blockade: immune-inflamed, immune excluded, and
immune desert [2]. Hence, we hypothesized that des-
pite the genetic heterogeneity, human tumors con-
verge to a limited number of immunological states
quantified by the immune contextures. To test this hy-
pothesis, we used dimensionality reduction based on the
t-Distributed Stochastic Neighbor Embedding (t-SNE)
[53] approach to visualize the 8243 immune contextures
reconstructed by quanTIseq across 19 TCGA solid can-
cers (Fig. 3b and Additional file 2: Figure S12). Most of the
cancer types did not create clearly distinct clusters, indicat-
ing highly heterogeneous immune contextures within and
across cancers. Although some clusterization was visible
for subsets of melanoma (SKCM), thyroid cancer (THCA),
uterine cancer (UCEC), breast cancer (BRCA), and lung
adenocarcinoma (LUAD) patients, a large overlap is seen
for most of the cancer types. Visualization of gene expres-
sion (Fig. 3c) and immune cell fractions (Additional file 2:
Figure S13) revealed two major clusters that might identify
patients characterized by a high infiltration of cytotoxic
CD8+ T cells typical of the inflamed phenotype (right clus-
ter in Fig. 3c with high CD8B expression), opposed to the
immune-desert phenotype (left cluster in Fig. 3c with low
CD8B expression) [2]. The inflamed phenotype was further
associated with high expression of interferon gamma
(IFNG), as well as with upregulation of immune check-
points like PD1 and PDL1 and exhaustion markers like
LAG3 and TIM3. Intriguingly, the plot also shows a cluster
of patients characterized by high CD8B and VEGFA ex-
pression (top sub-cluster in Fig. 3c), which might corres-
pond to an immune-excluded phenotype [2].
Based on the results of a recent clinical study [54], cancers

with microsatellite instability (MSI) including CRC, uterine
cancer, and ovarian cancer can be now treated with PD1
blockers. We therefore analyzed the immune contextures of
MSI cancers from the TCGA cohorts (Fig. 3c). Similarly to
the pan-cancer analyses, we found no distinct clusters also
for this subgroup. Compared to their microsatellite stable
(MSS) counterparts, MSI cancers were characterized by a
significantly lower infiltration of M2 macrophages (p =
5.03·10−8) and neutrophils (p = 1.28·10−17) and by a signifi-
cantly higher infiltration of M1 macrophages (p = 3.66·10−3),
NK cells (p = 5.76·10−7), CD8+ T cells (p = 1.75·10−4), Treg

cells (p = 1.34·10−3), and dendritic cells (p = 3.67·10−3).
In summary, we could show that, for human solid tu-

mors, neither the classification according to the muta-
tional load (MSI vs. MSS) nor the classification according
to the anatomical site converges to a limited number of
immunological states quantified by the immune contex-
tures. However, it appears that some cancer subtypes ex-
hibit similar immune contextures associated with specific
genotypes as recently shown by us [13] and others [51].

Deconvolution-based immune scores are associated with
survival in solid cancers
The immunoscore, a scoring system defined to quantify
the immune infiltrates from tumor imaging data, has
been demonstrated to be a prognostic marker superior
to the TNM staging system in CRC [55]. The immuno-
score is based on the enumeration of two lymphocyte
populations (CD3+ and CD8+) in the tumor core and in-
vasive margin, and it can assume values from 0, when
low densities of both cell types are found in both re-
gions, to 4, when high densities are found in both re-
gions. Recently, it was shown that the immunoscore
and a newly proposed T and B cell score (TB score) were
the strongest predictors of disease-free survival and
overall survival in metastatic CRC [56].
We defined modified versions of the immunoscore

and TB score based on the absolute fractions of the re-
spective cell types deconvoluted by quanTIseq and
tested their association with survival in solid cancers
(see the “Methods” section). The results of the survival
analysis using the computed TCGA cell fractions
showed the prognostic value of the deconvolution-based
immunoscore and TB cell score in five (BRCA, cervical
squamous cell carcinoma [CESC], head and neck cancer
[HNSC], SKCM, and UCEC) and six solid cancers
(BRCA, CESC, HNSC, LUAD, and prostate adenocarcin-
oma [PRAD]), respectively (Fig. 4). The association was
not significant for CRC as expected, due to the fact that
spatial information of the immune cell distribution with
respect to the tumor core and invasive margin could not
be incorporated.
All quanTIseq results of the TCGA analysis have been

deposited in The Cancer Immunome Atlas (https://tcia.
at) [13] to make them available to the scientific commu-
nity and facilitate the generation of testable hypotheses.

Pharmacological modulation of the tumor immune
contexture
Beyond the extraction of prognostic markers, there is an
urgent need to identify predictive markers for cancer im-
munotherapy with immune checkpoint blockers, as well
as to determine the immunological effects of targeted
agents [6]. We therefore used quanTIseq to investigate
the pharmacological effects of targeted drugs on the im-
mune contexture. We analyzed recently published
RNA-seq data set from pre- and on-treatment tumor bi-
opsies from seven melanoma patients treated with a
BRAF inhibitors, MEK inhibitors, or a combination
thereof [57]. quanTIseq deconvolution results showed
large pharmacological remodeling of the immune con-
texture (Fig. 5a). Changes included a significant increase
in dendritic cell fractions during treatment (p = 0.043)
and, to a lesser extent, an infiltration of CD8+ T cells
(p = 0.19) and M2 macrophages (p = 0.07). Thus, BRAF
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and MEK inhibitors induce profound changes of the im-
mune contexture. However, our analysis showed also pa-
tient-specific effects, further highlighting the need to
develop immuno-oncology treatment strategies tailored
to the individual patient.
Finally, in order to show the value of quanTIseq for

informing cancer immunotherapy, we analyzed publicly
available RNA-seq data from 51 pre- and 58 on-treatment
samples collected from 65 melanoma patients treated with
anti-PD1 [58]. quanTIseq analysis of pre- (Fig. 5b) and
on-treatment samples (Fig. 5c) revealed higher B cell (p =
0.02) and CD8+ T cell (p = 0.03) fractions, respectively, in
responders compared to non-responders. Pre- and
on-treatment samples from responder patients also showed
higher M1 macrophage fractions, although the differences
with non-responders were not statistically significant.

To further assess the predictive potential of quanTI-
seq, we considered 21 pre-treatment samples from our
cohort of melanoma patients treated with anti-PD1 anti-
bodies (nivolumab, pembrolizumab) and quantified the
immune contexture using both bulk RNA-seq data and
H&E-stained slides. We first carried out deconvolution
using RNA-seq data and then scaled the fractions using
total cell densities extracted from images to perform in
silico multiplexed immunodetection. Total cell densities
to be considered by quanTIseq can be computed from
H&E-stained images (Fig. 1a). However, as H&E-stained
images were not available for this cohort, we computed
total cell densities as the median number of nuclei per
mm2 across all IHC images generated from a tumor.
The cell densities estimated by quanTIseq showed a
positive correlation with the image-derived densities
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(Additional file 2: Figure S14). The deconvoluted cell
densities of the ten immune cell types showed large het-
erogeneity across the patients and differences between
responders and non-responders. For example, the dens-
ities of M1 macrophages as well as of CD4+ and CD8+ T
cells were increased in responders compared to
non-responders, although differences were not statisti-
cally significant (p > 0.09), likely due to the limited num-
ber of samples (Fig. 5d). Further work with a larger
number of samples is necessary to determine which
immune cell type fractions or combined scores have pre-
dictive power for response to therapy with immune
checkpoint blockers.

Discussion
We developed quanTIseq, a computational pipeline for
the analysis of raw RNA-seq and tissue imaging data
that quantifies the absolute fractions and densities of ten
different immune cell types relevant for cancer immun-
ology. Unlike previous approaches, quanTIseq is specif-
ically designed for RNA-seq data, which is the current
reference technology for high-throughput quantification
of gene expression [59]. To simplify data analysis and
avoid inconsistencies between the mixture and the

signature matrix, we designed quanTIseq as a complete
analytical pipeline that performs pre-processing of raw
RNA-seq data, gene expression quantification and
normalization, gene re-annotation, and estimation of cell
fractions and densities. The results of our extensive val-
idation using RNA-seq data from simulations, previous
studies, blood cell mixtures, and three cancer patient co-
horts demonstrate that quanTIseq can faithfully and
quantitatively infer immune cell fractions from bulk
RNA-seq data. Additionally, application of the method
to publicly available data as well as data generated in this
study revealed several important biological insights.
First, by analyzing more than 8000 TCGA samples, we

showed that genomic features like mutational and neoan-
tigen load, tumor heterogeneity, and proportion of clonal
and subclonal mutations are only weakly associated with
CD8+ T cell fractions. In contrast, we found a stronger
correlation between the activation of the CXCL9/CXCR3
axis and CD8+ T cell infiltration in solid tumors, which
would support the notion that CD8+ T cells expressing the
chemokine receptor CXCR3 can migrate into tumors fol-
lowing CXCL9 gradients [60]. This finding suggests that
pharmacological modulation of the CXCL9/CXCR3 axis
could be a therapeutic strategy to boost T cell recruitment,

a b

c

d

Fig. 5 Pharmacological modulation of the tumor immune contexture and response to checkpoint blockers. a Changes in the immune contexture of
melanoma tumors during treatment with BRAF and/or MEK inhibitors, measured as “relative cell fraction variation”, i.e., ratio between the difference and
the mean of the on- and pre-treatment immune cell fractions estimated via deconvolution. Immune cell fractions (log scale) estimated with quanTIseq
from pre- (b) and on-treatment (c) samples collected from melanoma patients treated with anti-PD1 and stratified as responders (R) and non-responders
(NR) (data from [58]). d quanTIseq immune cell densities (log scale) from our cohort of melanoma patients, stratified as responders (R) and non-responders
(NR). Total cell densities used to scale quanTIseq immune cell fractions were estimated as the median number of nuclei per mm2 across all images
generated from each tumor. B, B cells; CD4, total CD4+ T cells (including also CD4+ regulatory T cells); CD8, CD8+ T cells; DC, dendritic cells; M1, classically
activated macrophages; M2, alternatively activated macrophages; Mono, monocytes; Neu, neutrophils; NK, natural killer cells; Treg, regulatory T cells; Other,
other uncharacterized cells
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thereby making also the immune-desert tumors [2] amen-
able to cancer immunotherapy. For instance, epigenetic
reprogramming of genes expressing T helper (TH)-1 che-
mokines like CXCL9 and CXCL11 might increase CD8+ T
cell infiltration into the tumor bed [60].
Second, our results indicate that the immune contexture

is highly heterogeneous across and within solid cancers.
This could partly explain the fact that the beneficial effects
of cancer immunotherapy are observed only in a small
fraction of patients. Furthermore, while the classification
of common cancers into the three major immunopheno-
types, namely immune inflamed, immune excluded, and
immune desert, is conceptually appealing, it might not be
sufficient to stratify the patients and thereby inform can-
cer immunotherapy. Our data suggest that the immune
contexture and, hence, the immunophenotypes represent
rather a continuous then a discrete variable, making it dif-
ficult to define cutoffs for precise stratification.
Third, the analysis with the deconvolution-based immu-

noscore and TB score supports the notion that combina-
tions of different immunological features can have a
stronger prognostic power than single markers. The lack of
a significant prognostic value for some indications might be
due to both, biological and technical reasons. For example,
analyses of 10,000 samples showed remarkable degree of
heterogeneity of the immune infiltrates across distinct
organ-specific malignancies [51], suggesting that the cellu-
lar context is of utmost importance. Moreover, the high
heterogeneity of the TCGA cohorts with respect to treat-
ment and staging could be a possible confounding factor.
Lastly, as we have previously shown that not only the dens-
ity but also the spatial localization of the infiltrating im-
mune cells plays a major role for the prognosis of tumor
recurrence [3]. Enumeration of the immune cells in the
core of the tumor and at the invasive margin markedly
enhances the performance of the immunoscore. However,
including this type of spatial information from the available
TCGA images is challenging due to the limited
performance of fully automated image analyses. Spatial
lymphocytic patterns obtained using recent developments
of deep learning tools [51, 61] might provide this missing
information.
Fourth, quanTIseq analysis of the transcriptomes of

patients treated with kinase inhibitors demonstrates pro-
found pharmacological remodeling of the immune con-
texture. The immunological effects of conventional and
targeted therapies came only recently into focus, foster-
ing numerous clinical trials on combinatorial regimens
of checkpoint blockers and targeted agents [62]. As bulk
RNA-seq is now widely applied to profile fresh-frozen
and archived tumor specimens, quanTIseq can be ap-
plied to effectively mine these data. Specifically, quanTI-
seq can be used to quantify the tumor immune
contexture from large collections of formalin-fixed

paraffin-embedded (FFPE) samples in order to identify
immunogenic effects of conventional and targeted drugs
and hereby gain mechanistic rationale for the design of
combination therapies.
Finally, our analysis of transcriptomics profiles from

patients treated with anti-PD1 antibodies, although lim-
ited in sample size, shows the potential of quanTIseq for
the extraction of immunological features that, alone or
in combination, might predict the response to check-
point blockade. Intriguingly, the higher infiltration of
CD8+ T cells in responder patients was not apparent
from baseline samples but revealed itself shortly after
the treatment start. This finding, also reported in a
previous study on melanoma patients treated with
CTLA4 and PD1 blockers [63], highlights the potential
of early monitoring of the changes in the tumor immune
contexture induced by checkpoint blockers. This could
possibly reveal the mechanisms of resistance and enable
identification of predictive markers for immunotherapy
[64]. As more and more RNA-seq data sets from pre-
and post-treatment samples of patients treated with
checkpoint blockers will become available, we envision
that quanTIseq will represent a useful resource to moni-
tor the modulating effects of immunotherapy on the
tumor immune contexture and extract candidate pre-
dictive markers.
We plan three lines of improvements of quanTIseq.

First, as the transcriptomes of other non-malignant cell
types from the tumor microenvironment will become
available using bulk RNA-seq or single-cell RNA-seq,
quanTIseq signature matrix can be extended to other
cell types (e.g., cancer-associated fibroblasts) and opti-
mized for specific cancer types. However, although im-
mune cell phenotypes are known to depend on the
specific tissue and disease context, to what extent ex-
pression signatures derived from the tumor microenvir-
onment instead than from blood improve deconvolution
performance remains to be clarified [19, 65, 66]. Second,
spatial information on the localization of the infiltrating
immune cells, i.e., localization in the center of the tumor
and at the invasive margin, can be incorporated using
annotation by a pathologist from images of H&E-stained
slides. Finally, complementary information on the func-
tional orientation of the infiltrating immune cells, in-
cluding T cell anergy, exhaustion, or differentiation
stage, can be derived from bulk RNA-seq data and in-
cluded into the algorithm. However, since these func-
tional states are not precisely defined in terms of unique
expression signatures, a community-based consensus is
required in order to include this type of information.

Conclusions
In summary, we developed and thoroughly validated quan-
TIseq, a method for the quantification of the tumor
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immune contexture using bulk RNA-seq data and histo-
logical images. Application of the tool to analyze thousands
of samples from patients treated with conventional, tar-
geted, or immunotherapeutic drugs revealed molecular and
pharmacological modulators of the tumor immune contex-
ture and immunological features underlying differential re-
sponses to immune checkpoint blockers. Hence, by
analyzing carefully selected and well-annotated samples,
our method holds promise to derive mechanistic rationale
for the design of combination therapies and the develop-
ment of predictive markers for immunotherapy. While
quanTIseq represents an important contribution to the
computational toolbox for dissecting tumor-immune cell
interactions from RNA-seq data [15], we envision that it
can be also applied to study autoimmune, inflammatory,
and infectious diseases.
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