
Grasse et al. Genome Medicine  (2018) 10:55 
https://doi.org/10.1186/s13073-018-0562-1
RESEARCH Open Access
Epigenomic profiling of non-small cell lung
cancer xenografts uncover LRP12 DNA
methylation as predictive biomarker for
carboplatin resistance

Sabrina Grasse1,4†, Matthias Lienhard2†, Steffen Frese3, Martin Kerick4,5, Anne Steinbach1,6, Christina Grimm1,
Michelle Hussong1,7, Jana Rolff8, Michael Becker8, Felix Dreher9, Uwe Schirmer10,11, Stefan Boerno12,
Anna Ramisch2, Gunda Leschber3, Bernd Timmermann12, Christian Grohé3, Heike Lüders3, Martin Vingron2,
Iduna Fichtner8, Sebastian Klein13,14, Margarete Odenthal13, Reinhard Büttner13, Hans Lehrach4,9,
Holger Sültmann10,11, Ralf Herwig2† and Michal R. Schweiger1,4,7*†
Abstract

Background: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide
and is primarily treated with radiation, surgery, and platinum-based drugs like cisplatin and carboplatin. The major
challenge in the treatment of NSCLC patients is intrinsic or acquired resistance to chemotherapy. Molecular markers
predicting the outcome of the patients are urgently needed.

Methods: Here, we employed patient-derived xenografts (PDXs) to detect predictive methylation biomarkers for
platin-based therapies. We used MeDIP-Seq to generate genome-wide DNA methylation profiles of 22 PDXs, their
parental primary NSCLC, and their corresponding normal tissues and complemented the data with gene expression
analyses of the same tissues. Candidate biomarkers were validated with quantitative methylation-specific PCRs
(qMSP) in an independent cohort.
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Results: Comprehensive analyses revealed that differential methylation patterns are highly similar, enriched in
PDXs and lung tumor-specific when comparing differences in methylation between PDXs versus primary NSCLC.
We identified a set of 40 candidate regions with methylation correlated to carboplatin response and corresponding
inverse gene expression pattern even before therapy. This analysis led to the identification of a promoter CpG
island methylation of LDL receptor-related protein 12 (LRP12) associated with increased resistance to carboplatin.
Validation in an independent patient cohort (n = 35) confirmed that LRP12 methylation status is predictive for
therapeutic response of NSCLC patients to platin therapy with a sensitivity of 80% and a specificity of 84% (p < 0.01).
Similarly, we find a shorter survival time for patients with LRP12 hypermethylation in the TCGA data set for NSCLC
(lung adenocarcinoma).

Conclusions: Using an epigenome-wide sequencing approach, we find differential methylation patterns from primary
lung cancer and PDX-derived cancers to be very similar, albeit with a lower degree of differential methylation in primary
tumors. We identify LRP12 DNA methylation as a powerful predictive marker for carboplatin resistance. These findings
outline a platform for the identification of epigenetic therapy resistance biomarkers based on PDX NSCLC models.

Keywords: Non-small cell lung cancer, NSCLC, Epigenomics, Predictive biomarker, Therapy response, DNA methylation,
Patient-derived xenografts, Carboplatin resistance
Background
Lung cancer is the leading cause of cancer-related deaths
worldwide. Non-small cell lung cancer (NSCLC) com-
prises approximately 85% of all lung cancers [1]. Besides
radiation and surgery, NSCLC is treated with chemothera-
peutic agents like platinum-based drugs and targeted ther-
apies. Nonetheless, the 5-year overall survival rate of
NSCLC patients is only 18% [2]. A major problem is the
intrinsic or acquired therapy resistance, occurring in ap-
proximately 50% of all cases. Thus, predictive biomarkers
to optimize patient’s therapy are urgently needed.
DNA methylation is one of the most stable epigenetic

modifications in mammalian cells. Furthermore, aberrant
DNA methylation is a feature not only of early carcino-
genesis, but also of therapy resistance mechanisms which
makes them promising biomarker candidates [3]. In
NSCLC, systematic genome-wide approaches have identi-
fied global hypomethylations and promoter-associated
hypermethylations, either by high-throughput methods or
targeted approaches [4–11].
Recently, several biomarkers predicting the therapy re-

sponse in lung cancer have been suggested including
IGFBP3 (insulin-like growth factor binding protein 3),
TGM2 (transglutaminase 2), and SLFN11 (Schlafen fam-
ily member 11) for cisplatin and DAPK (death-associated
protein kinase) for erlotinib and cetuximab. All of them
were identified in cell lines and encode transcription fac-
tors involved in cellular responses to stress and develop-
ment [12–15]. Of these, only IGFBP3 and SLFN11 were
additionally tested in clinical tissue samples derived from
NSCLC patients but still showed a rather poor predictive
power in lung cancer [15, 16]. These values are in-
creased when IGFBP-3 methylation values are combined
with EGFR, IGFIR, and AKT protein phosphorylation
[12]. However, for these analyses, additional three immu-
nohistochemistries are needed which render the assays
highly sensitive to inter-laboratory variability and are
more labor-intense than sole DNA methylation analyses.
One possible explanation for the rather low comparability

to clinical samples may be due to the cell line-based primary
screening approach, as cancer cell lines have adapted to
ex vivo growth and thus do not appropriately model primary
tumors [17, 18]. For this reason, we aimed to identify ther-
apy resistance biomarkers in patient-derived NSCLC xeno-
graft (PDX) models. PDX models have been shown to
closely mimic the primary tumor profiles of gene copy num-
ber, mutation distribution, gene expression, and phospho-
proteome level [17–19]. Furthermore, studies with 450 K
methylation arrays showed that PDXs are more similar to
primary tumors than cell lines and that they clustered ac-
cording to their pathohistological subtype [17, 18].
We analyzed genome-wide methylation patterns in PDX

models derived from 22 NSCLC patients, as well as corre-
sponding normal lung tissues. For each model, we deter-
mined the tumor response rate by treating the animals
with carboplatin. Next to DNA methylation analyses, we
also performed gene expression analyses and integrated all
data with the respective carboplatin response. We identi-
fied LRP12 as a resistance biomarker in the PDX models
and further validated the methylation differences of re-
sponders and non-responders in an independent cohort
with single-locus methylation analyses in 35 additional
formalin-fixed and paraffin-embedded (FFPE) primary
tumor samples. Finally, examination of clinical follow-up
data from our cohort as well as from the TCGA data set
revealed that patients with LRP12 promoter hypermethy-
lation have significantly decreased progression-free and
overall survival after platinum therapy.
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Methods
Experimental design
The objective of this study was to investigate DNA
methylation alterations associated with intrinsic resist-
ance and to identify biomarkers predicting patient’s out-
come in NSCLC. We used 22 NSCLC PDXs and
corresponding normal tissues to determine the therapy
response to carboplatin for each tumor, generated
genome-wide DNA methylation and gene expression
profiles of each model, and used them to identify epigen-
etic therapy resistance biomarkers. Sample size ranged
from n = 22 (PDXs and corresponding lung normal tis-
sue) to 32 PDXs for methylation or expression analyses,
respectively. Candidate biomarkers were validated in an
independent human primary NSCLC cohort for which
response data was obtained by clinical investigations.
According to availability, material of 35 formalin-fixed
embedded samples was analyzed by methylation-specific
PCR (PCR) by quantitative methylation-specific PCR
(qMSP).

Clinical samples
Two independent sets of clinical samples were used: (1)
patient-derived xenograft models for genome-wide
methylation analysis and identification of potential epi-
genetic therapy resistance mechanisms and predictive
biomarkers and (2) FFPE samples of primary NSCLC pa-
tients to validate selected biomarker candidates.
Establishment of PDX models from NSCLC patients

was ethically approved (EA3/001/06) by the local ethical
review committee (Charité, Berlin). All mice used in the
study were handled in accordance with the Guidelines
for the Welfare and Use of Animals in Cancer Research
[20]. Their use was approved by the local responsible au-
thorities (approval no. G 0030/15), according to the Ger-
man Animal Protection Law. Patient lung tumor
samples were implanted subcutaneously into 1–3 nude
or NOD/SCID mice (in-house breeding) [21]. For the
generation of PDXs, we used primary NSCLC tumor
samples with a tumor cell content ranging from 5% to
more than 70%. Commonly, cohorts are preselected for
high tumor content (e.g., > 60% in The Cancer Genome
Atlas (TCGA)) to facilitate analysis of tumor-specific
features. However, this filtering excludes a large fraction
of samples and is thus not appropriate for diagnostic
purposes. Therefore, we implicitly included samples with
low tumor content in our study.
For each PDX model, six mice were exposed to carbo-

platin (75 mg/kg/day) per injection or solvent intraperi-
toneal at days 1 and 8 and tumor growth was measured
by caliper measurement for 2–6 weeks.
Once tumors became palpable, tumor size was mea-

sured weekly with a caliper-like instrument. Individual
tumor volume V was calculated with the following
formula: V = ½ length × width2. Tumors of each model
were further transplanted into 2–4 mice after a tumor vol-
ume of approx. 1.2 cm3 was reached. Where possible,
snap-frozen tumor samples from each passage (up to ten
passages) were conserved and stored at − 80 °C for further
analysis. Patients’ data and clinical characteristics like age,
sex, tumor stage, smoking history, prior treatment, and
histology of primary NSCLC used for the establishment of
PDX are given in Additional file 1: Table S1. Chemosensi-
tivity testing was performed as described before in male
NMRI:nu/nu mice [22]. To this end, 6 mice were ran-
domly assigned to each control or treatment group.
Treated to control (T/C) values of relative tumor volume
were used for the evaluation of the treatment.
For the validation, cohort patients who underwent rad-

ical (R0) surgery for NSCLC followed by adjuvant
chemotherapy with cis-/carboplatin were selected from
the cancer database of the Chest Hospital Berlin.
Thirty-five pairs of patients with and without relapse
of NSCLC were identified and matched for age, sex,
histological subtype, and tumor stage. Tumor tissue
of these patients was collected from formalin-fixed
paraffin-embedded (FFPE) material. The use of clinical
data and patient’s material was approved by the institu-
tional review board of the ELK Berlin Chest Hospital.

Methylation profiling by MeDIP-Seq
Isolation of DNA and RNA from frozen tissue samples
was performed using a TissueLyser and the AllPrep
DNA/RNA/Protein Mini Kit according to manufac-
turer’s recommendations. For MeDIP-Seq analyses,
1.3 μg of genomic DNA was randomly sheared using the
Covaris S2 or M system to assess a size range of 100 to
300 bp. TruSeq DNA Sample Preparation Kit (Illumina)
was used to perform Illumina library preparation. Frag-
mented DNA was end-repaired into dA-tailed frag-
ments, and TruSeq indexed adaptors were ligated.
Library preparation reactions were cleaned up by
AMPure XP beads (Beckman Coulter). Adapter-ligated
DNA was denatured at 95 °C for 10 min and subjected
to the methylated DNA immunoprecipitation (MeDIP)
procedure. MeDIP was performed using 5 μg of a
monoclonal antibody directed against 5-methylcytidine
(Eurogentec) and coupled to magnetic Dynabeads with
M-280 sheep antibody to mouse IgG (Thermo Fisher
Scientific). Denatured DNA and antibody coupled to the
magnetic beads were incubated at 4 °C for 4 h in IP buf-
fer (10 mM sodium phosphate buffer (pH 7.0), 140 mM
NaCl, 0.25% Triton X100). The reaction was washed
three times with IP buffer, and DNA was eluted from
the beads in elution buffer (50 mM Tris-HCl (pH 7.5),
10 mM EDTA, 1% SDS) at 65 °C for 15 min. To separate
the antibody, the DNA was treated with proteinase K for
2 h at 55 °C and methylated DNA was recovered
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using the QIAquick PCR Purification Kit. MeDIP effi-
ciency was conducted with quantitative PCR (qPCR)
targeting self-designed spiked-in controls as well as
further methylated and unmethylated genomic regions
[23]. On average, 93.5% specificity and 30.3 fold enrich-
ment of immunoprecipitation reaction using spiked-in
controls were achieved.
Following MeDIP enrichment, libraries were

PCR-amplified, size-selected, and quantified using the
Quant-iT dsDNA HS Assay Kit and a Qubit 1.0
Fluorometer (Invitrogen). Libraries were multiplexed
and sequenced using the Illumina HiSeq2000 platform.
Processing of MeDIP-Seq data
MeDIP paired-end reads were aligned using bwa Version
0.7.12-r1044 with default parameters [24]. In order to re-
move sequencing reads that originated from mouse DNA
fragments, MeDIP reads from both PDX and human tissue
samples were aligned to the mouse/mm10 reference se-
quence first. Only read pairs that did not align to the mouse
reference were aligned to the human reference GrCh37/
hg19 and processed in R 3.3.2 with QSEA version 1.0 [25].
According to the average fragment lengths, which are ran-
ging from 177 to 277 bases for the individual samples, the
size of the genome-wide windows was set to 250 bases.
CNVs were calculated from MeDIP data by considering
only fragments without any CpG, based on 1 Mb windows.
CpG enrichment profiles were calibrated based on mean
Illumina 450 k methylation values from TCGA LUSC and
LUAD cohorts (n = 172) and regions with mean methyla-
tion > 90% and variance < 0.05 [26, 27]. Subsequently,
region-wise methylation levels were estimated for all sam-
ples and used for PCA analysis.
DMRs between PDX and normal were detected with

the QSEA software, by estimating the region-wise max-
imum likelihood differences of average MeDIP enrich-
ment rate between PDX and normal using generalized
linear models (GLMs). These likelihoods were compared
to the maximum likelihood average rates for all samples,
using likelihood ratio tests. From the test statistics, the
false discovery rates (FDR) were computed, to adjust for
multiple testing [28]. The same approach was applied in
order to detect DMR associated with therapy response
(rDMRs), using the log relative tumor volume as a quan-
titative predictor, on which the enrichment depends in
the GLM. LHBs were defined as regions that are at least
1 Mb in size, with at least 20% reduced average methyla-
tion level (as estimated from MeDIP-Seq) in PDX com-
pared to normal. Within QSEA, genomic regions were
annotated with gene, exon, and promoter (transcription
start site ± 2 kb) information from RefSeq, ENCODE
TFBS, and model-based CpG islands, all obtained via the
UCSC table browser.
Targeted bisulfite sequencing with the Methyl-Seq
technology
Methyl-Seq experiments were performed using the Sure-
SelectXT Methyl-Seq Target Enrichment System by Agi-
lent Technologies. Briefly, 3.0 μg genomic DNA was
sheared to a size range between 100 and 300 bp
using the Covaris S2 or M system. Libraries were pre-
pared according to manufacturer’s recommendations.
Adapter-ligated DNA was denatured and subsequently
hybridized to a RNA capture library for 24 h at 65 °C. Fol-
lowing the capturing of the RNA-DNA hybrids using
streptavidine-coated magnetic beads, DNA was separated
from the beads, eluted, and bisulfite-treated using the Epi-
Tect Bisulfite Kit. The bisulfite-converted DNA libraries
were PCR-amplified and purified. A further amplification
step was performed to add barcode sequences for sample
pooling and sequencing analysis via the Illumina
HiSeq2000 platform. The indexed DNA pool was analyzed
with the 2100 Bioanalyzer High Sensitivity DNA assay
(Agilent Technologies) prior to sequencing.

Processing of Methyl-Seq data
Adapter sequences in paired-end Methyl-Seq reads were
trimmed using trim_galore version 0.4.0 and then aligned
using bismark v0.10.0 based on bowtie2 version 2.2.1 with
default parameters [29, 30]. Corresponding to the MeDIP
alignment strategy, Methyl-Seq reads were aligned to the
mouse/mm10 reference first. Read pairs, which did not
match the mouse genome, were aligned to the human ref-
erence GrCh37/hg19. Methylation levels were called at
CpG sites covered by 20 or more reads using bismark_-
methylation_extractor. To compare CpG-wise methyla-
tion levels from Methyl-Seq to region-wise MeDIP
methylation levels, Methyl-Seq methylation values were
averaged within 250 base regions.

Immunohistochemistry
Tissue samples were incubated in 4% formalin for 24 to
36 h and subsequently embedded in paraffin. For tissue
analysis, 3–5-μm sections were cut and deparaffinized
and antigen retrieval was performed using an enzymatic
approach (proteinase K), or heat antigen retrieval with
either citrate at pH 6.0, or EDTA at pH 9.0 for 20 min.
Washing steps were performed using phosphate-bu
ffered saline. The following primary antibodies were
used: AE1/3 (CKAE1/3, Zytomed, #AE1/AE3&5 D3),
Cytokeratin 5 (CK5, Zytomed, #XM26), Cytokeratin 7
(CK7, Dako, #OV-TL12/30), CD56 (Zytomed, #123C3),
TTF-1 (Dako, #8G7G3/1), and p40 (Zytomed, #polyclonal).

siRNA knockdown of LRP12 and cell viability assays
Details can be found in Additional file 2: Additional
Methods.
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Methylation-specific PCR on FFPE material
DNA from FFPE material was isolated using Maxwell®
16 FFPE Plus LEV DNA Purification Kit (Promega) for
the Maxwell® 16 instrument. Subsequently, amplifiable
DNA was quantified using qPCR.
Methylation-specific primer pairs were designed using

MethPrimer [31]. DNA was bisulfite-converted using the
EpiTect Kit. Conversion efficiency was assessed with a
Calponin-PCR [32]. Quantitative methylation-specific
PCR (qMSP) was performed using KAPA SYBR FAST
qPCR Master Mix (Peqlab) and primers LRP12_M_fw
5′-tcgaaaggagttatttttaattcga-3′, LRP12_M_rev 5′-taca
aaatcctattaattccccga-3′, LRP12_U_fw 5′-ttgaaaggagt-
tatttttaatttga-3′, and LRP12_U_rev 5′-tacaaaatcctat-
taattccccaaa-3′. Amplified region comprises CpG1 (chr8:
chr8:105,600,307) and CpG2 (chr8:105,600,467) and is
visualized in Additional file 2: Figure S1. EpiTect control
DNA was used as controls. The derived methylation
levels of the FFPE samples were normalized to the corre-
sponding region-specific values derived from the com-
mercial control DNA. Average methylation levels were
determined of resistant and sensitive patients, separately,
and significance of average methylation differences be-
tween both groups was calculated for each region using
a Mann-Whitney test.
Gene expression profiling by microarray
Gene expression profiles of 32 PDXs and 22 corre-
sponding normal lung tissues were generated using
the whole-genome microarray. Briefly, RNA was iso-
lated with the RNase-Free DNase Set according to
the manufacturer’s protocol. After quality control,
genome-wide gene expression analysis was carried out
using the Illumina Human-HT-12 v4 Expression
BeadChip gene expression platform (DKFZ Genomics
and Proteomics Core Facility (GPCF)) comprising
48,107 probes. Illumina GenomeStudio v2011.1 was
used for the export of summarized probe intensities.
Next, the expression data were imported into R/Bio-
conductor for further processing together with associ-
ated metadata. Data were background-corrected,
variance-stabilized, and quantile-normalized with the
lumi Bioconductor package [33, 34]. Annotations for
all probes were obtained via the illuminaHumanv4.db
Bioconductor package [35]. Only probes considered to
be of perfect or good quality according to these an-
notations were kept, leaving 34,410 probes for ana-
lysis. For gene-level analyses, duplicate probes were
collapsed to the probe with the highest mean
expression across samples, resulting in 23,777 genes.
Each PDX sample was set into relation to the median
of all normal tissue samples to detect differentially
expressed regions (DERs).
Statistical analysis, pathway analyses
Statistical analysis comparing two groups was performed
using unpaired, two-sided Wilcoxon rank sum test
(Mann-Whitney test). For the determination of survivals
in relation to LRP12 methylation status, a total of 35 pa-
tients were screened for LRP12 promoter methylation
status and were found either hypermethylated (LRP12+,
16 patients) or non-hypermethylated (LRP12−, 19 pa-
tients). Taking into consideration patients that were cen-
sored (LRP12+, 5 out of 16; LRP12−, 14 out of 19), we
generated Kaplan-Meier survival curves for overall sur-
vival (OS) and progression-free survival (PFS) using the
Eureka statistics online tool with 95% confidence inter-
vals (http://eurekastatistics.com/kaplan-meier-survival--
curve-grapher/). Statistical testing of differences between
the survival curves was based on a log-rank test using
the R/Bioconductor package “survival” [36]. For further
statistical analyses of genome-wide DNA methylation
and gene expression, please see under “processing of
MeDIP-Seq data or Methyl-Seq data” and “gene expres-
sion profiling by microarray.”
For pathway analysis of the 2380 promoter-associated

rDMRs, Ingenuity Pathway Analysis software IPA (In-
genuity Systems®, Qiagen) was used. The score (−log p
value) of an enriched signaling pathway is calculated
using Fisher’s exact test and indicates the likelihood that
a gene will be found in a network due to random chance
(p values ≤ 0.05 were considered as significant). Ingenu-
ity’s upstream regulator analysis in IPA is a tool that pre-
dicts upstream regulators based on the literature and
compiled in the Ingenuity® Knowledge Base. The activa-
tion Z-score is an estimate of the status of the upstream
regulator using the level of gene expression of known
target genes. Z-scores greater than 2 or smaller than − 2
can be considered as significant. The overlap p value is
calculated using Fisher’s exact test, and as significance, p
values < 0.01 were used.

Results
MeDIP-Seq reveals DNA methylation profiles of PDX
models of NSCLC
For the analyses of DNA methylation patterns of NSCLC
tumors, we profiled 22 PDX models and 22 normal lung
tissues obtained from the same patients, as well as six
primary NSCLC tumors from which PDXs were gener-
ated (Fig. 1a, Additional file 1: Table S1).
Tumor volumes from mice treated with carboplatin

were set into relation to tumors treated with solvent
alone (Fig. 1a, b, Additional file 1: Table S2). Next, in
order to screen for epigenetic biomarkers, which allow
for identification of nonresponding patients before they
received chemotherapy, we performed MeDIP-Seq ana-
lyses of all six primary NSCLC and all 22 PDX tumors
and normal lung tissues (Additional file 2: Figure S2).

http://eurekastatistics.com/kaplan-meier-survival-curve-grapher/
http://eurekastatistics.com/kaplan-meier-survival-curve-grapher/


Fig. 1 Establishment of genome-wide DNA methylation profiles of patient-derived xenograft (PDX) models of NSCLC tumors. a Establishment
and chemosensitivity testing was performed as described before [21]. Patient’s NSCLC tumors were resected and transplanted into
immunodeficient NOD/SCID mice for tumor growth. Each patient-derived xenograft (PDX) tumor was passaged into 12 NMRI-nu/nu mice for
chemosensitivity testing, with 6 mice as untreated control group and 6 mice as treatment group. Tumor size was measured, and the relative
tumor volume was determined to distinguish between sensitive and resistant NSCLC tumors. The open square with arrow indicates sample
resection for targeted next-generation sequencing, DNA methylation profiling, and gene expression analyses. b Chemotherapeutic
responsiveness of PDX to carboplatin is given as average relative tumor volume of treated to control in %. c Dendogram reflecting
hierarchical clustering of methylation differences between PDX versus normal tissue of MeDIP- and Methyl-Seq (BS)-derived data. d Scatterplot
of average methylation differences of six PDX normalized to its corresponding normal samples analyzed by MeDIP- and Methyl-Seq. e
Principal component analysis of MeDIP-Seq derived data of 22 PDXs (orange), their corresponding normal lung tissues (green), and 6 primary
NSCLC tumors (violet). PCAs have been computed in QSEA, based on the % methylation (beta) values of all windows overlapping promoter
regions. From these, QSEA selects the 1000 most variable regions over all samples. Plotted are the first and the second components.
n number
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PDXs were profiled prior to carboplatin treatment. We
used the analysis package QSEA to estimate absolute
methylation levels from the MeDIP-Seq enrichment
data [25]. Sequence fragments originating from the
mouse genome were excluded from further analysis
(Additional file 2: Table S3). For a subset of samples
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(six PDX tumors and corresponding normal tissues),
we validated the estimated methylation levels with
bisulfite-based Methyl-Seq target enrichment assays
covering 84 Mb of the genome including 3.7 million
CpGs (Additional file 2: Table S4). Methylation levels
obtained from MeDIP-Seq and Methyl-Seq were highly
correlated (Spearman correlation 0.923) (Fig. 1c, d).
Fig. 2 PDXs maintain DMRs of primary NSCLC tumors. a Circular representation
ring) and the corresponding PDX (p value < 0.001; outer ring). The black line wi
250 bp window. Blue dots mark the hypomethylated and red dots the hyperm
overlapping DMRs of primary NSCLC tumor methylation compared with PDX m
Shown are the number of differential methylations for PDXs (dark blue) and prim
PDXs (p value < 0.05). d High-density scatterplots comparing global methylation
COAD, and PRAD. LUAD lung adenocarcinoma, LUSC lung squamous carcinom
Immunohistochemistry of primary lung tumor and its corresponding xenograft. Re
(p40, TTF-1, and CD56) comparison of a squamous cell lung tumor that is positive
PDX models amplify DNA methylation profiles of primary
NSCLC tumors
To estimate the similarity of the methylation profiles be-
tween primary tumors and tumors generated from PDXs,
we performed principal component analyses (PCA) from
all MeDIP-Seq data (Fig. 1e). We observed that DNA
methylation profiles separate PDX tumors and normal
of overlapping DMRs of a primary NSCLC tumor (p value < 0.01; inner
thin this circle represents the baseline (zero), colored dots reflect DMRs of
ethylated regions. b High-density scatterplot reflecting correlation of
ethylation. c Density plot with all regions detected as DMRs in PDXs.
ary NSCLC (light blue) within significantly overlapping DMRs counted in
of respective histological PDXs with TCGA 450 K Arrays data LUAD, LUSC,
a, COAD colon adenocarcinoma, PRAD prostate adenocarcinoma. e
presentative histological (hematoxylin-eosin; H&E) and immunohistochemical
for p40 (nuclear) and negative for TTF-1 and CD56. Scale bars 100 μm
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tissues, while primary tumors cluster between PDX and
normal samples. Genome-wide Spearman correlations of
the primary tumors and the corresponding PDXs ranged
from 0.37 to 0.49 (Additional file 2: Figure S3 and Table
S5). Thus, we wondered whether the apparent similarity
of primary tumors to normal samples and the rather low
genome-wide correlation values are a result of low tumor
cell content in the primary tissue samples (Additional file 2:
Table S5). To this end, we compared methylation alter-
ations of PDXs and primary tumors with respect to nor-
mal tissues (Fig. 2a, b and Additional file 2: Figure S4).
Most alterations in the PDXs were also observed in the
corresponding primary samples albeit with a lower fold
change. The mean log fold change of MeDIP enrichment
within hypomethylated regions of the primary tumor is −
0.4 (FC = 0.75). For PDXs, the same regions feature more
extreme changes in the same direction with a mean logFC
of − 2.8 (FC = 0.14) indicating that the hypomethylation is
greater in the PDXs (Fig. 2c and Additional file 2: Figure
S5). Similarly, hypermethylations appear to be increased
in PDXs. A well described characteristic of solid tumors is
the presence of large hypomethylated blocks (LHBs),
which are associated with lamina-associated domains
(LADs) [37]. In order to verify the integrity of PDXs with
respect to this feature, we checked for LHBs in PDXs. We
detected LHBs in all samples with varying magnitude
co-occurring with LADs (Additional file 2: Figure S6).
At this point, the question remained whether the PDX

epigenomes truly reflect lung cancer methylomes or
whether they are an outgrowth of proliferating cells with-
out specificity for lung cancer. For this, we compared
PDXs and primary tumor methylation data to Illumina
450 K array methylation data from the TCGA network for
lung adenocarcinoma (LUAD, n = 475 tumor, 32 normal),
lung squamous carcinoma (LUSC, n = 370 tumor, 42 nor-
mal), and other cancer cohorts (Fig. 2d) [26, 27, 38, 39].
The analysis revealed a rather high correlation of the
PDXs within this study (6 adenocarcinoma and 12 squa-
mous cell carcinoma) with the TCGA data with an average
Spearman correlation of 0.72 for LUSC and 0.67 for
LUAD. In contrast, other tumor types revealed a lower
correlation to the PDXs, like prostate adenocarcinoma
(PRAD, n = 512 tumor, 50 normal) with an average correl-
ation of 0.37 and colon adenocarcinoma (COAD, n = 313
tumor, 38 normal) with an average correlation of 0.58.
This again indicates a specific enrichment of lung cancer
cells during the engraftment process, which was also ap-
parent upon thorough histological review (Fig. 2e, Add-
itional file 2: Table S6). Again, correlation of the primary
NSCLC tumors to respective TCGA data was lower com-
pared to PDXs supporting the low tumor content in the
six primary tumors used here (squamous primary tumor
(n = 4) with LUSC, 0.33; primary adenocarcinoma (n = 2)
with LUAD, 0.43).
Taken together, these results indicate an enrichment of
cancer cells during the engraftment process, while main-
taining the tumor-specific methylation profile. In conse-
quence, PDX samples amplify the aberrant methylation
signals of primary NSCLC samples with low tumor con-
tent, facilitating the detection of individual alterations.
Next, we investigated the genome-wide methylation

differences between PDX and corresponding primary
normal tissue. We identified 368,133 significant DMRs
(adjusted p value < 0.0001 and methylation difference >
20%), corresponding to about 3% of all genome-wide
windows. The DMRs are dominated by hypomethylation
corresponding to 2.9% of the genome, whereas 0.2% is
affected by hypermethylation. As expected, we found
CpG islands specifically hypermethylated in PDX tu-
mors, in particular in combination with known regula-
tory elements like transcription factor binding sites
(TFBS) and promoters which are 55 and 43 fold
enriched for hypermethylation compared to the genomic
background, respectively (Fig. 3a).
As transcription factors regulate gene expression

levels, and binding of transcription factors to DNA can
be influenced by DNA methylation, we also analyzed
ENCODE-defined TFBS for their differences in methyla-
tion levels [40]. Hypermethylated regions were highly
enriched for binding sites of polycomb repressor com-
plex 2 [41] components, such as SUZ12 and EZH2: re-
spectively, 34 and 20.5% of all binding sites of these TFs
are hypermethylated, which corresponds to an odds ratio
of 149 and 90.5 (Fig. 3b). Accordingly, the promoters of
several HOX genes (HOXD12, HOXD10), which are
known to be regulated by polycomb repressor complex 2
(PRC2), were among the most significantly hypermethy-
lated regions (data not shown), confirming previous re-
sults implying a role of DNA methylation in PRC2
dysregulation in NSCLC [42, 43]. NSCLC-specific hypo-
methylation in TFBS was found to be enriched for SWI/
SNF chromatin remodeling factors (SMARCC1, 2) and
FOS gene family members, like FOS, FOSL1, and FOSL2
(Fig. 3c). The SWI/SNF chromatin remodeling complex
has already been implicated in cisplatin therapy response
[44, 45]. This indicates that DNA methylation at TFBS is
an important feature of cancer methylomes with a likely
functional impact.

Distinct DNA methylation alterations determine
carboplatin resistance
To identify resistance DMRs (rDMRs), i.e., DMRs with po-
tential applicability as biomarkers for chemotherapy resist-
ance, we aimed to select genomic regions where DNA
methylation is associated with tumor volume after carbo-
platin response in PDX. Compared to the methylation dif-
ference between tumor and normal, this association is
rather small and we identified only 70 rDMRs after



Fig. 3 Differentially methylated regions in PDXs derived from NCSLC. a Barplot representing the fold enrichment of global distribution of differential
hyper- and hypomethylation in PDX overlapping with regions of interest (ROIs). b Fold enrichment of the seven most significantly differentially
methylated ENCODE-defined TFBS in PDXs for hypermethylation and in c for hypomethylation, respectively. The bars represent the odds ratio of the
fraction of DMRs within all windows that are overlapping respective regions of interest (e.g., promoters, TFBS) over the fraction of DMRs in the whole
genome. TFBS transcription factor binding site, CGI CpG island
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correction for multiple testing at a relaxed FDR of 10%
which were also frequently located in histocompatibility
(HLA) complex regions which are difficult to target with
primer-based technologies (e.g., methylation-specific PCR).
In order to obtain a broader set of potential rDMRs, we
used the test statistic as a score to rank potential candi-
dates. Additionally, orthogonal locus-specific validations
will then help to discriminate between true-positive and
false-positive candidates. We first selected genomic win-
dows at a p value of 0.01 (without correction for multiple
testing) resulting in 43,065 rDMR candidates with 27,011
gains of methylation and 16,052 loss of methylation in
non-responders. These candidates are mainly located
within introns (50.9%) and intergenic regions (37.4%); 5.6%
are associated with exons, and 6.2% with promoter regions
(2678 rDMRs at promoters of 2380 genes) (Fig. 4a).
Ingenuity pathway analysis [46] of the 2380 genes re-

vealed an enrichment of signaling pathways known to
play a role in platinum drug therapy resistance, like
ephrin B [47] and Wnt/ß-Catenin signaling [48], autoph-
agy [49], EMT [50] (Additional file 2: Figure S7).
Upstream regulator analysis identified genes involved in
DNA methylation and transcriptional repression signal-
ing including members of the DNA methyltransferase
family (DNMT 1, 3A), histone modifiers (HDAC3), and
methyl-binding proteins (MBD1, MBD2). It has recently
become apparent that DNA methylation and histone
modification pathways can be dependent on one another
and that this crosstalk can lead to reversible and/or
long-term gene repression/activation [51–53].
Furthermore, by linking rDMRs to TFBS, we found top

candidates associated to platin resistance in the literature
(Fig. 4d): The most significantly enriched binding sites with
hypermethylation include binding sites for RNA polymer-
ase III subunits (POLR3G, BRF1, RPC155) and binding
sites for NFE2 (nuclear factor, erythroid 2) which is a para-
log of NFE2L2. RNA polymerase III synthesizes small
RNAs which might be involved in therapy modulation [54].
An overexpression of NFE2L2 has been shown to be associ-
ated with cisplatin resistance in bladder and ovarian carcin-
oma [55, 56]. Among the most significantly enriched
hypomethylated TFBS, we found the PRC2 component



Fig. 4 Carboplatin-resistant tumors exhibit distinct changes in DNA methylation. a Pie chart of the genomic distribution of carboplatin rDMRs (p value < 0.05).
b Circos plot of the localization and frequency of the 837 most significantly differentially hypermethylated regions (p value 0.0001 and absolute correlation of
methylation to relative tumor volume > 0.5). Red: hypermethylated regions in responders (263 regions); blue: hypermethylated regions in non-responders
(574 regions). c Heatmap representation of unsupervised hierarchical clustering analysis of 40 candidate promoter-associated carboplatin rDMRs. The upper bar
represents the sensitivity phenotype of the PDXs (red: non-responders; green: responders). d Barplot showing the most significantly differentially hyper- and
hypomethylated ENCODE-defined TFBS in carboplatin non-responders. e Tumor vs normal methylation differences show methylation differences between non-
responders and responders in large hypomethylated blocks (LHBs) on chromosome 1 as example. Green highlighted strong responder (relative tumor volume
< 9%, n=4), light green intermediate responder (relative tumor volume > 9%/< 30%, n=5), gray weak responder (relative tumor volume > 30%/< 78%, n=4),
and black non-responder (relative tumor volume > 78%, n=4). The dark red line indicates LADs (lamina-associated domains) that are associated in location with
LHBs. TFBS transcription factor binding site, CGI CpG island
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SUZ12 (suppressor of zeste 12 homolog). To answer
whether or not the change in methylation indeed causes a
change of the binding affinities of these transcription fac-
tors, additional experiments are required. However, studies
exist where more than 50% of transcription factors seem to
be affected by CpG methylation [46].
Next, we investigated differences between responders

and non-responders in the intensity of the LHBs
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described above. Those LHBs with differential LHB in-
tensity tend to be more predominant in non-responders
compared to responders (e.g., on chromosome 1, 2, and
4, as shown in Additional file 2: Figure S6).

Epigenetically driven carboplatin response genes include
tumor suppressors
In order to further explore the functional impact of car-
boplatin rDMRs, we profiled the gene expression for 32
of the PDXs and compared promoter methylation and
gene expression.
We found that for 1376 genes of the 2380 genes with

promoter rDMRs, DNA methylation is correlated to
tumor volume (Spearman correlation test p value < 0.05,
Additional file 1: Table S7). Of these 1376 genes, 40 have a
correlation between gene expression and tumor volume
(Spearman correlation test p value < 0.05; Fig. 4c) which is
in opposite direction to the methylation/tumor volume
correlation (Additional file 1: Table S8). Interestingly, this
list contains a number of genes known or suspected to en-
code tumor suppressors including (TSG) (http://www.uni-
prot.org/) HIC1, LRP12, and ST13.
HIC1 (hypermethylated in cancer 1) is hypermethy-

lated in carboplatin-resistant xenografts and is involved
in the regulation of the TP53-dependent DNA damage
response and of the Wnt signaling pathway. In NSCLC,
a low expression is associated with shorter survival [57].
Another TP53 target, the short variant of tumor necrosis
factor-α-induced protein 8 (TNFAIP8), is overexpressed
in numerous human cancers, including NSCLC, and
seems to repress TP53 function [58]. Here, we find the
promoter significantly hypomethylated, indicating a rele-
vance in therapy resistance of carboplatin. ST13 is in-
volved in the heat shock response and mediates the
association of HSP70 and HSP90 (heat shock proteins
70 and 90). It has been described to be downregulated
in colorectal carcinoma tissue [59]. LRP12 (LDL
receptor-related protein 12) encodes a transmembrane
protein that is differentially expressed in many cancer
cells and that has recently been shown to be frequently
hypermethylated in B cell lymphoma [60]. Downregu-
lated LRP12 is associated with tumorigenesis. However,
its function as tumor suppressor or oncogene is contro-
versial. In oral squamous cell carcinoma for example,
Garnis et al. found LRP12 overexpressed [61].

LRP12 promoter methylation predicts patients’ outcome
and is associated with increased overall and progression-
free survival
To identify predictive biomarkers, we focused on the list
of 40 genes with methylation and expression correlations
to tumor volumes. Of particular interest as cancer bio-
markers are tumor suppressor genes (TSGs) (http://
www.uniprot.org/). In our study, the tumor suppressor
gene LRP12 (LDL receptor-related protein 12) featured
among the strongest fold changes in methylation and cor-
relation to carboplatin response with a distinct hyperme-
thylation (log2FC 2.65, p value 0.009, Spearman
correlation 0.52, p value 0.01) and downregulation in the
resistant tumors. To further analyze if LRP12 is associated
to carboplatin resistance, we performed siRNA knock-
down experiments in NCI-H23 carboplatin-sensitive cells.
Cell viability of cells with LRP12 knockdown is signifi-
cantly higher in presence of carboplatin compared to that
with a control siRNA treatment (Additional file 2: Figure
S8). Thus, LRP12 seems to be indeed involved in carbo-
platin resistance mechanisms.
To validate the methylation changes of LRP12 and to

extrapolate the finding from the PDX mouse models to
clinical samples, we analyzed the methylation status of
LRP12 in an independent patient cohort by applying
quantitative methylation-specific PCRs (qMSP) to
formalin-fixed paraffin-embedded (FFPE) primary
NSCLC tumors. This cohort consisted of 35 patients
with radical (R0) surgery and adjuvant chemotherapy
with cis-/carboplatin. In a period of ~ 3 years, 15 of the
patients had a relapse and are thus classified as
non-responders. The cohort consisted of 10 matched re-
sponder/non-responder pairs regarding tumor state,
histology, age, and gender (Additional file 2: Table S9).
LRP12 methylation was found significantly higher in

FFPE samples with relapse (non-responders) compared
to that in samples without relapse (responders) (on aver-
age 13.9% vs 7.4%; Mann-Whitney test p value 0.003)
(Fig. 5a). For the LRP12 promoter, the threshold of 8.3%
methylation yielded maximum accuracy. Using this
threshold, 12 out of 15 nonresponding NSCLC tumors
and 16 out of 19 responding tumors are classified cor-
rectly, which corresponds to a sensitivity of 80% and a
specificity of 84%.
Integrating clinical follow-up data of the same clinical

validation cohort (second cohort), we generated
Kaplan-Meier curves to test whether LRP12 methylation
status impacts the survival of the patients after platin ther-
apy. As a cut-off, we used 8.3% methylation as determined
from the ROC analyses (Additional file 2: Figure S9a).
LRP12 methylation status in patients classified as re-
sponders (without relapse, loss of LRP12 methylation) cor-
related with a significantly higher OS (chi-square 5.8216;
p value 0.0158) as well as a higher progression-free sur-
vival (PFS) (chi-square 5.8298; p value 0.0158) based on a
log-rank test (Fig. 5b and Additional file 2: Figure S9b).
Next, we used methylation data from 449 LUAD patients
from the TCGA data set to investigate whether methyla-
tion of LRP12 is associated to survival. Indeed, we found
that high methylation (above 8.5%) results in a significant
shorter survival than with low methylation of the LRP12
promoter (Additional file 2: Figure S10). Thus, LRP12



Fig. 5 LRP12 DNA hypermethylation as independent predictive factor for clinical outcome in NSCLC. a LRP12 methylation level in FFPE samples of
primary NSCLC tumors of the validation cohort with relapse (non-responders, n = 15) or without relapse (responders, n = 19, conversion efficiency > 3)
determined by qMSP (Mann-Whitney test, p < 0.003). b Kaplan-Meier analysis of overall survival (OS) of the same cohort as used in a with respect to
LRP12 methylation status (LRP12+ methylation > 8.3%, 16 patients; LRP12−, methylation < 8.3%, 19 patients). The statistical significance of the log-rank
test is shown. The mean time to survival in years is indicated for each group. Confidence interval is marked in violet
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methylation levels provide a means for the determination
of carboplatin response and progression-free survival
(PFS) and OS.

Discussion
Chemotherapeutic resistance, intrinsic or acquired, is
still a major challenge in managing NSCLC therapy. In
order to facilitate a personalized treatment of NSCLC
patients, we aimed at identifying predictive DNA methy-
lation biomarkers using patient-derived xenografts
(PDXs). PDX models have revealed a high degree of
similarity with the original clinical tumor sample in re-
gard to histology, immunohistochemistry, as well as gen-
omic profile. Besides this, the chemotherapeutic
responsiveness of the PDX has been shown to resemble
the clinical situation for different tested chemotherapeu-
tic agents [21, 22, 62, 63], promising transferability of
the obtained results.
This is a major advantage over cancer cell line models,

in which previously predictive DNA methylation bio-
markers were identified [12–15]. The evaluation of these
biomarkers in primary NSCLC tissues revealed a weak
transferability to clinical samples [15, 16].
Since the use of PDXs for cancer epigenomics is not

yet comprehensively established, we investigated the
similarity of the PDXs and corresponding primary
tumor methylomes. We also included tumors with low
tumor cell content to resemble, as much as possible,
the clinical situations. Compared to previous publica-
tions that were mainly restricted to promoter
methylations, we analyzed genome-wide methylations
using the MeDIP-Seq technology [18, 19, 64–66]. Using
the recently published QSEA method, we transformed
enrichment to absolute methylation levels by consider-
ing the local CpG density as well as CNVs [25]. We val-
idated these methylation levels using the Methyl-Seq
target enrichment approach.
We observed that aberrantly methylated regions in the

PDX tumors were reflected in the corresponding pri-
mary NSCLC tumors, albeit the levels of differential
methylation of the PDX samples were much higher com-
pared to the levels within the primary tumors. This ef-
fect is most likely due to a growth advantage in the
PDXs, and thus, tumor cells are enriched during the en-
graftment process. It might also explain the increase in
variant allele frequencies in PDXs compared to primary
tumors [18, 67]. Similarly, Guilhamon et al. found in-
creased methylation levels after the engraftment process
at CGI shores and gene bodies [64].
We used methylation profiles of 22 PDX and corre-

sponding normal tissue samples and identified 368,133
tumor-specific DMRs. We found hypomethylation of
large blocks (LHBs) with accompanied focal hyperme-
thylation [68–70]. Focal hypermethylations were mainly
associated with promoter regions and in particular with
TFBS [40]. Epigenetically affected TFBS included bind-
ing sites of PRC2 components, like SUZ12, EZH2, RNA
polymerase III, and FOS family members. Interestingly,
we found FOS target sites to be mainly hypomethylated
which would prevent FOS binding and which might
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function as regulatory mechanism counter-acting cellu-
lar proliferation [71].
We used chemotherapeutic response data obtained by

chemosensitivity testing in the PDXs to characterize
tumor samples according to their carboplatin sensitivity
phenotype. We identified differentially methylated regions
associated with therapy response (rDMRs). These regions
are enriched for hypermethylated SMARC binding sites in
the nonresponding PDX. SMARC proteins belong to the
SWI/SNF chromatin remodeling complex and have been
associated with resistance to platinum-based drugs like
cisplatin [72–74].
Enrichment analysis of the subset of the 2380

promoter-associated rDMRs revealed signaling pathways
known to be involved in platinum resistance, like ephrin
B and Wnt/β-catenin signaling. Upstream analyses and
enrichment analyses of transcription factor binding sites
showed DNA methylation, histone methylation, and
chromatin re-modeling to be involved in carboplatin
therapy resistance on several levels.
Finally, we identified genomic regions where DNA

methylation levels are correlated to carboplatin response
and suggest these regions as candidates for predictive bio-
markers. Validation of the candidates in an independent
cohort of primary NSCLC patients confirms the potential
of LRP12 as predictive biomarker of platinum-based ther-
apy in NSCLC.
Thus, the outlined strategy from patient’s tumor mater-

ial over PDX models, epigenome profiling, and validation
in an independent cohort renders a straightforward ap-
proach to extract clinically relevant epigenetic markers.
The detour over PDXs enables an accurate acquisition of
chemotherapy response rates in a genetic homogenous
background even with monotherapies, which is impossible
to achieve by a restriction to patient’s tissue materials
only.

Conclusions
We have identified a candidate epigenetic predictive bio-
marker for platin therapy resistance in NSCLC. The sensi-
tivity and specificity we achieved exceeds other predictive
biomarkers and was validated on a second, independent co-
hort of patients. However, additional validations are re-
quired for an estimation of the usability. Tissue material
used was formalin-fixed and paraffin embedded (FFPE),
thus immediately mirroring the clinical situation and im-
proving the applicability of the markers. Our experiments
were initiated with epigenome-wide profiles of NSCLC
PDXs which were treated with chemotherapy or solvent
alone as control. Since the genetic background of the PDXs
is identical and the response rate can be quantified, it
makes PDXs ideal for chemical compound tests. Addition-
ally, we show that the tumor cells are outgrown in the
PDXs which significantly facilitate the detection of
epigenetic alterations. Based on these findings, other
chemotherapies are queried for potent epigenetic predictive
markers. Next urgent steps include an integration of the
LRP12 epigenetic test into the Network Genomic Medicine
(NGM) Lung Cancer platform, Europe’s largest platform
for molecular testing, to improve the accuracy of the
prediction of platin therapy resistance and a transfer into
clinical applications.
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