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Machine learning identifies a compact
gene set for monitoring the circadian clock
in human blood
Jacob J. Hughey

Abstract

Background: The circadian clock and the daily rhythms it produces are crucial for human health, but are often
disrupted by the modern environment. At the same time, circadian rhythms may influence the efficacy and toxicity
of therapeutics and the metabolic response to food intake. Developing treatments for circadian dysfunction, as well
as optimizing the daily timing of treatments for other health conditions, will require a simple and accurate method
to monitor the molecular state of the circadian clock.

Methods: Here we used a recently developed method called ZeitZeiger to predict circadian time (CT, time of day
according to the circadian clock) from genome-wide gene expression in human blood.

Results: In cross-validation on 498 samples from 60 individuals across three publicly available datasets, ZeitZeiger
predicted CT in single samples with a median absolute error of 2.1 h. The predictor trained on all 498 samples used
15 genes, only two of which are part of the core circadian clock. By then applying ZeitZeiger to 475 additional
samples from the same three datasets, we quantified how the circadian clock in the blood was affected by various
perturbations to the sleep–wake and light–dark cycles. Finally, we extended ZeitZeiger (1) to handle intra-individual
variation by making predictions based on multiple samples taken a known time apart, and (2) to handle inter-
individual variation by personalizing predictions based on samples from the respective individual. Each of these
strategies improved prediction of CT by ~20%.

Conclusions: Our results are an important step towards precision circadian medicine. In addition, our generalizable
extensions to ZeitZeiger may be applicable to the growing number of biological datasets that contain multiple
observations per individual.
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Background
Much of human physiology, from sleep to immune func-
tion, has a daily rhythm [1]. Driving many of these
rhythms is a system of molecular oscillators, called circa-
dian clocks, that is active in nearly every tissue in the
body [2] and that senses and entrains to daily rhythms
in our environment [3, 4]. In animal models, disrupting
the circadian system can have a wide range of pheno-
typic consequences [5–7]. In humans, circadian dysfunc-
tion is linked to a number of health conditions,
including cancer [8], major depressive disorder [9], and

obesity [10]. At least some of the circadian dysfunction
in humans seems to be a result of multiple features of
the modern environment, e.g. shift work and reduced
exposure to sunlight [11, 12]. Consequently, improving
circadian function by photic, behavioral, or other means,
which has been called chronomedicine, could greatly
benefit human health [13].
At the same time, increasing evidence suggests that

circadian rhythms influence the efficacy and toxicity of
therapeutics [14, 15] as well as the metabolic conse-
quences of food intake [16]. For example, over half of
the 100 best-selling drugs in the U.S. target a protein
whose messenger RNA (mRNA) in mice shows a circa-
dian rhythm in at least one organ [17]. Using knowledge
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of the body’s circadian rhythms to optimize the timing
of interventions has been called chronotherapy [18, 19].
Large-scale implementation of chronotherapy may be

more difficult than first thought, however, as evidence
suggests that at any given time of day, different individ-
uals’ circadian rhythms are at different points in the
cycle. For instance, the circadian phase of entrainment
(as measured by the Munich Chronotype Questionnaire)
varies highly between individuals [20], as well as with
age and between day-workers and shift-workers [21].
Furthermore, the circadian phase of clock gene expres-
sion in hair follicle cells is correlated with morningness/
eveningness preference [22]. These observations imply
that the optimal timing of a given intervention may vary
from one person to another.
Thus, one critical component of both chronotherapy

and chronomedicine, which together might be called
precision circadian medicine, is a method to monitor the
state of a person’s circadian clock(s). For chronotherapy,
such a method would be an input; for chronomedicine,
an output. Unfortunately, current methods for monitor-
ing the clock in humans have limitations. One such
method is to measure the sleep–wake rhythm, either by
questionnaires, sleep logs, or actigraphy [23]. Although
measuring sleep–wake is non-invasive and has led to
valuable insights [24, 25], sleep is also influenced by
non-circadian processes and has a complex relationship
with the various clocks throughout the body [26].
Another method to assess the state of the clock is to

measure melatonin in plasma or saliva. In particular,
dim light melatonin onset (DLMO) is the gold standard
for circadian phase [27–29]. Determining DLMO, how-
ever, requires collecting many samples under controlled
conditions over at least several hours, making it imprac-
tical for widespread use or for monitoring the circadian
clock in real time. Furthermore, DLMO only reflects the
phase of the central clock in the suprachiasmatic nu-
cleus (which controls secretion of melatonin by the pin-
eal gland), making it unable to report on clocks in other
tissues. Efforts to address these limitations have shown
promise, but studies so far have included only a small
number of individuals and have measured either a small
set of pre-selected genes (which may not be optimal) [30]
or a large number of metabolites by mass spectrometry
(which limits the potential for wide application) [31].
One resource for robust and efficient biomarker dis-

covery is publicly available “omics” data [32, 33]. Al-
though there are now multiple publicly available datasets
of the circadian transcriptome in human blood, these
data have not yet been integrated to develop a marker of
the circadian clock.
We recently developed a supervised learning method

called ZeitZeiger, which can learn to predict a periodic
variable (e.g. time of day) from a high-dimensional

observation [34]. In our initial study, we used ZeitZeiger
to train a predictor of circadian time (CT) from transcrip-
tome data in mice. The predictor, which was based on the
expression of only 13 genes, achieved state-of-the-art ac-
curacy and also detected when the circadian clock was
phase-shifted or dysfunctional. Given ZeitZeiger’s success
at determining the state of the clock in mice, we wondered
how it would perform on data from humans.
Here we applied ZeitZeiger to three publicly available

datasets of circadian transcriptome data from human
blood. We found that ZeitZeiger learned to use a small
set of genes to accurately predict the CT of a single
sample. This allowed ZeitZeiger to detect how circadian
gene expression is affected by various perturbations to
the light–dark and sleep–wake cycles. We then investi-
gated two ways to improve prediction accuracy: first, by
using groups of samples, and second, by combining the
initial prediction with that from a personal predictor
trained only on samples from the respective individual.
Our results are an important step towards precision cir-
cadian medicine.

Methods
Processing time of day and other metadata
The nomenclature for time of day in chronobiology is
complicated [35]. Complicating our analysis even fur-
ther, each of the three datasets used a different experi-
mental design (Table 1) and not all of the datasets
included individual-level information for DLMO (which
would indicate the phase of the central clock).
For both GSE48113 and GSE56931, the first samples

were collected after participants had been in the lab no
more than one day. For GSE39445, the first samples
were collected after participants had been in the lab for
nine days, but for each participant, the midpoint of sleep
opportunities in the lab coincided with the midpoint of
sleep in that participant’s habitual sleep–wake schedule.
In all three datasets, then, the phase of each participant’s
circadian clock should be based primarily on the natural
light–dark cycle. Therefore, we calculated the time of
day for each sample in each dataset (e.g. 08:00) relative
to sunrise time, using either the dates and geographic lo-
cation provided by the authors (GSE56931) or the aver-
age sunrise time in the respective geographic location
(GSE39445 and GSE48113). We refer to this adjusted
time of day as “circadian time.”
For GSE48113, because DLMO for each participant in

each condition was not provided, we calculated “time
relative to DLMO” using the average DLMO for each
condition (21:59 for “in phase,” 23:03 for “out of phase”),
as provided in the original publication [36].
Unless otherwise specified, we used only the samples

from the control condition in each dataset. This corre-
sponded to “sleep extension” in GSE39445, “in phase
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with respect to melatonin” in GSE48113, and “baseline”
in GSE56931.

Processing gene expression data
Gene expression from the three microarray datasets was
processed using MetaPredict [37] (https://github.com/
jakejh/metapredict), which maps probes to Entrez Gene
IDs (where necessary, summarizing the expression of
multiple probes using the median), performs intra-study
normalization and log-transformation, and uses ComBat
[38] to perform cross-study normalization. The merged
data of control samples from all three datasets consisted
of 17,477 genes measured in 498 samples.

Using ZeitZeiger to predict CT
ZeitZeiger is a supervised learning method for periodic
variables, i.e. variables that are continuous and bounded
and for which the maximum value is equivalent to the
minimum value (e.g. the angle in polar coordinates
between 0 and 2π). ZeitZeiger uses the training obser-
vations to learn a sparse representation of the vari-
ation associated with the periodic variable, then
makes a prediction for a test observation using max-
imum likelihood [34].
Training a ZeitZeiger predictor involves the following

steps: (1) fitting a periodic smoothing spline to the in-
tensity of each feature (e.g. the expression of each gene)
as a function of the periodic variable [39]; (2) discretiz-
ing and scaling the spline fits; (3) using the discretized
and scaled fits to calculate sparse principal components
(SPCs; linear combinations of a small set of features)
[40]; and (4) fitting a periodic smoothing spline to the
intensity of each SPC as a function of the periodic vari-
able. Making predictions involves two steps: (1) project-
ing the test observation from feature-space to SPC-
space; and (2) using the spline fits of the SPCs from the
training data to perform maximum likelihood estima-
tion. The two main parameters of ZeitZeiger are
sumabsv and nSPC. The former corresponds to the
amount of L1 regularization used to calculate the SPCs,
while the latter corresponds to the number of SPCs used
for prediction. Other parameters of ZeitZeiger include
the number of knots for spline fitting and the number of
time-points for discretization. In this study, we always

used three knots (which constrains the spline’s flexibility
and makes it more resistant to noise) and 12 time-
points.
Tenfold cross-validation was performed such that all

samples from a given individual were in the same fold.
The folds were identical when predicting CT for groups
of samples and when training universal predictors to
provide universal guidance to the personal predictors in
leave-one-sample-out cross-validation. Because only
three datasets were available (two of which were from
the same research group), we elected not to perform
leave-one-study-out cross-validation or to have a separ-
ate group of validation samples from one or more of the
datasets. Instead, we only performed tenfold cross-
validation across all controls samples from all three
datasets. This means we may be underestimating
generalization error (perhaps cancelling out the imper-
fect standardization of time of day), but also makes it
simpler to use all the control samples when testing strat-
egies for improving accuracy.
We did use a leave-one-study-out strategy when ana-

lyzing the effects of sleep–wake perturbations. For each
dataset in turn, we trained a ZeitZeiger predictor
(sumabsv = 2 and nSPC = 2) on only the control samples
from two datasets, then tested on all samples (control
and “treatment”) from the third. Thus, prediction accur-
acies from this analysis are not directly comparable to
those from tenfold cross-validation, but within this ana-
lysis, one can still compare results for control and treat-
ment samples within each dataset.
The signal-to-noise ratio of circadian rhythmicity for

gene j was calculated as

SNRj ¼
maxf jðtÞ−minf jðtÞ

sj
;

where fj(t) is the expression of gene j as a function of
time t and sj is the root mean squared error of the peri-
odic spline fit.

Providing universal guidance when training personal
predictors
For each fold of tenfold cross-validation (performed
across individuals) and each sample of personal leave-

Table 1 Datasets of circadian gene expression in human blood

Dataset Ref. Control condition Perturbation condition Participants Samples
(control; perturbation)

Interval Age (mean ± sd) Female

GSE39445 [42] Constant dim
(after LD 16:8)

7 days of sleep restriction 24 221; 217 3 h 27.5 ± 4.3 y 42%

GSE48113 [36] Dim:dark 14.7:9.3
(after LD 16:8)

4 28-h days
(forced desynchrony)

22 147; 139 4 h 26.3 ± 3.4 y 50%

GSE56931 [43] LD 14:10 1 night of sleep deprivation 14 130; 119 4 h 29.7 ± 8.9 y 57%

“Dim” corresponds to <10 lux in GSE39445 and <5 lux in GSE48113
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one-sample-out cross-validation (performed on samples
from a single individual), our procedure for universal
guidance worked as follows. First, samples from the
other nine folds (the universal training set) were used to
train a “universal” predictor (the same predictor used for
tenfold cross-validation in Fig. 1). Next, the training
samples from the current individual (i.e. the personal
training set) were filtered to include only those genes
used in the universal predictor, resulting in the shrunken
personal training set. Thus, universal guidance here ex-
ploits the fact that ZeitZeiger performs feature selection.
Finally, the shrunken personal training set was used to
train the personal predictor.

Extending ZeitZeiger for multiple samples and multiple
predictors
When making a prediction for a single sample x,
ZeitZeiger calculates the log-likelihood L(t|x), where t ∈
[0, 1) is the scaled periodic variable (e.g. time of day).
The predicted time t̂ is then

t̂ ¼ arg max
t∈ 0;1½ Þ

L tjxð Þ:

Now suppose we have a group of n samples, and for
each sample, we have the measurements xi and a time
difference τi, which is the time of the i th sample relative

to the time of a particular sample in the group. In the
simplest case, n = 1 and τ = 0. For two samples taken
anti-phase to each other, we could have τ1 = 0 and τ2 =
0.5. Now we can combine the log-likelihood for each
sample and make one prediction for the entire group as
follows:

t̂ ¼ arg max
t∈ 0;1½ Þ

Xn
i¼1

L t þ τið Þmod1jxið Þ;

where the mod operator means that times less than 0
or greater than 1 “wrap around” to be between 0 and 1,
and t̂ is the estimated time at which τ = 0.
Combining predictors can be done in two ways, the

first of which works similarly to combining samples.
Suppose we have a group of m predictors, where for a
given sample x, Lj(t|x) is the log-likelihood for predictor
j. For the situation of one universal and one personal
predictor, m = 2. The ensemble prediction is then

t̂ ¼ arg max
t∈ 0;1½ Þ

Xm
j¼1

Lj tjxð Þ:

The second way to combine predictors is to use the
circular mean. In this case, the ensemble prediction is

a

b c

Fig. 1 Using ZeitZeiger to predict circadian time in control samples from three datasets (tenfold cross-validation). a Boxplots of absolute error for
various values of sumabsv (regularization parameter) and nSPC (number of SPCs). b Boxplots of absolute error for each dataset at sumabsv = 2
and nSPC = 2. c Mean number of genes in the predictors from cross-validation for various values of sumabsv and nSPC

Hughey Genome Medicine  (2017) 9:19 Page 4 of 11



t̂ ¼ 1
2π

atan2
Xm
j¼1

sin 2πt̂ j
� �

;
Xm
j¼1

cos 2πt̂ j
� � !

:

This second way is simpler and, on our data, provides
a slightly larger improvement in accuracy. Therefore, all
ensemble predictions in this study are based on the cir-
cular mean.
Our current implementations implicitly weight each

sample or each predictor equally, but one could imagine
incorporating explicit weights into any of these calcula-
tions, then learning the weights through an additional
round of cross-validation.

Calculating phase differences in clock gene expression
Phase differences in clock gene expression between
control and perturbation conditions (Additional file 1:
Figure S4) were calculated as previously described [41].
Briefly, if f(t) is the spline fit of expression versus time
for a given gene in a given condition, we estimated phase
as the time of peak expression, i.e. argmax f(t). Calcula-
tion of phase differences accounted for the fact that t is
periodic, e.g. CT2 is 4 h ahead of CT22.

Results
Predicting CT of single samples in three datasets
We assembled three publicly available datasets of
genome-wide gene expression in human blood (Table 1)
[36, 42, 43]. Each dataset consisted of samples taken
throughout the day from individuals in a control condi-
tion and a condition in which sleep and the light–dark
cycle were perturbed. In the original publications, two of
the three perturbations were found to shift the phase of
melatonin secretion (for the third, melatonin was not
measured) [36, 42]. Therefore, to establish a baseline for
the clock in blood cells, we focused first on the control
samples (although even the control conditions in each
study were not identical). We merged and batch-
corrected the gene expression measurements [37, 38]
and standardized the time of day values (see “Methods”).
Using the combined data, we then performed tenfold

cross-validation, in which ZeitZeiger learned to predict a
sample’s CT based on its gene expression. We ran cross-
validation with a range of values for ZeitZeiger’s two
main parameters, sumabsv (which controls the amount
of regularization) and nSPC (which controls how many
SPCs are used for prediction). Samples from the same
individual were always in the same fold.
We evaluated the results of cross-validation in terms

of absolute error (absolute difference between predicted
and observed CT; Fig. 1a). The median absolute error
achieved by the optimal parameter values was 2.1 h
(interquartile range, 2.8 h). The expected absolute error
of a random predictor is 6 h. Similar to our experience

predicting CT using gene expression in mice [34], pre-
diction accuracy plateaued at sumabsv = 2 and nSPC = 2.
Prediction accuracy was similar across the three datasets
(Fig. 1b). On average, the predictors from cross-
validation trained with sumabsv = 2 and nSPC = 2 were
based on the expression of 15 genes (Fig. 1c). These re-
sults suggest that ZeitZeiger can use the expression of a
small number of genes to accurately predict CT from a
single sample of human blood.
To examine the circadian patterns that ZeitZeiger was

learning, we used the parameter values sumabsv = 2 and
nSPC = 2 to train a predictor on all control samples from
the three datasets. The SPCs calculated by ZeitZeiger,
each of which is a linear combination of genes, are de-
signed to explain variation in gene expression associated
with CT. The predictor’s two SPCs showed times of peak
expression that were shifted from each other by ~6 h
(Fig. 2a), similar to the multi-organ predictor of CT that
we trained on gene expression in mice [34]. Interest-
ingly, however, the expression of SPC 1 as a function of
CT was markedly non-sinusoidal. Moreover, of the 15
genes that formed the two SPCs (Fig. 2b), only two,
NR1D2 (REV-ERBβ) and PER1, are thought to be part of
the core circadian clock. Consistent with this observa-
tion, the signal-to-noise ratio of circadian rhythmicity
was generally lower for clock genes than for the 15 genes
in the predictor (Additional file 1: Figure S1). When we
allowed ZeitZeiger to predict CT using only core clock
genes, absolute error on cross-validation increased by a
median of 27% (P = 7 × 10–6 by paired Wilcoxon rank-
sum test; Additional file 1: Figure S2), demonstrating
ZeitZeiger’s ability to select the most informative genes.

Analyzing the effects of perturbations to sleep and
light–dark cycles
Having established a baseline for predicting CT in hu-
man blood, we next investigated how predictions of CT
were affected by the perturbation condition in each data-
set. Here we followed a leave-one-study-out strategy, in
which we trained a predictor (sumabsv = 2 and nSPC = 2)
on control samples from two datasets, then applied the
predictor to control and perturbation samples from the
third dataset.
The perturbations had several effects on predictions of

CT (Fig. 3 and Additional file 1: Figure S3). First, six
days of restricted sleep opportunity (GSE39445) wors-
ened prediction accuracy by 16%, consistent with weaker
circadian oscillations in gene expression [42]. Second,
the forced-desynchrony protocol (GSE48113), which
causes the central clock to go into free-run [36, 44], in-
duced an apparent phase delay of 2 h relative to the ori-
ginal light–dark cycle and increased variability in
prediction error by 42% (based on circular standard
deviation). Third, a single night of sleep deprivation with
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the lights on (GSE56931) induced an apparent phase delay
of 2.1 h, consistent with previous findings on the effect of
sleep deprivation and light on circadian phase in humans
[45–47]. These effects on predictions of CT, which were
based primarily on the expression of non-core clock genes
(Fig. 2), were largely consistent with the expression of core
clock genes (Additional file 1: Figure S4). In addition, the

phase delays in predicted CT induced by sleep restriction
(GSE39445) and forced-desynchrony protocol (GSE48113)
were similar, but not identical, to the corresponding delays
in DLMO (Additional file 1: Table S1), which suggests that
the circadian clock in blood cells may respond to these
perturbations slightly differently than the central circadian
clock in the brain.

Fig. 2 Properties of the predictor trained on all control samples from the three datasets (sumabsv = 2, nSPC = 2). a Expression of the two SPCs vs.
circadian time. Each point is a sample. Black curves correspond to periodic smoothing splines fit by ZeitZeiger. The signal-to-noise ratios of the
two SPCs are 3.06 and 2.01, respectively (compare to Additional file 1: Figure S1). b Genes and coefficients for the two SPCs. Genes are sorted by
their respective coefficients. The expression of a given SPC in a given sample corresponds to the dot product of the coefficients for that SPC and
the gene expression for that sample

Fig. 3 Applying ZeitZeiger to gene expression from perturbations of the sleep–wake and light–dark cycles. For each of the three datasets, a
predictor was trained on control samples from the other two datasets, then tested on all samples from the dataset of interest. a Violin plots of
error and (b) boxplots of absolute error for each condition in each dataset. Numbers above the plots indicate P values < 0.1 (circular ANOVA for
error and Wilcoxon rank-sum test for absolute error). For ease of visualization, boxplots of absolute error do not show three outliers in GSE39445,
one in GSE48113, and three in GSE56931. The left-most condition in each dataset is the control. In GSE39445, “restriction” refers to seven nights of
6-h sleep opportunity. In GSE48113, “out of phase” refers to the forced-desynchrony protocol in which sleep is out of phase with melatonin and
the central clock. In GSE56931, “deprivation” refers to one full day of sleep deprivation and “recovery” refers to a normal sleep opportunity the
next night
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To verify our results for the forced-desynchrony
protocol (GSE48113), we performed cross-validation
using the control and perturbation (“in phase” and
“out of phase”) samples together, in this case predict-
ing time relative to average DLMO in each condition
(see “Methods”). This analysis gave similar results as
before (Additional file 1: Figure S5A–C). In addition,
variability in prediction error for “out of phase” sam-
ples remained high, even when performing cross-
validation using only the “out of phase” samples
(Additional file 1: Figure S6), consistent with previous
observations that the forced-desynchrony protocol
disrupts circadian gene expression in the blood [36].
The predictor trained on all samples from GSE48113
(sumabsv = 2 and nSPC = 2) included many of the
same genes that were in the predictor trained on con-
trol samples from all three datasets (Additional file 1:
Figure S5D, E). We therefore focused on the control
samples for the remainder of our analysis.

Predicting CT using multiple samples
Although ZeitZeiger was originally designed to predict
the CT of a single sample, we wondered if prediction ac-
curacy could be improved by using multiple samples
from the same individual. We therefore extended
ZeitZeiger to make predictions for groups of samples,
where the time difference between each sample in the
group is known (see “Methods”). For each individual in
the three datasets, we then constructed groups of two
samples (taken either 8–9 h or 12 h apart) or three sam-
ples (taken over 12 h). We predicted the CT of each
group in tenfold cross-validation using sumabsv = 2 and
nSPC = 2 (group information is only used during testing,
not during training).
Compared to predictions based on a single sample,

predictions based on two samples taken either 8–9 h
apart were ~21% more accurate (0.43 h reduction in me-
dian absolute error; Fig. 4). Predictions based on two
samples taken 12 h apart or on three samples showed a
slight additional increase in accuracy (P > 0.3 by
Wilcoxon rank-sum test). These results suggest that
ZeitZeiger can use multiple relatively noisy samples to
make better predictions.

Personalizing predictions of CT
Because we previously found that ZeitZeiger can learn
to make accurate predictions even given small training
sets with low time resolution [34], we wondered if
ZeitZeiger could learn to accurately predict CT given
only the samples from a single individual (~8 control
samples per individual in the three datasets). To test
this, we performed leave-one-sample-out cross-validation
for each individual (sumabsv = 2 and nSPC = 2). Unfortu-
nately, the predictions from personal cross-validation were

only slightly better than random and much worse
than those from the original tenfold cross-validation
(Additional file 1: Figure S7).
Given that the merged dataset used throughout this

paper included the expression of 17,477 genes, we sus-
pected that ~8 samples per individual might not be
enough to prevent ZeitZeiger from overfitting. We
therefore devised a procedure for training personal pre-
dictors with “universal guidance,” which removes all fea-
tures (i.e. genes) from the personal training set except
for those selected by the “universal” predictor (i.e. the
predictor trained on samples from multiple other indi-
viduals; see “Methods” and Fig. 5a).
Using universal guidance, the personal predictors

achieved similar accuracy on leave-one-sample-out
cross-validation to the universal predictors on tenfold
cross-validation (Fig. 5b, c). We then combined the
universal and personal predictors into an ensemble
using the circular mean (see “Methods” and Fig. 5a).
Strikingly, the ensemble predictor was ~20% more
accurate than either single predictor, both on a per-
sample and per-individual basis (Fig. 5b, c and Additional
file 1: Figure S8). The improvement in accuracy was ro-
bust for predictions based on at least seven personal train-
ing samples (Additional file 1: Figure S9). Applying this
strategy of ensemble learning to groups of samples did not
improve accuracy further, likely due to the small number

Fig. 4 Predicting CT using various numbers of control samples
from the same individual. Boxplots of absolute error from tenfold
cross-validation. From left to right, the numbers of groups (one
prediction per group) were 498, 198, 200, and 121. Levels of
statistical significance (Wilcoxon rank-sum test): * P = 2.5 × 10–4,
** P = 1.9 × 10–5, *** P = 5.9 × 10–7. Other differences were not
statistically significant
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of samples in the personal training sets (Additional file 1:
Figure S10). Taken together, these results suggest that pre-
dictions based on a large training set from multiple indi-
viduals can be fine-tuned by predictions based on a
carefully constructed training set from the individual of
interest.
To further investigate the differences in circadian gene

expression between individuals, we employed our strat-
egy for universal guidance to train one predictor for each
individual. We found that the subset of genes selected
by ZeitZeiger (from the 15 genes in the universal pre-
dictor, as shown in Fig. 2) varied from one personal pre-
dictor to another (Additional file 1: Figure S11A).
Furthermore, although the difference between peak
times of SPC 1 and SPC 2 was largely consistent
across individuals (Additional file 1: Figure S11B), the
actual value of peak times was not (Additional file 1:
Figure S11C). These results suggest that even the 15
“consensus” genes show meaningful interindividual
variation in circadian expression.

Discussion
Developing treatments that improve the function of or
that account for the circadian system has the potential
to improve multiple areas of human health. Realizing
this potential, however, requires a robust method for
monitoring an individual’s circadian rhythm. Here we
developed a predictor of CT in human blood by applying
machine learning to genome-wide gene expression. We

demonstrated accurate prediction for single samples
using a small set of genes, then developed two strategies
that each improved accuracy by ~20%.
Both strategies rely on having multiple observations

per individual. The first strategy, combining samples
taken a known time apart, uses them at the prediction
step in order to deal with measurement noise and intra-
individual variation. The second strategy, combining
universal and personal predictors, uses them at the
training step in order to deal with inter-individual vari-
ation. An important component of the second strategy
was universal guidance, which uses feature selection in
the universal predictor to limit the variance of the per-
sonal predictor. Conceptually, our strategy for personal-
izing predictions is similar to an approach called
customized training, which involves finding training ob-
servations that look similar to a given test observation
[48]. Given current technology, the requirement for at
least six samples per individual is impractical. In the fu-
ture, however, it may be possible to personalize predic-
tions using samples from multiple individuals (e.g. those
with similar phases of entrainment) and by combining
tissue-based measurements with actigraphy.
Comparing our current results in human blood to our

previous results in multiple mouse organs, two main dif-
ferences emerge. First, our predictions here are less ac-
curate, a consequence of circadian gene expression in
humans being noisier (although here we analyzed only
blood, we have observed similar levels of noise in human

a

b c

Fig. 5 Personalized prediction of CT in control samples from the three datasets. All predictors were trained using sumabsv = 2 and nSPC = 2.
Levels of statistical significance (paired Wilcoxon rank-sum test): * P < 10–3, ** P = 7.4 × 10–5, *** P = 5.9 × 10–11. a Schematic of procedure for
training personal and ensemble predictors with universal guidance. For the training sets, the height represents observations and the width
represents features (e.g. genes). Universal guidance refers to filtering for only those genes used by the universal predictor. b Boxplots of absolute
error for universal (standard tenfold cross-validation), personal (leave-one-sample-out cross-validation for each individual), and ensemble (circular
mean of universal and personal) predictors. c Boxplots of median absolute error (by individual) for universal, personal, and ensemble predictors
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brain [41]). This increased noise is likely due to genetic,
environmental, and tissue-specific factors (circadian
gene expression in mouse blood has not been mea-
sured). In addition, some datasets from mice are based
on tissue pooled from multiple animals, so a fair inter-
species comparison of the variation in circadian gene ex-
pression in a given tissue has yet to be made.
Second, in contrast to the predictor we developed in

mice, most of the genes in the human blood-based pre-
dictor are not thought to be part of the core circadian
clock. This difference is likely due to the fact that the
mouse predictor was trained on data from 12 organs,
which discouraged ZeitZeiger from selecting genes
whose circadian expression was tissue-specific (the vast
majority of genes [17]) and resulted in a strong enrich-
ment for core clock genes. In this study, the dominant
gene for SPC 1 was DDIT4 (REDD1), which encodes a
protein that inhibits mTOR signaling as part of the re-
sponse to cellular stress [49]. The dominant gene for
SPC 2 was FOSL2 (FRA2), which encodes a subunit of
the AP-1 transcription factor and is therefore involved
in numerous aspects of cell proliferation [50].
Because only 2/15 genes in the predictor are part of

the core clock and because circadian rhythms can be
“masked” by direct effects of the environment, it
seems reasonable to wonder if the predictor learned
by ZeitZeiger is truly a reflection of the circadian clock.
For multiple reasons, we believe it is. First, the control
condition in the sleep restriction dataset (GSE39445) was
a constant routine that minimized diurnal variation in
sleep and feeding [42]. Second, we obtained a similar set
of genes when analyzing the control samples from the
three datasets compared to analyzing control and perturb-
ation samples from the forced-desynchrony dataset
(GSE48113). Third, 4/10 core clock genes had a signal-to-
noise in the top 0.5% of all genes, suggesting that the cir-
cadian system is a major driver of the observed rhythmi-
city in the blood transcriptome. Fourth, both the top
genes in the predictor, DDIT4 and FOSL2, show circadian
rhythms in expression in rodents (in animals entrained to
light–dark, then released into constant darkness) [51, 52].
Furthermore, circadian expression of FOSL2 in rat pineal
gland is dependent on the central clock in the suprachias-
matic nucleus [51]. Although more work is needed to elu-
cidate the mechanistic details, these results suggest that
expression of the 13 non-core clock genes in the predictor
is regulated by the circadian clock.
If ZeitZeiger is capturing the progression of the clock,

as we believe it is, then our findings suggest that the
forced-desynchrony protocol, which decouples sleep–
wake from the body’s central clock [36], may also cause
a misalignment of ~1 h between the central clock and
the clock in blood cells. This misalignment, especially if
it affects clocks in peripheral tissues besides the blood,

may be relevant to the adverse metabolic and cardio-
vascular effects caused by the forced-desynchrony
protocol [53, 54].
One limitation of this study is that, because not all of

the datasets included individual-level information about
DLMO, we had no direct measurement for the internal
time of each individual’s central circadian clock. Conse-
quently, we trained ZeitZeiger to predict the externally
measured time of day. Some of the inaccuracy of the
predictions could therefore be due to interindividual
variation in the alignment of external and internal time
of day, i.e., the phase of entrainment. Such variation
could explain why the personal predictors in the ensem-
ble improved accuracy: they helped adjust for each indi-
vidual’s circadian phase. Before our approach can be
used clinically, it will need to be validated in prospective
studies. Such studies will likely involve testing ZeitZeiger
and/or the 15-gene set alongside melatonin and actigra-
phy outside the laboratory setting.

Conclusions
Although here we have focused on genome-wide gene
expression in blood, our methodology can be applied to
any type of data from any tissue. We are therefore hope-
ful that in addition to its utility in chronotherapy and
chronomedicine, ZeitZeiger will support efforts to study
how the circadian system integrates information from
multiple environmental cues [13], how circadian func-
tion is altered in pathophysiological conditions, and to
develop biomarkers for sleep-related and circadian-
related disorders [55]. Furthermore, as the number of
observations for each individual increases, e.g. in elec-
tronic medical records, our framework for personalizing
predictions may prove useful in many areas of precision
medicine.
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