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Abstract

Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However,
the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic
review. Recent work has shown that systematic integration of clinical phenotype data with genotype information
can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive,
analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian
Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype
and variant data into ranked diagnostic alternatives.

Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of
semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface
for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute
phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling
to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that
contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and
algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally
assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to
filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive
approach for disease gene discovery based on patient phenotypes.

Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating
performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported
variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases
with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen,
eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants.

Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by
more effectively utilizing available phenotype information, catalog data, and genomic knowledge.
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Background
Genome-wide technologies, including next-generation
sequencing, have become increasingly affordable, rapid,
and clinically utilized, particularly in comparison to sin-
gle gene screening. These revolutionary advances in data
acquisition have made large-scale genotyping an essen-
tial tool for genetic diagnostics and the identification of
novel deleterious variants potentially contributing to dis-
ease. They hold great promise for the future of molecu-
lar diagnosis and management of patients with genetic
disease [1–6]. Such technologies also provide particular
opportunity for the identification of causes of rare and
orphan diseases, which until recently have suffered from
a lack of computational tools to help bridge clinical gen-
omics and medical phenotyping and to facilitate diag-
nostics [7–10]. Despite the promise of available data, the
scale of variation presents an interpretive challenge: an
individual patient’s genome can have hundreds of rare
and putatively deleterious candidate causal variants [11].
Although in some instances diagnostic conclusions can be
made without extensive interpretation (e.g., aneuploidies
or nonsense variants in disease genes), the presence of nu-
merous potentially deleterious variants typically requires
substantial curation to identify the candidate deleterious
variant(s) that best matches the clinical phenotypes of
the patient in question [1–6, 12, 13]. The goal of inte-
grated diagnostic approaches is to bring together vari-
ant knowledge with clinically ascertained patient
phenotype characteristics to reach the best-informed
diagnostic conclusions (Fig. 1a).
Coincident with the rise of genome-wide data for diag-

nostics has been the development of standards and ca-
talogs for clinical sign-out [14–16]. Much focus has
addressed distinguishing clearly deleterious variants
from other variants with less clear contribution to dis-
ease. Central to these efforts has been the development
of compendia for matching observed variation to well-
vetted disease information [11, 17]. Some variants cata-
loged as “deleterious” can also appear in unaffected indi-
viduals, and therefore additional tools have become
necessary to identify from among the many candidate
variants in affected individuals the specific variants or
variant combinations—such as variant pairs for recessive
disease—that may explain observed phenotypes [18].
Parallel to the development of catalogs and standards

for variant analysis has been the development of system-
atic tools for representing patient information. The Hu-
man Phenotype Ontology (HPO), initially constructed in
2008, is a representation of the features of human dis-
ease and the hierarchical relationships that exist among
them [19]. A key application of this work is The Pheno-
mizer, a software tool for making comparisons of known
diseases to patient phenotypes [20]. This tool uses seman-
tic similarity methods to match patient characteristics, as

represented in the HPO, to the Online Mendelian
Inheritance in Man (OMIM) disease catalog, which is
also mapped to the ontology. The Phenomizer returns
candidates within the differential diagnosis as lists and
tables, with scores representing the quality of the
match [1–6, 20].
The goal of variant prioritization is to construct an

ordered ranking of observed genetic variation. This ob-
jective differs from that of a differential diagnosis, the
fundamental purpose of the Phenomizer. To bridge the
gap between disease rankings and gene or variant rank-
ings, extensions of this initial approach have been devel-
oped and applied to genome-wide diagnostic data. Two
such tools are PhenIX [11, 18, 21] and Phenomantics
[21], which directly leverage the Phenomizer’s semantic
similarity calculation to consider genome-wide genotypic
data. Both PhenIX and Phenomantics match query phe-
notypes to genes by collapsing phenotypes across the
diseases to which a gene’s variants have been associated.
This approach therefore effectively considers hybrid dis-
eases for use in semantic similarity calculations. Such
collapsing may be problematic because it can result in
both overestimation and underestimation of semantic
similarity matches of candidate genes to patient charac-
teristics (Fig. 1b). Furthermore, these disease diagnostic
intermediates are embedded within the computational
scheme and hidden from the user, preventing user-
informed exclusion of ruled-out diseases from diagnostic
consideration.
Phen-Gen [22] is an alternative approach that employs

a Bayesian framework to integrate semantic similarity
calculation with proteomic and variant pathogenicity
data. Although this procedure retains diagnostic inter-
mediates and does not collapse phenotypes across dis-
eases causally linked to variant genes, it still does not
permit additional data input to update or redirect ana-
lysis based on initial results. In addition, this tool is
more computationally intricate than PhenIX because it
recruits protein–protein interaction (PPI) data into its
analytic process. By including the protein interaction
neighborhood in the variant analysis, Phen-Gen relaxes
the distinction between matching a catalog of known
causal variant genes and the more exploratory process of
disease gene discovery. PHIVE is another algorithm that
combines variant pathogenicity scores and catalogs with
phenotype similarity analysis using human and mouse
data to rank variants, while hiPHIVE uses human,
mouse, and other model organism data to do so [23, 24].
Alternatively, eXtasy ranks variants by combining input
phenotype similarity scores with scores computed be-
tween input genotype data and “fused” human and non-
human genomic data, whereas Phevor combines input
phenotype data with data from human and non-human
ontologies to reprioritize externally pre-computed ranks
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[25, 26]. As with Phen-Gen, the inclusion in these analyses
of gene-to-phenotype data from non-human sources may
blur the line between disease gene discovery and clinical
application. Other tools, such as PhenoDB [12, 13, 27] and
PhenoTips [14, 28], facilitate the collection, classification,
analysis, and sharing of clinical indication data, but they do
not provide a phenotypically supported connection to par-
ticular variants detected in individual patients.
Another challenge for computational tools is the inter-

active integration of diagnostic or biomedical expertise

into the variant analysis process. Aside from brief initial
configuration settings, most available tools execute vari-
ant prioritization in a single step starting from initial
user input. Such approaches limit users from exercising
medical judgment to constrain, update, or curate algo-
rithmically determined initial results [17, 18, 21].
We hypothesized that molecular diagnostics could be im-

proved through the application of a transitive prioritization
scheme that links phenotypes to variants through medically
recognized disease intermediates (Fig. 1c). Moreover, we

A B

C

Fig. 1 Integration of phenotype with genotype in clinical diagnostics of genetic disease. a The diagnostic process is informed by both
phenotype and genotype data to arrive at diagnostic conclusions. During the clinical evaluation of patients with suspected genetic disease,
physicians observe phenotypic features, and these can be represented in controlled vocabularies (e.g., Human Phenotype Ontology, HPO),
amenable to subsequent computational analysis. Physicians also request the acquisition of blood or other tissue samples for molecular characterization
of the patient via genome-wide analyses, such as next-generation sequencing. Genotypic analysis provides high-resolution information concerning the
location, type, and zygosity of variants within the patient genome. Integration of these data identifies possible solutions that simultaneously match
both phenotype and genotype of the patient, excluding unlikely diagnostic candidates and improving differential diagnosis. b Our transitive
prioritization approach ranks genes and the variants they harbor against patient phenotype as a function of the discrete disease scores with
which the genes were previously associated. This avoids potential underweighting and corresponding ranking inaccuracies resulting from the
collapsing approach or direct term-to-gene HPO annotations. c We implemented a curatorial and visual transitive closure approach to infer
phenotypic prioritization scores for patient genotype variants. These scores are based on clinical indication similarity scores computed for
diseases in the catalog that are reportedly caused by variants in genes that contain filtered patient variants. When multiple diseases are cataloged to
result from variants in the same gene, we determine the gene’s score by aggregation of the scores of those diseases using an integrative function.
Variants then inherit the scores of the genes in which they are located. The manual curatorial exclusion of diseases or genes from consideration for
diagnosis transitively propagates to eliminate genes and variants from the differential
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hypothesized that by coupling this prioritization to a visual
and interactive user interface, we could better recruit users’
expertise to improve the diagnostic process beyond that of
methods driven by computational algorithms alone. To
pursue this approach, we developed novel web-based
software employing methods from statistical visualization,
software engineering, and semantic similarity analysis. We
assessed our tool using the existing OMIM catalog
mapped to the HPO [19]. We examined the ability of our
scheme to recover known substructures in this catalog—in
particular, its ability to distinguish disease classes as previ-
ously defined by the Human Disease Network (HDN)
[29], as well as the OMIM Phenotypic Series [18, 29, 30].
We then applied our method to exome variant data previ-
ously analyzed by the Baylor Miraca Genetics Laboratory
(BMGL) [31]. Our work demonstrates that the visual
interactive approach is practical and produces results that
closely match those of expert review, while simultaneously
extending the framework of semantic-similarity-based
analysis. We also elaborated this tool with a clearly
separated function for variant discovery driven by se-
mantic similarity methods. Collectively, these ad-
vances represent important contributions in the area
of algorithms and software development for genome-
wide variant analysis.

Methods
Semantic similarity
Semantic similarity is a computational technique that
compares sets of terms within a domain of knowledge.
The technique relies on controlled vocabularies, such as
ontologies, to compute approximate matches between
queries and related vocabulary terms [32]. In the diag-
nostic context of human clinical phenotype analysis,
semantic similarity calculations quantitatively compare
patient phenotype term sets to sets defined by a catalog
of known diseases or syndromes. We used as the sub-
strate for our calculations the HPO mapping of the
OMIM catalog, which provides descriptions of thou-
sands of known genetic diseases and the corresponding
genes in which causative variants have been observed
[20, 30, 33–35].
A variety of semantic scoring methods have been de-

veloped. These scoring methods can be broadly grouped
into two primary categories: (a) scoring approaches that
use the ontological topology alone and (b) approaches
which explicitly depend on catalog annotations to the
ontology. Topology-only scores focus exclusively on the
relationship structures between terms within an ontol-
ogy (e.g., the HPO) [36]. Similarities are determined by
traversing the directed acyclic graph to compute charac-
teristics of shared ancestry and descendants between
collections of nodes comprising queries and the target
database. One such method is the GO-Universal method

that functions by determining the “topological reachabil-
ity” of each ontological term. Distinctly, annotation-based
methods compute scores based on catalog annotations
to an ontology. Of particular importance for these
annotation-based scores is the concept of information
content—a logarithmic transformation of rareness of
annotations at or below each term as determined by as-
sociation of the knowledge catalogs (e.g., the set of
OMIM diseases) to the ontology.
To compute annotation-based similarities, we used a

version of the Resnik method [37], as symmetrized by
Köhler, et al. [20]. In what follows, let D = an annotated
disease, Q = a queried phenotype term set, d{t} = set of
diseases annotated with term t, A{t} = set of terms t and
all their respective ancestors, C{t} = set of terms t and all
their respective children, and ||x|| = quantity of elements
in set x. Let N be the total number of disease in the
catalog that are annotated to the ontology. The symme-
trized Resnik calculation is defined:
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We also implemented an ancestral term overlap
(ATO) method for computing semantic similarity. This
method sums the unique overlap between pairs of
phenotype sets, including their ontological ancestry. The
ATO differs from the previously reported term overlap
method [38] in that all ontological nodes shared between
a pair of phenotype sets are included in the calculation:

SOðD;QÞ ¼ ∥Afti∈Dg∩Aftj∈Qg∥

In an effort to optimize resolution of differences
among scored diseases, we examined weighting schemes
to extend the ATO by using catalog information content
[37] and weights determined by the topological informa-
tion specified for the GO-Universal method [39]. We
used the R statistical programming language to imple-
ment our calculations [40]. Because annotation to a
knowledge catalog is required for calculation of the
catalog-based information content, we excluded from
catalog-weighted similarity analysis all HPO terms for
which there exist no annotations to the OMIM catalog.
Conversely, owing to the nonlinearly decaying nature of
the GO-Universal calculation, a “reachability” topo-
logical position characteristic TPC of 0 was computed
for 322 low-depth HPO terms, resulting in an infinite
topological information content TIC = −log(TPC). We
compensated for this by manually assigning to these
terms a TIC of 2.225074 × 10−308, the machine minimum
for the R language.
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Semantic similarity analysis of known disease classes
We analyzed known collections of similar disease classes
previously and independently defined as disease classes by
the OMIM Phenotypic Series and the HDN [29, 30, 41].
Hypothesizing that diseases should be highly similar
within classes, but distinguishable between classes, we
used Resnik semantic similarity to calculate average scores
between disease pairs within the same classes and com-
pared these scores to those between pairs across different
classes. For each class, we computed as a signal-to-noise
ratio the quotient of mean within-class similarity and
mean between-class similarity.

Input data
The phenotypic component of the input, or query, to
our analysis is a set of HPO terms describing the clinical
presentation of a patient. The genotypic component is a
set of genes or gene variants. This genotype may be
provided as a simple gene list or in the form of a variant
call file (VCF), typically generated as a summary of next-
generation sequencing results. The provided list is
expected to be filtered to remove common variants
(e.g., >1 % population minor allele frequency [MAF])
or restricted to variant classes known to be inactivat-
ing mutations (e.g., frameshift or nonsense). Although
our software is informed by the ExAC database (v0.3)
[42] to annotate variants with observed frequencies,
our software is not currently intended to perform this
variant-frequency-based filtering step, but expects this
processed content as input.

Natural language processing of free text for phenotypes
To facilitate construction of query phenotype sets from raw
clinical notes, we used the Bio-Lark Concept Recognizer
application programming interface to provide natural lan-
guage processing for automated extraction of HPO terms
from input clinical presentation text narratives [43]. We
enabled automated export of these results in our software
to use these extracted phenotypes in subsequent semantic
similarity analysis.

Query-based disease prioritization
We used semantic similarity and HPO annotations to
estimate scores describing similarities of an input query
to the 7,746 OMIM diseases defined in terms of the
HPO phenotypes [19, 30, 44]. As described above, the
phenotypic input to our analysis is a set of HPO charac-
teristics, such as those observed during clinical examin-
ation of a patient or provided as indications for testing.
To calculate diagnostic rankings of disease, we compute
similarity scores via Resnik, ATO, ATO weighted by the
GO-Universal information content, or ATO weighted by
annotation-based information content algorithms. For
each query, scores are computed for 7,746 diseases. We

optionally limit the ranked disease list to diseases that
also have OMIM Morbidmap [30] annotations, are re-
stricted to particular genetic models (e.g., have only
dominant or recessive inheritance), contain user-defined
required phenotypes, or are causally linked in OMIM
Morbidmap to genes identified as having candidate
variations in the patient.

Transitive prioritization of variants
We use a transitive closure approach to infer scores for
the input variant gene set based on scores matching
phenotype queries to disease. The scores are restricted
to diseases in the catalog that are mapped by OMIM to
genes harboring variants in the input set. For all diseases
d{G} cataloged to result from variants in a gene G, we
use an integrative function F to determine the transitive
diagnostic relevance score ST for G against phenotype
query Q by aggregating the d{G} similarity scores:

ST G;Qð Þ ¼ F S
Di∈d Gf g

Di;Qð Þ
� �

We tested the mean, maximum, and sum as aggrega-
tion alternatives for F. To permit comparison between
the transitive prioritization approach and alternatives,
we implemented the direct gene scoring approach used
by Phenomantics [21], which analyzes the HPO term-
to-gene annotations, and that used by PhenIX [18],
which analyzes the unions of phenotypes collapsed
from all diseases associated with each gene via the
OMIM Morbidmap [30].

Genetic models
Our software implements an optional feature to im-
pose constraints determined by models of inheritance
of genetic disease. This feature rules out differential
intermediate diseases whose variant attributes do not
meet inheritance requirements. For autosomal domin-
ant disease, a single heterozygous variation is suf-
ficient to cause disease; when recessive disease is
suspected, both copies of an autosomal gene must be
impacted for disease to result. Invoking the logic of
the recessive model, the software restricts differential
matching consideration to diseases causally linked to
genes with homozygous variation or where compound
heterozygous variation is possible based on the pres-
ence of two or more qualified variants within a gene.
Once imposed, the inheritance model dictates disease
filtering that transitively propagates to variant
prioritization in the tool. The default mode of our
software imposes no constraint for suspected model of
inheritance.
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Global visualization
To create a global visualization of all 7,746 phenotype-
annotated diseases in the OMIM catalog, approximating
their similarities to each other and to individual patients,
we applied classical multidimensional scaling (MDS) to
semantic similarity calculations. MDS is a well-established
statistical procedure that has been extensively docu-
mented [45] and requires semantic-similarity-derived
dissimilarities as input. To transform similarity to dis-
similarity, we subtracted each score from the maximum
observed score, so that the maximum similarity be-
tween a pair of diseases has a corresponding dissimilar-
ity of 0 and the minimum similarity has the largest
dissimilarity. MDS determines a low-dimensional pro-
jection as output. This procedure renders the n × n
dissimilarity matrix into an n × k matrix, and for k ≤ 3
can be visualized as a low-dimensional best-fit map of
OMIM diseases [45].
To contextualize a patient on this map, we calculated

a convex combination of coordinates as the similarity-
weighted location determined by nearest m semantic
neighbors (e.g., the top five diseases most similar to the
query). To make the weights sum to one, weights of
each neighbor are determined by dividing each disease
similarity by the sum of similarities of the k-nearest
neighbors. The choice of m is a user-defined parameter,
defaulted at 5.

Local visualization: radar plot
To create a local visualization of only the top n semantic
disease matches to a phenotype query, we constructed
an alternate two-dimensional visual display. This local
map utilizes distance from the center to strictly repre-
sent diseases according to their exact similarities to the
query. We place the query itself at the origin and linearly
transform disease similarity scores into dissimilarity
distances via the equation below. In what follows, the
radius rD of disease D is calculated as a function of the
similarity S of a query Q to itself and to D.

rD ¼ S Q;Qð Þ−S Q;Dð Þ
S Q;Qð Þ

The circumferential placement of diseases is deter-
mined by a one-dimensional MDS analysis of the n can-
didate diseases and represents the best one-dimensional
approximation of the similarities of the n candidates to
each other. To circumferentially spread the n candidates
according to their similarities to each other, we scale the
observed range of MDS across 360 degrees. To overlay
attribute data for input variants in genes causally linked
to the n candidates by the OMIM Morbidmap [30], we
logarithmically scale candidate point size by variant
frequency in the ExAC database [42] and linearly scale

candidate point color by variant pathogenicity score
computed by MutationTaster [46]. We manually assign a
pathogenicity score of 1 to all exonic frameshift variants
for which MutationTaster scores are not returned.
Owing to its appearance, we refer to this local two-
dimensional representation as a “radar plot.”

Diagnostic curation
The identification of differential intermediate disease
rankings in our transitive prioritization approach pre-
sents a unique opportunity for clinicians to interact with
and curate results through our visual tool. Via the toggle
interface embedded into the radar map of our interactive
software, users can click diseases to “exclude” from the
differential the candidates that they are able to rule out.
Subsequently, the variant-associated ranking of diseases
excluded or “ruled out” from diagnostic consideration
are not included in the calculation of gene-level
scores, directly modifying the transitive prioritization
of variants.
To enhance this curatorial process, we implement a

“hovered disease” functionality to provide an instantan-
eous, detailed display of input variants in genes associ-
ated with the hovered disease as well as available MAF
and variant pathogenicity data. The hover function also
presents for the disease the complete set of known HPO
phenotype associations, that is, the subset of phenotypes
shared between the disease and query, incorporating
ontological ancestry to perform approximate matches
between phenotypes.

Phenotype suggestion
Analysis of phenotype and genotype queries can narrow
the differential to a subset of disease candidates that are
distinguished by particular phenotypic characteristics.
We implemented a procedure to propose that such diag-
nostically informative phenotypes be considered for
addition to the query. For each phenotype query, we
calculate these suggestion characteristics as the rarest
non-query phenotypes annotated to the diseases most
similar to the query.

Analysis of exome data
We evaluated the performance of our transitive
prioritization approach on the exome variants re-
ported for a previously published cohort of genetic
disease patients [31]. We obtained the detailed data
from the Whole Genome Laboratory at BCM, now
BMGL. Patient phenotype information was encoded
into the HPO by manual review of input clinical
forms for 245 cases. Filtered variant gene sets were
obtained for 49 (96.1 %) of the 51 cases with re-
ported diagnoses and 158 (81.4 %) of the 194 cases
without reported diagnoses. Allele-specific variant
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details were obtained from Exome VCF files for 47 (92.2
%) of the 51 cases with reported diagnoses and 157 (81.0
%) of the 194 cases without reported diagnoses. For each
of these cases, we integrated the encoded phenotype data
with the VCF data to compute transitive prioritization
ranks for the reported variant gene(s). We limited our
transitive evaluation to the 47 solved cohort cases with (1)
reported molecular diagnoses of variants in OMIM Mor-
bidmap [30] genes, (2) exome data available in VCF files
(median quantity of variant genes = 464), and (3) signed-
out variant cataloged in ClinVar [17]. For analysis by our
program, “OMIM Explorer” (OE), gene symbols were ex-
tracted from VCF data and ranked via transitive
prioritization; for HPO-direct and Morbidmap-collapse
analysis, these gene symbols were ranked directly via
Resnik semantic similarity; and for comparator tool ana-
lysis, case phenotype and VCF data were provided to
Phen-Gen [22], eXtasy [25], PhenIX [18], PHIVE [23], and
hiPHIVE [24] to rank variants. To convert gene aliases
into approved HUGO Gene Nomenclature Committee
gene symbols for comparator analysis, we used the org.H-
s.eg.db package (November 2015 release) for the R statis-
tical programming language. This step was accomplished
by mapping each gene symbol to its Entrez Gene identifier
and then mapping the Entrez identifier back to the corre-
sponding official gene symbol. This approach was used to
check and remap gene symbols as reported by the BMGL
as well as those annotated by the comparator tools.

Novel gene and variant discovery
Patients may present with variants in genes that are not
cataloged as previously known to cause disease. We
developed an algorithm for semantically driven disease
gene discovery to provide a facility for discovering new
gene-to-disease associations, an operation distinct from
catalog-based variant prioritization. First, we transitively
use patient phenotype-to-OMIM similarity scores to
identify the set of genes mapped to diseases most similar
to the patient phenotypes. We then use an external
knowledge source—in our case, the PINA 2.0 PPI
network [47]—to identify candidate genes as those genes
that are variant in the patient and highly connected to the
training genes. We explored a variety of scores to rank
candidates, including quantity of connections to training
genes and percentage of total connections of a candidate
that are training genes. The latter determines the default
ordering of gene results in our tool.

Variant reference data
Variant frequency data were obtained from the ExAC
Exome Aggregation Consortium (ExAC, v0.3), Cambridge,
MA, USA [42]. Variant pathogenicity data was computed
by MutationTaster and accessed via the Bioconductor
package rfPred [46, 48].

Webtool
We used RStudio Shiny [49], a web application framework
for the R statistical programming language, to create an
interactive, stateful implementation of our transitive vari-
ant prioritization and disease gene discovery workflow.
We have named this novel software “OMIM Explorer”
(OE) and made it available at http://www.omimexplorer.
com. Links at the site also provide access to detailed tutor-
ial videos describing the intended use of software features
and providing step-by-step instructions.

Session statefulness
The state of an OE session includes the visualization
settings, discovery settings, phenotype sets, variant sets,
free text clinical summary content, and user-supplied
curation to exclude specific disease from the differential.
The state of an OE session determines the ranking of
diseases, variants, and disease gene discovery candidates
via the semantic-similarity-based transitive closure logic.
Changes in session state immediately propagate to
changes in the ranking of diseases and variants. Users
can save, download, and share OE session files. These
files can also be archived for future use.

Results
Semantic similarity analysis of known disease classes
To assess the performance of semantic similarity, we
conducted analyses using known classes of related
disease defined by the OMIM Phenotypic Series and the
HDN classes. We restricted analysis to Phenotypic Series
groups comprising six or more disease entries that were
annotated to the HPO, ensuring meaningful comparisons
[30]. We performed within-versus-between calculations
for these disease classes. We found that within-class simi-
larities were substantially higher than those between
classes: signal-to-noise ratios were consistently well above
one, indicating strong signal in the semantic scores. The
mean similarities between classes were consistently low
and uncorrelated with class composition. We observed
similar tendencies with disease groups defined by the
HDN [29] (Additional file 1: Figure S1A, B).

Visualization of disease catalogs and differential
diagnosis via semantic similarity
The differential of potential disease diagnoses is essential
to the logic of transitive prioritization. We hypothesized
that visual engagement with these diseases would clarify
their role and help improve molecular diagnostics and
disease gene discovery. We used MDS of our high-
dimensional similarity calculations in semantic space to
generate a low-dimensional projection—a global map in
visual space—of the 7,746 diseases in the OMIM catalog
annotated with HPO phenotypes, making inter-disease re-
lationships easier to conceptualize (Fig. 2a). The resulting
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approximate visualization of the relationships between all
pairs of diseases and between each disease and the case
successfully maintained the within-group relationships for
known HDN and OMIM Phenotypic Series disease classes
in semantic similarity space (Additional file 2: Figure S2).
Additionally, we observed in three-dimensional visual
space the colocation of strictly-defined Phenotypic
Series classes (e.g., specific eye and skeletal diseases)
within their more broadly defined HDN class counter-
parts (e.g., all eye and skeletal diseases, respectively)
(Additional file 3: Figure S3).
We projected into this map a case from our published

exome cohort [31], in which bradykinesia, developmen-
tal regression, dystonia, motor delay, delayed speech and
language development, and ptosis were reported. We
computed coordinates for the case location as the convex
combination of the coordinates of the five diseases most
similar to the reported phenotypes. We then identified an
ordered differential of diseases potentially causing the
observed phenotypes in the case by highlighting all 174
diseases linked to filtered exome variant data. We linked
the diseases to variants through OMIM Morbidmap [30]
indications that suggested the 174 diseases were previ-
ously observed to be caused by variants in genes that also

contained potentially pathogenic rare variant alleles in the
personal genome of the patient (Fig. 2a). Overall, global
map projections were relatively accurate (Additional file 4:
Figure S4A), and allowed for simultaneous representation
of the proband, together with all 7,746 annotated diseases.
We observed, however, that diseases very similar to the
reported phenotypes in semantic space were neither con-
sistently nor sufficiently close in visual space, and vice
versa (Additional file 4: Figure S4B). In conjunction with
our convex combination coordinate projection, the MDS-
inherent mathematical compromises responsible for these
inadequacies therefore yielded maps that were too in-
accurate for inferring exact diagnoses from visual relation-
ships between a projected patient and differentials.
To remedy the limitations of the global map, we devel-

oped the local “radar map” alternative display. This plot
places the top differential intermediate diseases at
semantically accurate dissimilarity distances from the
phenotype input for a case (Fig. 2b). It also presents the
approximate semantic similarity relationships among can-
didates as determined by one-dimensional MDS, which is
represented in the circumferential spacing of points. The
one-dimensional MDS retains relatively accurate approxi-
mations of the relationships that exist among the diseases.

A B

Fig. 2 Visual representations of differential disease spectra. In this case selected from a retrospective genetic disease cohort, bradykinesia,
developmental regression, dystonia, motor delay, delayed speech and language development, and ptosis were reported. a The global map: a
visual map representation of the relationships between the phenotypic features of the case (yellow triangle) and all 7,746 cataloged Online
Mendelian Inheritance in Man (OMIM) diseases (gray circles). The two-dimensional space x,y is defined by the first two multidimensional scaling
(MDS) components computed from Resnik similarities between all pairs of diseases. A projected map location is calculated for the case via a
weighted convex combination of the coordinates of the diseases with the top five similarities to the complete patient phenotypes. The genotypic
spectrum of disease for the case, comprising the 174 diseases with known causes in genes variant in the filtered patient exome, is highlighted in
orange and is clustered throughout the visual space. b The local/radar map: an improved visual map representation of the relationships between
the phenotypic features of the selected clinical case and the 174 genotypic spectrum diseases. The case is placed at the center of the map. The
circumferential disease distribution across 360 degrees θ is a linear scaling of the first MDS component computed from Resnik similarities
between all pairs of diseases. Radial dissimilarity distance r is computed for each disease as the linear transformation of its similarity to the patient
phenotypes. The size and color of disease points indicate the ExAC [42] and MutationTaster [46] pathogenicity of case variants harbored in genes
causally linked to top differential intermediate diseases. The map can be progressively filtered to reflect mandatory aspects of clinical phenotype
and genotype or manual curation of differential intermediates, as performed by clinicians

James et al. Genome Medicine  (2016) 8:13 Page 8 of 17



Furthermore, rather than highlighting a subset of the
entire catalog corresponding to the input genotypic and
phenotypic spectra of diseases, the radar map progres-
sively filters its contents to these spectra as defined by the
user and modifies both the size and color of disease points
to represent disease similarity to the patient, the MAF and
pathogenicity of input variants in causally associated
genes, and manual curation of differential intermediate
diseases performed by clinicians.

Application to exome data
Of the 245 genetic disease cases in a retrospective
cohort of individuals referred for whole exome sequen-
cing, we analyzed the 51 for which a molecular diagnosis
was reported [31]. The molecularly diagnosed cases
tended to have more phenotypes and higher similarities
to the OMIM disease catalog, while those undiagnosed
tended to have higher quantities of variant genes after
frequency and synonymy filtering (Fig. 3a–c). However,
both classes of case were equally distributed in the visual
space of the global disease map (Fig. 3d). For 47 of these
51 cases, the reported variant genes were associated with
diseases via the OMIM Morbidmap [30]. With the
assistance of the Bio-Lark Concept Recognizer [43], we
manually reviewed the clinical notes for these 47 solved
cases and updated their phenotype annotations to a
more recent instance of the HPO. We used these up-
dated annotations to compute cumulative distribution
curves to evaluate the performance of OE across each of
the 47 solved cases (Fig. 3f ). We employed our transitive
maximum as the integrative aggregation function be-
cause the maximum, rather than mean or sum, associ-
ated disease similarity score determined gene ranks that
best matched those generated by the diagnostic labora-
tory (Fig. 3e). We observed that our transitive maximum
prioritization approach implemented in OE computed
median ranks of 2 via the term overlap method and a
median of 3 via symmetrized Resnik similarities for the
previously reported variants in these cases (Fig. 3f ).
Given that the median quantity of filtered variant genes
identified in each of the 47 cases was 464 (Fig. 3c), the
transitive maximum overlap and Resnik similarity ap-
proaches assigned to the reported variants median ranks
in the top 1 % of all filtered variants (Fig. 3f ).
We compared the performance of the OE transitive

maximum to that of Phen-Gen [22], eXtasy [25], PhenIX
[18], PHIVE [23], and hiPHIVE [24]. Because the latter
three were implemented via Exomiser, which allows for
variant filtration by MAF, we applied a filter of 1 %
MAF. Because eXtasy limits the quantity of phenotypic
inputs to 10, we input the phenotypes with the top 10
information content scores to eXtasy for each of the 47
cases analyzed. We observed that for our cohort, OE
returned scores for reported variant genes for more

cases and had lower median ranks for the reported genes
than did four of the five comparator tools. Phen-Gen
failed to return scores for the clinically reported gene
variants in 32 of the 47 cases (68.09 %); however, when
Phen-Gen returned scoring results for the reported gene
variants, it performed the best among all tools, with a
median rank of 1.5 across these 15 of 47 cases (31.91 %).
We also observed that the OE Resnik transitive maximum
algorithm outperformed the best-overall-performing com-
parator tool, PhenIX, which yielded a median rank of 5 for
the reported results on the test cases. OE returned a top
ranking for the causative variant in 16 of the 47 cases
(34.04 %) and a ranking in the top five for 30 out of 47
cases (63.83 %), while PhenIX returned a top ranking
for 15 out of 47 (31.91 %) and a ranking in the top five
for 24 out of 47 (51.06 %; Additional file 5: Figure S5
and Additional file 6: Table S1).

Case study
The radar plot implements curatorial interactivity using
semantic similarity to identify candidate diagnoses. This
plot presents accurate semantic similarity relationships
of cases to differential disease candidates and visually
distributes them according to their pairwise relation-
ships. The web-based interactivity of this plot provides
heads-up display information identifying each candidate,
describing its phenotypic match to the query and dis-
tinction from alternate candidates, and presents corre-
sponding variant information. To examine the plot’s
performance in detail, we analyzed a single solved case
from the retrospective cohort [31]. The patient in that
case exhibited phenotypes of sinus bradycardia, pericar-
dial effusion, delayed central nervous system myelin-
ation, epileptic encephalopathy, gastroesophageal reflux,
encephalopathy, microcephaly, intellectual disability, and
seizures. Whole exome sequencing of DNA extracted
from whole blood led to the identification of 928 candi-
date variants in 837 genes, after filtering for variant
frequency and changes to protein coding. Of these
genes, 145 were cataloged in the OMIM Morbidmap
[30] to harbor disease-causing variants. The BCM diag-
nostic laboratory reported as potentially causal a nonsy-
nonymous variant detected in the SCN8A gene, in which
defects cause early infantile epileptic encephalopathy
(MIM #614558) and cognitive impairment with or
without cerebellar ataxia (MIM #614306) [31].
The transitive maximum similarity analysis used the

overlap score to automatically assign a rank of 4 to
SCN8A (Fig. 4a, f ) by restricting the differential inter-
mediate to the 229 diseases causally linked via the
OMIM Morbidmap to genes variant in the patient
exome (Fig. 4b, c). The OE visual curation interface was
then used to manually enforce a mandatory phenotype
filter, limiting the candidate differential to the 29 patient
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Fig. 3 Solved and unsolved cases in the BMGL cohort. In 245 exome cases, 51 had reported molecular diagnoses. The solved cases tended to
have (a) more Human Phenotype Ontology (HPO) phenotypes, including ontological parent terms (Wilcoxon p = 0.0302); b higher average
similarity to the Online Mendelian Inheritance in Man (OMIM) catalog (Resnik similarity, Wilcoxon p = 0.0387); and (c) lower quantities of filtered
variant (Wilcoxon p = 0.2177). d Visualization. Multi-dimensional scaling representation of the 51 solved (yellow spheres) and 194 unsolved (red
spheres) cohort cases in a three-dimensional map of all 7,746 cataloged OMIM diseases (gray spheres). Solved and unsolved cases appear
similarly distributed in the visual space. e Transitive method comparison. Across the 47 solved cases with reported Morbidmap genes, we
tested maximum, mean, and sum as aggregation function alternatives; semantic similarity was calculated using symmetrized Resnik, unweighted
ancestral overlap, and versions of ancestral overlap weighted by OMIM catalog information content and the topological information specified for the
GO-Universal method [39]. Globally, the transitive maximum achieved the lowest median rank. f Comparison of relative performance. Phenotype and
filtered genotype data for 47 cohort cases with reported molecular diagnoses were analyzed via the transitive maximum OMIM Explorer algorithms,
phenotype-collapsing alternative algorithms, and comparator tools. A minor allele frequency (MAF) filter of 1 % MAF was applied in PhenIX,
PHIVE, and hiPHIVE. Because eXtasy limits the quantity of phenotypic inputs to 10, we supplied eXtasy with only up to the 10 phenotypes
with the highest information content (i.e., rareness in the OMIM catalog) scores for each case. Via OMIM Explorer, transitive maximum aggregation
(Resnik) returned a top ranking for 16/47 = 34.04 % of the cohort and a ranking in the top five for 30/47 = 63.83 %; the overall best alternative, PhenIX,
returned a top ranking for 15/47 = 31.91 % and a ranking in the top five for 24/47 = 51.06 %
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Fig. 4 OMIM Explorer radar map performance on a solved clinical case study (unweighted overlap similarity). The patient in the case (yellow
triangle) had indications of sinus bradycardia, pericardial effusion, delayed central nervous system (CNS) myelination, epileptic encephalopathy,
gastroesophageal reflux, encephalopathy, microcephaly, intellectual disability, and seizures. The filtered exome identified candidate variation in
145 Online Mendelian Inheritance in Man (OMIM) Morbidmap genes. Variants were ranked via transitive maximum unweighted ancestral term
overlap similarity. a Top candidate diseases (TCDs) of the differential intermediate. The 500 TCDs by semantic similarity (colored circles) are
represented in the radar map. The reported SCN8A variant [ClinVar: SCV000245399.1] present in the patient is transitively ranked at 4 via the MIM
#614558 rank of 13. b TCDs with cataloged causal variants. The 500 TCDs are filtered to those with causal gene variants cataloged in the OMIM
Morbidmap. The SCN8A variant is transitively ranked at 4 via the MIM #614558 rank of 12. c Exome-linked TCDs. The Morbidmap TCDs are filtered
to 229 diseases associated with genes variant in the patient. The SCN8A variant is transitively ranked 4 via the MIM #614558 rank of 4. d Exome
TCDs with mandatory phenotypes. The 229 exome TCDs are filtered to 29 known to present with intellectual disability as observed in the patient.
The SCN8A variant is transitively ranked 3 via the MIM #614558 rank of 3. e Interactive curation of exome TCDs. Medical knowledge is used to rule
out 16 of the 29 remaining TCDs from the differential owing to the absence of their hallmark features. This improved the transitive rank of the
SCN8A variant from 3 to 1. f Display of the variant gene. Early infantile epileptic encephalopathy is caused by variants in SNC8A, which is
variant in the patient. The detected variant is rare and has high pathogenicity. g Display of a curatorially excluded TCD. Carpenter syndrome,
caused by variants in RAB23, is excluded because characteristic features of skull, hand, or foot abnormalities were not reported
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exome-linked diseases cataloged to present with the
intellectual disability observed in the patient (Fig. 4d).
Using medical knowledge to guide additional curation,
16 of these 29 diseases were further excluded from the
differential intermediate for this case owing to the ab-
sence of their hallmark features in the patient, including
short stature (microcephalic osteodysplastic primordial
dwarfism [MIM #210720], Carpenter syndrome [MIM
#201000], Rubinstein-Taybi syndrome [MIM #180849],
Wiedemann-Steiner syndrome [MIM #605130]); hand,
foot, or nail abnormalities (Carpenter syndrome [MIM
#201000], Rubinstein-Taybi syndrome [MIM #180849],
Temple-Baraitser syndrome [MIM #611816]); hypoglycemia
(hyperinsulinemic hypoglycemia [MIM #256450]); and brain
or renal tumors (tuberous sclerosis 2 [MIM #613254]).
These interactive curation steps improved the rank of
the reported causal variant gene SCN8A from 4 to 1
(Fig. 4e, g). A similar performance was observed via a
transitive maximum similarity analysis using the Resnik
score (Additional file 7: Figure S6).

Disease gene discovery
If no adequate diagnostic match is identified via the
similarity-driven transitive variant prioritization approach,

we provide a novel phenotype–gene association discovery
tool that uses the neighborhood of diseases most pheno-
typically similar to patient phenotypes to determine a
phenotypic neighborhood training gene set. We then use
prior knowledge in the form of PPI networks to identify
candidate genes both variant in the patient and connected
in “genomic-annotation space” to the phenotypically im-
plicated training gene set. We used the PINA2 PPI
network to perform this analysis [47]. To evaluate the
performance of our PPI-based transitive disease gene
discovery approach, we applied its algorithm to the HPO
representation of OMIM diseases and their corresponding
genotypic attributes recorded in the OMIM Morbidmap
[35]. We observed that the protein products of genes
causative of diseases nearest in semantic similarity space
are also closer in PPI space than those of typical disease
genes (Kolmogorov–Smirnov p < 2.2 × 10−16) (Fig. 5a),
suggesting the utility of such an approach. A validation
example of using the tool to “discover” a gene known to
cause human diseases is presented in Fig. 5b.

Interactive Webtool
We implemented the algorithmic concepts described
above into a software system. Our tool also implements

A B

Fig. 5 Disease gene discovery via semantic similarity and protein–protein interaction network. a Our semantically driven disease gene discovery
approach using external omic knowledge. This approach establishes the semantic neighborhood of a patient to identify a relevant known disease
gene set, and then recruits prior knowledge of relevant gene–gene relationships to intersect with patient variations. This integration of the
disease catalog with omic knowledge results in potential variant discovery and phenotypic extension of known disease genes. As shown in this
example, a patient phenotype query determines training genes: those variant in the patient and known to contain variants causing cataloged
diseases most similar to the query. The biological subnetwork implicated by these training genes is then realized in “omic space.” For this
example, proteomic space, as defined by the PINA2 protein–protein interaction network, is used. This process identifies candidate genes that are
variant in the patient and connected to training genes in the protein interaction network. In this figure, an additional constraint has been applied,
in which genes must directly interact with at least two training genes to be considered candidates. b To validate this procedure we performed a
global analysis across the entirety of Online Mendelian Inheritance in Man (OMIM). In protein interaction network space, the variant genes of
nearest semantic neighbor diseases are typically closer to each other than to those of all diseases
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the Bio-Lark natural language processing engine [43] to
automatically extract HPO terms from clinical narratives
for use in semantic similarity calculation, and a word-
cloud feature that sizes each input query term according
to its relative information content, in comparison to that
of other input phenotype terms. Additionally, our tool
supports session statefulness, which allows users to save
and load their work and share it within collaborative
diagnostic teams. Our tool was developed using the
RStudio Shiny web application development framework
[49]. Shiny uses the R statistical programming environ-
ment together with Node.js [50]. This platform allows
Shiny, and software developed with it, to take advantage
of an event-driven, non-blocking I/O model, which has
little computational overhead. OE is an example of a
data-intensive, real-time application running across dis-
tributed devices. The tool, and links to detailed tutorial
videos of example use cases, are publically accessible at
http://www.omimexplorer.com.

Discussion
Genome-wide data interpretation is a central challenge
of genomic medicine, and will likely continue to be for
years to come. Biomedical software plays a fundamental
role in meeting this challenge. We have developed an
interactive visual tool to meet this challenge. Our tool is
distinctive in several ways. First, our tool allows users to
input clinical information as free-text notes that are
translated into HPO terms. Second, our analytic ap-
proach uses transitive prioritization to rank subject phe-
notypes against their variant genes using the cataloged
associations with known genetic diseases. Third, the tool
allows users to update, or fine tune, these ranks using
their medical expertise to rule out particular diseases or
to impose phenotypic constraints or additional filters.
Fourth, curation is driven by a novel visual interface that
is both stateful and visually interactive. This visual and
interactive approach is iterative, and therefore funda-
mentally different from previous work that has relied
more on single-step computational analysis. Finally, our
tool permits the saving of session files for sequential
effort, archival, or data sharing.
Although our work may increase the efficiency and

effectiveness of human users, it is not a command line
tool intended for automated high-throughput use in
larger computational pipelines without the interaction of
human users (Table 1). While we believe other alterna-
tives in this space are better suited for full automation,
such implementations may exclude the contribution of
real-time, adaptive medical expertise from the variant
prioritization process. Collectively, we believe that our
approach better recruits biomedical and clinical experts
into the variant analysis workflow, but with the tradeoff
that this interactivity requires active input from users.

Transitive prioritization
Our tool uses transitive prioritization to link genetic
variations to phenotypic traits through differential inter-
mediate diseases. The retention of differential intermedi-
ate diseases plays an important role in the facilitation of
our visualization scheme and curatorial process: because
they can be visualized, users can exclude disease alter-
natives deemed diagnostically irrelevant. This curation
can in turn further improve the performance of tran-
sitive prioritization. Importantly, algorithms such as
PhenIX [18] employ phenotypic collapsing to map
genes to phenotype sets. As depicted in Fig. 1b, col-
lapsing phenotypes across diseases can result in poten-
tially flawed semantic scores. Our results show that
transitive prioritization has better performance and
retains this curatorial functionality.

Visualization of semantic relationships
The HPO [19] is a high dimensional feature space for
representing the complexity of pathologies that are
observed in human disease. Representing points in this
space in a low-dimensional map is a difficult computa-
tional challenge. Our attempts to use classical MDS to
represent these data reveal the challenge of dimension
reduction for these data. Although the global plot reveals
gross features of disease relationships, the error of inter-
point distances in the low-dimensional projection results
in loss of semantic relationships, making it difficult to
use this global projection in diagnostics. As an alterna-
tive, we developed the radar plot. This local view retains
an accurate representation of the semantic similarity of
differential intermediate diseases to the case’s phenotypes
using distance from the proband placed at the center of
the graphic. The relationships between diseases are used
to construct an approximate circumferential arrange-
ment of points. Research to explore other approaches
to two-dimensional representations of semantic similarity
is warranted.

Semantic similarity
Our tool relies on semantic similarity to analyze patient
indication content against genetic variation and prior
knowledge. As in previous work, we employed the
Resnik metric [37] in addition to alternatives. The
Resnik method takes a weighted combination of lowest
common ontological ancestor matches among query and
target phenotypes to assign scores. A simpler approach,
ATO [38], counts the unique overlap of terms, including
their ontological ancestry. This simple overlap of terms
performed better rank estimation in our analysis of
reported human exomes (Fig. 3f ). Although the Resnik
similarity metric has been extensively employed in this
field, our results suggest that alternative metrics should
be explored, and we observe that Resnik might not be
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optimal in all situations. We propose that the Resnik score
may suffer from certain limitations. First, to compute the
similarity score, the information content of the least-
commonly-annotated common ancestor phenotype across
all pairs of query and disease phenotypes is averaged. This
averaging can dilute or overestimate term contributions to
scores for densely or sparsely phenotyped diseases because
the quantities of terms annotated to each disease can vary.
Second, the weighting of terms in the Resnik calculation
uses information content, defined as the negative logarithm
of frequency of an ontological term in the ancestry among

all cataloged diseases [37]. This choice of weights may be
suboptimal because of the strongly non-linear nature of the
log-transformation that causes the most rare terms to have
extremely high weights. Third, under Resnik, each query
term makes an independent additive contribution to simi-
larity, but the same nodes in the ontological tree may be
recruited across multiple terms. Therefore, this additive
approach permits the same nodes in the ontology to con-
tribute to query scoring multiple times. This stands in
contrast to the more direct overlap approach in which each
phenotype contributes only once to each score [38].

Table 1 Comparison of tool features

1. Ranking of input variants. 2. Ranking of genes containing input variants. 3. Ranking of diseases. 4. Identification of gene candidates for causal association with input
phenotypes. 5. Identification of phenotypes that may help clarify or distinguish among top rankings. 6. Acceptance of variant sets as VCF (variant call format) files.
7. Inclusion of multi-nucleotide (insertion/deletion/frameshift) variants in computational prioritization. 8. Support for integration of family VCFs to distinguish between
transmitted and de novo variation. 9. Acceptance of phenotypic query descriptors as HPO (Human Phenotype Ontology) terms. 10. Absence of limit on
quantity of input phenotypes (HPO terms) supplied. 11. Acceptance of unstructured text from which input phenotypes are computationally extracted.
12. Accessibility via a web browser. 13. Accessibility via a command line API (application programming interface), which facilitates automated batch
submission of distinct case queries. 14. Immediate update of outputs in response to changes in input or analysis configuration, including diagnostic
exclusion, without repeating the entire input and analysis process. 15. Pictorial representation of output, in addition to tabular representation. 16. Graphical or
tabular juxtaposition of outputs with input-specific catalog data (input variants hosted by gene, causal links between diseases and gene, phenotypes annotated to
disease, known modes of inheritance of disease, etc.). 17. Export of input and configuration data in a file that can be subsequently imported and modified, and from
which result outputs can be regenerated. 18. Restriction to use of only human data catalogs (known direct and ontological associations between diseases, genes, and
phenotypes) in differential disease diagnosis and variant rank estimation for clinical decision support. 19. Calculation of disease and variant rankings without the use of
externally-computed phenotype-based rankings. 20. Deductive-reasoning-based variant ranking through inference of host gene phenotypic relevance from semantic
similarities of intact diseases to which genes are causally linked
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Annotation data recruitment of additional information to
improve variant prioritization
The approach presented in this paper does not explicitly
use deleteriousness scores based on considerations from
structural biology, such as those generated via PolyPhen
or SIFT [51, 52], to transitively rank variant genes. It
does, however, recruit variant pathogenicity scores and
frequencies, and it represents this information in dis-
plays using the color and size, respectively, of radar plot
points for diseases to which the variant host genes are
causally linked. We include this content as metadata in
the visual display so that users can incorporate it into
their curation. Future extensions that more explicitly
incorporate these approaches may further improve the
accuracy of variant gene prioritization. These areas
present opportunities for future research.

Disease gene discovery
An additional feature of our tool is discovery driven by
the synthesis of semantic matching to the known catalog
with prior gene knowledge in the form of protein inter-
action networks. The approach increases the likelihood
of identifying possible disease-causing variants not
matched to OMIM entries and of identifying novel
gene-to-phenotype relationships that can be associated
with existing disease genes. Our approach leverages
known causal gene associations in phenotypic neighbor-
hoods of top semantic matches to select phenotypically
matched genes for discovery of candidates. This ap-
proach exploits known inter-gene relationships defined
in the PINA2 PPI network [47]. Additional data sources,
such as gene expression, gene annotation (GO), or tran-
scription factor binding databases could be used to
extend the power of phenotypically guided disease gene
discovery [53–55]. This area also merits further inquiry.

Conclusions
Our visual approaches represent a new scheme for variant
prioritization in genome-wide diagnostics. We explored
algorithmic alternatives, compared our work with other
available software, and encapsulated this work in our
novel tool, called OMIM Explorer. The tool is fundamen-
tally structured around a visual map of known genetic
diseases based on semantic similarity. Patient phenotype
and variant information, as well as additional external
information on variant class, frequency, and pathogenicity,
are superimposed on this map. This approach provides
visual guidance to the diagnostician or physician for evalu-
ation. The tool also directs additional informative pheno-
typing, helps provide rationale for possible co-occurrence
of multiple diagnoses, and facilitates the discovery of novel
gene-to-phenotype associations. We validated our tool
using existing catalogs of known diseases, and we evalu-
ated performance using a previously published cohort of

exome cases from the BMGL diagnostic laboratory [31].
Ultimately, this software promises to positively impact
efficiency and communication between clinicians and
molecular diagnostics laboratories. Our online tool and
links to detailed tutorial videos of example use cases are
freely available at http://www.omimexplorer.com.

Additional files

Additional file 1: Figure S1. Signal-to-noise ratios of known disease
classes in semantic space. Signal is computed as the mean semantic
similarity between all pairs of diseases within a known (A) HDN or (B)
OMIM Phenotypic Series class (gray bars). Noise is computed as the mean
similarity between all pairs of diseases in each class C and those not in
C (black line). Scores are relativized to the highest within-class average.
Signal-to-noise ratios were consistently above one, indicating high accuracy
in the semantic scoring process. (PDF 338 kb)

Additional file 2: Figure S2. Performance of global map visual
projection. Semantic space signal-to-noise ratios of known disease classes
are recovered in MDS visual space. Signal is computed as the mean
semantic similarity between all pairs of diseases within a known (A) HDN or
(B) OMIM Phenotypic Series class (gray bars). Noise is computed as the
mean similarity between all pairs of diseases in each class C and those not
in C (black line). Scores are relativized to the highest within-class average.
Signal-to-noise ratios were consistently above one, indicating retention of
pre-MDS semantic space relationships in post-MDS visual space. (PDF 259 kb)

Additional file 3: Figure S3. Validation of global map visualization via
clustering of phenotype, genotype, and known disease class spectra. (A)
Disease spectrum for the gene FGFR2 (9 OMIM diseases). (B) Disease
spectrum for the phenotype “Craniosynostosis” (47 OMIM diseases). Note
that seven diseases with this phenotype are also in the FGFR2 spectrum.
(C) HDN class “Ophthalmological” (broad eye diseases). (D) OMIM Phenotypic
Series “Night Blindness, Congenital Stationary” (specific eye diseases). (E) HDN
class “Skeletal” (broad bone diseases). (F) OMIM Phenotypic Series “Epiphyseal
dysplasia, multiple” (specific bone diseases). (PDF 1628 kb)

Additional file 4: Figure S4. Semantic neighborhood preservation in
visual space of global map. The nearest neighborhood in visual space (A)
correlates positively with the nearest neighborhood in semantic space,
but (B) insufficiently to facilitate visual detection of exact diagnoses from
the global map via the coordinate-dependent convex combination
method of projecting patients into the global map. (PDF 940 kb)

Additional file 5: Figure S5. Causal variant gene prioritization in solved
clinical cohort cases and semantic algorithm score comparison. OE
transitively computed a median rank of 3 (top 1 %) for host genes via
maximum annotated Resnik similarity score, and 2 (top 1 %) via maximum
ancestral overlap. As comparator metrics to the transitive prioritization
approaches, we computed scores using direct HPO term-to-gene annota-
tions and unions of phenotypes collapsed from the all diseases associated
with each gene via the OMIM Morbidmap. The cumulative distribution
curve demonstrates the quality of solutions within a given rank as the
percentage of the 47 cases with variant genes correctly ranked at a given
threshold. We report the median because it robustly separates the top half
of a sample from the bottom half. The transitive maximum ancestral overlap
method achieved the lowest median rank, while the transitive maximum
OMIM catalog-weighted ancestral overlap method achieved the highest
median rank percentile. (PDF 9 kb)

Additional file 6: Table S1. Tabular summary of comparison of relative
performance. Phenotype and filtered genotype data for the 47 cohort cases
with reported molecular diagnoses were analyzed via the transitive maximum
OE algorithms, phenotype-collapsing alternative algorithms, and an array of
comparator tools. While OE assigned to the reported variant genes median
ranks of 2 to 3, the comparator tools assigned median ranks of 1.5 to 54. OE
returned reported variant gene scores for more cases, and with lower median
ranks, than did 4 of the 5 comparator tools. Phen-Gen did not return scores
for the reported variant gene in 32 of the 47 cases (68.09 %), but
outperformed OE, with a median rank of 1.5, across the 15 cases
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(31.91 %) for which it did return scores for the reported variant
gene. (PDF 27 kb)

Additional file 7: Figure S6. OE radar map performance on an
individual solved clinical case study (Resnik similarity). A case (yellow
triangle) with indications of sinus bradycardia, pericardial effusion,
delayed central nervous system myelination, epileptic
encephalopathy, gastroesophageal reflux, encephalopathy,
microcephaly, intellectual disability, and seizures. The filtered exome
identified candidate variation in 145 OMIM Morbidmap genes.
Variants were ranked via transitive maximum unweighted ancestral
term overlap similarity. (A) Top candidate diseases (TCDs) of the
differential intermediate. The 500 TCDs by semantic similarity (colored
circles) are represented in the radar map. The reported SCN8A variant
[ClinVar: SCV000245399.1] present in the patient is transitively ranked
at 3 via the MIM #614558 rank of 54. (B) TCDs with cataloged causal
variants. The 500 TCDs are filtered to those with causal gene variants
cataloged in the OMIM Morbidmap. The SCN8A variant is transitively
ranked at 3 via the MIM #614558 rank of 42. (C) Exome-linked TCDs.
The Morbidmap TCDs are filtered to 229 diseases associated with
genes variant in the patient. The SCN8A variant is transitively ranked
3 via the MIM #614558 rank of 4. (D) Exome TCDs with mandatory
phenotypes. The 229 exome TCDs are filtered to 29 known to
present with intellectual disability as observed in the patient. The
SCN8A variant is transitively ranked 1 via the MIM #614558 rank of 1.
(E) Interactive curation of exome TCDs. Medical knowledge is used to
rule out 16 of the 29 remaining TCDs from the differential due to
absence of their hallmark features. (F) Display of the variant gene.
Early infantile epileptic encephalopathy is caused by variants in
SNC8A, which is variant in the patient. The detected variant is rare
and has high pathogenicity. (G) Display of a curatorially excluded
TCD. Carpenter syndrome, caused by variants in RAB23, is excluded
because characteristic features of skull, hand, or foot abnormalities
were not reported. (PDF 1629 kb)
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