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Abstract

Epilepsy is a group of disorders characterized by recurrent seizures, and is one of the most common neurological
conditions. The genetic basis of epilepsy is clear from epidemiological studies and from rare gene discoveries in
large families. The three major classes of epilepsy disorders are genetic generalized, focal and encephalopathic
epilepsies, with several specific disorders within each class. Advances in genomic technologies that facilitate
genome-wide discovery of both common and rare variants have led to a rapid increase in our understanding

of epilepsy genetics. Copy number variant and genome-wide association studies have contributed to our
understanding of the complex genetic architecture of generalized epilepsy, while genetic insights into the focal
epilepsies and epileptic encephalopathies have come primarily from exome sequencing. It is increasingly clear that
epilepsy is genetically heterogeneous, and novel gene discoveries have moved the field beyond the known
contribution of ion channels to implicate chromatin remodeling, transcriptional regulation and regulation of the
mammalian target of rapamycin (mTOR) protein in the etiology of epilepsy. Such discoveries pave the way for new
therapeutics, some of which are already being studied. In this review, we discuss the rapid pace of gene discovery
in epilepsy, as facilitated by genomic technologies, and highlight several novel genes and potential therapies.

The genetic basis of epilepsy

Epilepsy is defined by recurrent, unprovoked seizures
due to abnormal, synchronized neuronal firing in the
brain. The condition affects up to 1 in 26 individuals in
the United States [1], making it one of the most com-
mon neurological conditions. Approximately 20-30 %
of epilepsy cases are caused by acquired conditions
such as stroke, tumor or head injury, but the remaining
70-80 % of cases are believed to be due to one or more
genetic factors [2]. Although the definition of epilepsy
suggests that it is a single disorder, it is more accurate
to describe epilepsy as a group of disorders with di-
verse etiologies and outcomes. There are many differ-
ent epilepsy syndromes that can be characterized by
the seizure type(s), age of onset, developmental status,
co-morbid features and etiology [3].

The epilepsies can be broadly grouped into three clas-
ses: genetic generalized epilepsy (GGE; formerly idio-
pathic generalized epilepsy); focal epilepsy; and epileptic
encephalopathy (EE). There are then several specific syn-
dromes within each class defined by differences in
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specific seizure types, electroencephalogram (EEG) pat-
terns, age of onset and disease progression. We will refer
to these as primary epilepsy disorders. The GGE syn-
dromes, characterized by generalized seizures that in-
volve both sides of the brain, include juvenile myoclonic
epilepsy and childhood absence epilepsy among others.
The GGEs tend to start in childhood or adolescence and
are usually associated with normal development and intel-
lect. Focal seizures originate in one hemisphere of the
brain. Examples of focal epilepsy syndromes are temporal
lobe epilepsy, autosomal dominant nocturnal frontal lobe
epilepsy (ADNFLE), and autosomal dominant epilepsy
with auditory features. The EEs are severe, early onset con-
ditions characterized by refractory seizures, developmental
delay or regression associated with ongoing epileptic activ-
ity, and generally poor prognosis. Dravet, Ohtahara and
West syndromes are some of the most well-studied EEs.
Importantly, epilepsy is often a co-morbid condition in in-
dividuals with intellectual disability (ID), autism or schizo-
phrenia and may be a feature of many metabolic
conditions and genetic syndromes. The focus of this review
will be on the primary epilepsies, but we will also highlight
some of the advances that increase our understanding of
related neurodevelopmental conditions.

© 2015 Myers and Mefford. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-015-0214-7&domain=pdf
mailto:hmefford@uw.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Myers and Mefford Genome Medicine (2015) 7:91

A genetic basis for epilepsy has been hypothesized for
decades, but the first evidence of a genetic component
emerged from epidemiological studies that reported an
increased risk of epilepsy in relatives of affected individ-
uals [4, 5]. Studies of twins showed that monozygotic
twins have a higher concordance rate for both GGE and
focal epilepsy than dizygotic twins, supporting the hy-
pothesis that epilepsy has a genetic basis [6, 7]. Human
genetics approaches that applied linkage analysis and gene
mapping in large families in the 1990s yielded a steady
trickle of gene discoveries, beginning with the finding that
mutations in CHRNA4, encoding a subunit of the nicotinic
acetylcholine receptor, cause ADNFLE [8]. Mutations in
other genes encoding ion channels, such as KCNQ2 in be-
nign familial neonatal seizures [9] and SCNIA in Dravet syn-
drome [10], led to the “channelopathy” hypothesis, which
postulates that dysfunction or dysregulation of ion channels
is a common mechanism underlying epilepsy syndromes.

The emergence of genomic technologies, including
chromosome microarrays and next-generation sequen-
cing, has accelerated our understanding of the genetic
architecture of the epilepsies, and the trickle of gene dis-
coveries has increased to a flood. Importantly, these
largely unbiased approaches have led to gene discoveries
that expand our knowledge of critical pathways for epi-
leptogenesis beyond the ion channels, opening the door
for the development of novel therapies. These technolo-
gies have led to advances in understanding of the differ-
ent genomic and genetic architectures across all the
major classes of epilepsy, including uncovering a surpris-
ing overlap among seemingly different disorders. We will
discuss the major advances in epilepsy genomics and
genetics that have surfaced largely due to advances in
these technologies.

Copy number variants in epilepsy

Copy number variants (CNVs) are deletions and duplica-
tions of stretches of DNA ranging from 1 kilobase to an
entire chromosome. CNVs are an important source of
normal genomic variation, but some act as risk factors
or causes of disease. The development of chromosome
microarrays—which include comparative genomic
hybridization and SNP genotyping arrays—allowed
genome-wide screening for CNVs in large cohorts.
CNV studies have been carried out for GGE, focal
epilepsy and EE, revealing a clear role for CNVs in
each major class. Overall, rare CNVs, some of which
involve known disease genes, contribute to 5-10 % of
cases of childhood epilepsies [11, 12].

Most studies of GGE suggest a complex genetic archi-
tecture with oligogenic inheritance [13, 14]. A few highly
penetrant genetic risk variants have been identified, most
through candidate gene studies. A major breakthrough in
identifying genetic risk factors for GGE came with the
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application of genome-wide chromosome microarrays for
genome-wide CNV detection in large cohorts of patients,
the first of which revealed that large, recurrent deletions
at chromosomes 15q13.3, 16p13.11 and 15q11.2 are signifi-
cantly enriched in patients with GGE [15-18]. Each of
these microdeletions is consistently found in 0.5-1 % of
patients, with the 15q13 microdeletion conferring the
most significant risk for epilepsy (odds ratio of 68) [19].
Consistent with the complex genetic architecture of
the disorder, each deletion exhibits variable inherit-
ance patterns (de novo or inherited) and incomplete
penetrance [20]. The 15q13.3 deletion appears to be a
risk factor primarily for GGE, while the 15q11.2 and
16p13.11 deletions are also found in patients with
focal and other epilepsies [21]. Notably, all three dele-
tions are known risk factors for ID, autism and schizophre-
nia as well, highlighting a shared genetic susceptibility for
these disorders. Importantly, patients with GGE and ID
are more likely to have one of these three deletions than
patients with GGE and normal intellect [22]. Rare dele-
tions involving the exons of some neuronal genes have re-
cently been shown to increase risk for GGE, including
NRXNI [23], RBFOX1 [24] and GPHN [25].

To our knowledge, the largest study of patients with
focal epilepsy carried out so far included 3812 affected
individuals [21]. The 16p13.11 deletion described above
was found in 23 cases (0.6 %). In addition, there was an
excess of large (>2 megabase) rare deletions in cases com-
pared to controls. In the EEs, pathogenic CNVs account
for approximately 3-5 % of cases [11, 26]. Interestingly,
deletions of 15q13.3, 15q11.2 and 16p13.11, important for
GGE and focal epilepsy, are rarely seen in patients with
EE, highlighting the notion that the major classes of epi-
lepsy have different genetic architectures [27]. Importantly,
identifying regions of overlap among non-recurrent dele-
tions in similarly affected patients can point to novel dis-
ease genes. This approach prompted targeted sequencing
of CHD?2, a gene located in 15q26 deletions, and led to the
discovery that de novo mutations cause an EE character-
ized by myoclonic seizures, photosensitivity and
developmental delays [28, 29]. Targeted sequencing of
SLC6A1, one of two genes in a minimally deleted region of
3p25 microdeletions, led to the discovery of de novo muta-
tions in 4 % of patients with myoclonic astatic epilepsy
[30]. SLC6AI encodes a GABA (y-aminobutyric acid)
transporter responsible for reuptake of GABA from the
synapse. Conversely, the discovery of de novo mutations in
PURA in patients with EE helped define PURA as the crit-
ical gene in patients with 5q31.3 deletions [31, 32].

Genome-wide association studies

One of the earliest genomic approaches to complex dis-
ease was to perform genome-wide association studies
(GWASs), designed to identify common genetic variants
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that contribute to risk of disease. Many GWASs have
been carried out for epilepsy, although most of the early
studies were too small to detect an effect or did not have
replicable results. A recent effort by the International
League Against Epilepsy produced a meta-analysis of 12
cohorts totaling >8000 cases with focal epilepsy or GGE
and >26,000 controls [33]. The analysis identified poly-
morphic sequence variants as risk factors for the com-
bined cohorts (focal and GGE) in SCNIA—perhaps the
most well—known epilepsy gene—and in protocadherin
7 (PCHD?), a gene not yet known to be associated with
epilepsy. In addition, when analyzing GGE alone, a signal
at chromosome 2p16.1 emerged and was narrowed down
to the interval containing the genes vaccinia-related kin-
ase 2 (VRK2) and Fanconi anaemia, complementation
group L (FANCL); there was no significant signal when
evaluating focal epilepsies alone. The results from this
study highlight the complex genetic architecture of focal
epilepsy and GGE and the need for continued investiga-
tion in even larger cohorts.

Another recent GWAS comes from Feenstra and col-
leagues, in which they identify common genetic variants
associated with risk for simple febrile seizures [34]. The
study compared children who had a febrile seizure after
receiving the measles—mumps—rubella (MMR) vaccine,
children who had febrile seizures unrelated to the MMR
vaccine, and controls without febrile seizures. Of four
risk loci identified for febrile seizures overall, two were
in well-known epilepsy genes (SCNIA and SCN2A). The
variant associated with the highest risk of febrile seizures
was in the anoctamin 3 (ANO3) gene, which encodes a
transmembrane protein that belongs to a family of chlor-
ide channels, and the fourth locus was an intergenic re-
gion on chromosome 12q21.33. A particularly interesting
aspect of this study was the identification of two variants,
one in the interferon-induced gene /FI44L and the other
in the measles virus receptor CD46, which are each spe-
cific for risk for febrile seizures after the MMR vaccine,
suggesting that we may someday be able to identify a sub-
set of children at risk for vaccine-related febrile seizures.

There have been no large GWASs performed for the
EEs. Although these severe disorders are thought to be
due largely to highly penetrant single-gene (or CNV)
mutations, it is possible that GWASs of unsolved cases
could reveal additional genetic risk factors.

Massively parallel sequencing in epilepsy

The advent of next-generation (massively parallel) se-
quencing technology has revolutionized gene discovery
in many disorders, including epilepsy. Applications of
next-generation sequencing include gene panel, whole-
exome and whole-genome sequencing. Gene panel and
whole-exome sequencing are used most frequently for
genetic testing in the clinic today and offer a rapid,
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affordable approach to mutation identification. Whole-
genome sequencing is primarily used in the research la-
boratory, but will inevitably enter the clinical realm for
diagnostics as it becomes more economical.

Perhaps the most significant recent advance in under-
standing the genetics of epilepsy has come from exome
sequencing in the EEs, the most severe group of epilep-
sies. Because of the severity of disease, cases are usually
sporadic with no other affected family members, pre-
cluding linkage analysis as a means to gene discovery.
The discovery in 2001 that de novo mutations in SCN1A
cause Dravet syndrome [10], one of the best-studied EEs,
set the stage for the de novo paradigm for this class of
disorders. Exome sequencing in single families and in
both small and large cohorts has proven to be an essential
tool to confirm the importance of de novo mutations, fa-
cilitate rapid gene discovery and highlight the genetic het-
erogeneity of this disorder. The major advances will be
highlighted here, as a comprehensive discussion of the dis-
coveries made is beyond the scope of this review.

In 2012, whole-genome sequencing in a single family
with a severely affected child revealed a de novo SCN8A
mutation in the proband [35]. Subsequent studies have
confirmed the importance of this gene in the etiology of
EE, with >25 cases reported with mutations in this gene
since 2013 [36—39]. Most patients have a similar clinical
presentation, with seizure onset at around five months of
age and subsequent developmental delays and ID. In a
slightly larger study, using exome sequencing in 39 pa-
tients with fever-associated epilepsies similar to Dravet
syndrome, Nava and colleagues identified two de novo
mutations in HCN1 [40]. Sequencing HCNI in 157 add-
itional affected individuals yielded four more patients
with a mutation in this gene. HCN1 belongs to a family
of hyperpolarization-activated, cyclic-nucleotide-gated
channels that regulate neuronal excitability. Previous
studies suggested that rare variants in HCNI and HCN2
are risk factors for GGE [41]. Another study of 13 un-
solved patients with Dravet syndrome revealed the im-
portance of mutations in GABRAI and STXBPI [42],
two genes previously implicated in other EEs. GABRAI
encodes the a; subunit of the GABA, receptor, a multi-
subunit chloride channel that serves as the receptor for
the GABA inhibitory neurotransmitter. STXBPI encodes
a syntaxin-binding protein that is critical for presynaptic
vesicle docking and fusion. Mutations in KCNBI, a
voltage-gated potassium channel, were also identified by
exome sequencing in three families [43]. Other examples
of recent gene discoveries are listed in Table 1.

Each of the discoveries described above adds to the
growing list of genes implicated in epilepsy, and most
support the channelopathy hypothesis. However, one of
the distinct advantages of whole-genome technologies is
the ability to use a hypothesis-free approach and discover
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Table 1 Novel epilepsy gene discoveries from 2012 to 2015
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Gene

Phenotype(s)

Number of cases®

References

Chromatin remodeling

CHD2

EOEE, LGS, EE, ASD

lon channels and neurotransmitter receptors

GABRAT
GABRB3
GRIN2A
GRIN2B
HCNT
KCNB1
KCNA2
KCNCT
KCNQ2
KCNTI1
SCN8A
SLC6AT

Intracellular signaling

GNAOT
SYNGAP1
TBC1D24
Metabolism
CERS1
SLC13A5
SLC25A22
SLC35A2

Synaptic vesicle cycle

DNM1

NECAPT

SNAP25

STX1B

STXBP1

mTOR signaling
DEPDC5

MTOR

Multiple functions

ALGI3
EEF1A2
PURA
WWOX

DS, IS, JME, CAE, GGE
IS, LGS

LKS, CSWS, BECTS, ABPE, EE
IS, LGS, FE/ID, ID, ASD
EOEE

IS

EE

PME

BFNS, EOEE, EE

MPSI, ADNFLE

EE, EOEE

MAE

OS, IS, EE
EE, ID, ASD
MPSI, DOORS, EOEE, FE + ID, FIME, PME

PME

EOEE

NEESBs, MPSI, EME
EOEE, IS

IS, LGS

EOEE

EE

Fever-associated epilepsy
EOEE, OS, IS, DS, EE

FFEVF, ADNFLE, BECTS, FCD, HME
FCD

IS, LGS

IS, EOEE, ASD, ID, microcephaly
EOEE

EOEE, microcephaly

>20

>10

>50
>10

13°
>50
14

>30

>20
>15

32
42

>50

>40
18

4
4

15
83

[28, 44-46, 87]

[42, 46, 88-90]
(46]

[91-97]

[46, 49, 54, 98]

(99]

[100]
[9,72,101-104]
[81, 105-108]
[35, 37-39, 108]
[30]

[68, 109]
[28,54, 110, 111]
[100, 112-118]

[119]

[120]
[121-124]
[68, 125, 126]

(68]
[127]
[128]
[129]
[42, 130-137]

[58-64]
(66, 138]

[46, 54, 134]
[54-56]
[31,32]
[139-142]

ABPE atypical benign partial epilepsy, ADNFLE autosomal dominant nocturnal frontal lobe epilepsy, ASD autism spectrum disorder, BECTS benign epilepsy with
centrotemporal spikes, BFNS benign familial neonatal seizures, CAE childhood absence epilepsy, CSWS continuous spike and waves during sleep, DOORS deafness,
onychodystrophy, osteodystrophy, mental retardation and seizures syndrome, DS Dravet syndrome, EE epileptic encephalopathy, EME early myoclonic
encephalopathy, EOEE early onset epileptic encephalopathy, FE focal epilepsy, FFEVPF familial focal epilepsy with variable foci, FIME familial infantile myoclonic
epilepsy, GGE genetic generalized epilepsy, HME hemimegalencephaly, ID intellectual disability, IS infantile spasms, JME juvenile myoclonic epilepsy, LGS
Landau—Kleffner syndrome, MAE myoclonic astatic epilepsy, MPSI migrating partial seizures of infancy, NEESBs neonatal epileptic encephalopathy with suppression
bursts, OS Ohtahara syndrome, PME progressive myoclonus epilepsy.
Refers to the number of families for recessive genes or isolated cases with respect to recurrent mutations.
PUnrelated probands have the same recurrent mutation (KCNC1 p.Arg320His), demonstrated to be de novo in 9/13.
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the unexpected. In epilepsy, that includes genes involved
in chromatin remodeling and transcriptional regulation,
synaptic vesicle trafficking, and mammalian target of rapa-
mycin (mTOR) signaling.

A growing class of genes implicated in epilepsy and re-
lated disorders are those that code for proteins involved
in chromatin remodeling and transcriptional regulation.
Through targeted sequencing of candidate genes from
CNV regions, we identified 5 of 500 patients with EE
who had a de novo mutation in CHD2 [28]. This gene,
which encodes chromodomain helicase DNA-binding
protein 2, a chromatin remodeling factor, was also iden-
tified through exome sequencing in two Dravet-like cases
[44]. To date, more than 20 patients with mutations in
CHD?2 have been identified, with the majority of mutations
being confirmed de novo events [28, 29, 44—47]. The epi-
lepsy phenotype is characterized by multiple seizures
types, primarily myoclonic, and exquisite photosensitivity
in most patients [29]. In addition, variants in CHD2 have
been shown to be a risk factor for photosensitivity in the
GGEs [48]. Targeted and whole-exome sequencing in a co-
hort of 580 patients with photosensitive epilepsy or photo-
paroxysmal response as determined by EEG revealed an
overrepresentation of unique, either disruptive or pre-
dicted to be damaging, variants in CHD2. The classical
photosensitive GGE—eyelid myoclonia with absences—
had the highest frequency of unique variants, with CHD2
explaining as many as 3 of 36 (8.3 %) cases. Notably, muta-
tions have also been reported in patients with autism [49]
and in ID without seizures [50]. Careful phenotyping of
additional patients with mutations in CHD2 will help de-
fine the phenotypic spectrum, which will undoubtedly be
broader than that described for the first series of patients.
CHD?2 is ubiquitously expressed, and Encyclopedia of
DNA Elements (ENCODE) data suggest that it acts as a
transcriptional activator, although the target genes in the
brain are not yet known. Mechanistic studies to identify
the brain-specific function of CHD2 may vyield novel drug
targets for future therapies. Another gene that causes a
surprisingly specific neural phenotype is the transcription
factor myocyte enhancer factor 2C (MEF2C). While
MEF2C has important regulatory roles in other tissue types
such as cardiac and skeletal muscle, it is a critical gene in
neural progenitor cell differentiation and maturation, and
the causative gene in 5q14 deletion syndrome. Haploinsuffi-
ciency can cause a range of features, including hyperkinesis,
variable epilepsy, ID and autism [51], as well as atypical Rett
syndrome [52, 53].

EEF1A2, which encodes the a, subunit of eukaryotic
elongation factor 1, is another gene that merits further
investigation. Recently, de novo mutations have been
identified in four patients with severe early myoclonic
epilepsy, hypotonia and developmental delay in three dif-
ferent studies [54—56]. The canonical role of EEF1A2 is
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translation elongation during protein synthesis, but di-
verse cellular functions, such as promotion of cell survival
and growth, inhibition of apoptosis, and actin cytoskeletal
remodeling via activation of the AKT pathway, have been
reported [57].

Inroads have also been made in understanding the
genetics of focal epilepsies through exome sequencing,
revealing novel pathways beyond the ion channel. Two
groups simultaneously reported mutations in DEPDC5
in patients with familial focal epilepsy with variable foci
(FFEVF) and other focal epilepsies [58, 59]. This gene
has since been implicated in various childhood focal epi-
lepsies [60] and ADNFLE [61] as well. Surprisingly, mu-
tations have been described in patients with focal
epilepsy and brain malformations, including bottom of
the sulcus dysplasia, heterotopia, focal cortical dysplasia
and hemimegalencephaly [62-64]. This is a particularly
important finding, as epilepsy due to brain malforma-
tions has often been classified as “acquired”, or non-
genetic rather than genetic, but now we must rethink
traditional classification schemes. DEPDC5 is a member
of the GATOR complex, a negative regulator of the
mTOR pathway. mTOR is a serine/threonine kinase that
converges multiple intracellular and extracellular signals
to regulate cell growth, proliferation, survival, motility
and metabolism. Dysregulation of mTOR signaling can
cause a variety of diseases, including tuberous sclerosis
(mutations in TSCI, TSC2), hemimegalencephaly (AKT3,
PIK3CA, MTOR) and focal cortical dysplasia (DEPDCS,
AKT3, MTOR) [65, 66]. Consistent neurological features of
these disorders include intractable epilepsy, ID and autistic
features, thus implicating these genes in epileptogenesis.

Exome-sequencing studies in GGE have been less suc-
cessful at identifying clear genetic risk factors or high-
penetrance mutations. In the largest study of GGE to
date, exome sequencing in 118 affected individuals and
242 controls revealed several candidate sequence variants
that were found only in affected cases [21]. However,
follow-up genotyping of 3897 candidate variants in add-
itional cases and controls failed to identify statistically
significant differences between cases and controls. Very
large cohorts may be required to make progress in GGE
due to the complex genetic architecture that likely un-
derlies this class of epilepsy.

Genetic heterogeneity

With a few exceptions, most of the novel epilepsy genes
that have been described recently are mutated in only a
handful of patients (Table 1). While the numbers of af-
fected individuals with mutations in a given gene will
undoubtedly grow as additional patients are evaluated,
it is clear that all classes of epilepsy are genetically het-
erogeneous. For the EEs, a recent, large trio exome
study highlights this point [46].
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The Epi4K consortium used trio exome sequencing to
identify de novo mutations in patients with infantile
spasms or Lennox—Gastaut syndrome (LGS) [46, 67],
two classical EEs. In a study of 264 parent—child trios, a
total of 329 de novo mutations in 305 genes were identi-
fied [46]. The majority of clearly causative mutations
were in genes already known to cause EE, including
SCNI1A, STXBPI, and CDKLS5, but two new disease
genes emerged: GABRB3 and ALGI3. GABRB3 encodes
the B3 subunit of the GABA, receptor, supporting the
channelopathy hypothesis, while ALG13 encodes a sub-
unit of the uridine diphosphate N-acetylglucosamine
(UDP-GIcNAc) transferase that is involved in N-linked
glycosylation, an essential modification for protein fold-
ing and stability. Many candidate genes from this study
will need to be sequenced across larger cohorts to iden-
tify additional de novo mutations. This is exemplified by
the identification of DNMI as a causative gene of EE.
The Epi4k analysis of 264 exomes identified two patients
with de novo mutations in DNM1 [46], but this number
did not reach statistical significance given the size of the
gene and predicted sequence-specific mutation rate. By
analyzing another 92 cases in collaboration with the
EuroEPINOMICS consortium, three additional de novo
mutations were identified, solidifying the pathogenic role
of mutations in DNM1 [68]. DNM1 encodes dynamin 1,
a neural-specific GTPase that localizes to the presynaptic
terminal and is important for the scission of synaptic
vesicles from the plasma membrane.

Mutations in numerous genes can also cause focal epi-
lepsy syndromes, including the recently described
DEPDCS5, KCNTI and GRIN2A genes, and a number of
genes have been identified as risk factors for or causes of
GGE. However, for both classes of epilepsy, the genes
identified to date only explain a fraction of cases, sug-
gesting that there is also considerable genetic heterogen-
eity in focal epilepsy and GGE.

Recent gene discoveries such as GABRB3, GRIN2A,
HCNI, KCNA2, and KCNH1 support the channelopathy
hypothesis, and genes that encode ion channels certainly
represent the largest class of disease-causing genes in epi-
lepsy. However, other recent gene discoveries, including
ALGI13, EEFIA2, GNAOI, NECAP1, SNAP25, STXIB,
STXBPI1, PURA, and WWOX, highlight that epileptogen-
esis is caused by perturbations in diverse cellular pathways
(Table 1), providing further evidence that epilepsy is not
explained wholly as a channelopathy.

Expanding the phenotypic spectrum

There is an increasingly wide phenotypic spectrum asso-
ciated with mutations in GABRAI1, KCNQ2, KCNTI,
SCN8A, TBC1D24, and DEPDCS. Genetic modifiers and/
or environmental risk factors may influence the epilepsy
subtype or severity; this will require more systematic
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studies in the future. Careful experiments evaluating the
functional consequences of specific dominant mutations
are beginning to explain some of these differences [69-71].
A recent example comes from the potassium channel sub-
unit Kv7.2, encoded by KCNQ2, in which alterations at
the same amino acid (p.Arg213Trp and p.Arg213Gln) lead
to strikingly different phenotypes [69]. The Arg213Trp
change caused benign familial neonatal seizures, a domin-
antly inherited neonatal epilepsy with a generally favorable
prognosis, in contrast to the Arg213GIn change, which
caused neonatal EE with severe pharmacoresistant seizures,
EEG consistent with a burst-suppression pattern, macro-
cephaly, and neurocognitive and motor delays [69, 72].
Miceli and colleagues demonstrated that both mutations in
the potassium channel subunit Kv7.2 caused a decrease in
channel voltage sensitivity, but the Arg213Gln mutation
had a more dramatic effect, likely explaining the more
severe phenotype. Detailed mutation modeling such as this
will be required to understand how molecular perturbations
underlie the etiology of epilepsy syndromes.

For some genes, the phenotypic spectrum expands be-
yond the epilepsies to other neurodevelopmental disor-
ders, including autism and ID. For example, although the
majority of patients with mutations in STXBPI, SYN-
GAP1, or CHD2 present with seizures, mutations have
also been identified in individuals with ID and/or autism
spectrum disorder but without epilepsy [49]. Mutations
in SCNIA have been found in patients from autism co-
horts [73], and mutations in SCN2A cause a range of
neurodevelopmental conditions with and without sei-
zures [74]. It is important to remember that there may
be selection and phenotyping bias in large cohorts; that
is, phenotype information for patients recruited to “aut-
ism” studies will focus on autistic features and subtypes
whereas patients in “epilepsy” cohorts will likely have de-
tailed seizure and EEG information available. Careful and
comprehensive phenotyping of patients after a mutation
is identified will help determine the full phenotypic
spectrum associated with a given mutation within a gene,
without such phenotypic bias.

Where are the missing mutations?

Genomic technologies have afforded tremendous pro-
gress in understanding the genetics of epilepsy, but there
is still much work to be done. Despite whole-exome se-
quencing in trios, a large number of cases of EE remain
unsolved. The combined Epi4K/EuroEPINOMICS study
conservatively estimates that trio sequencing provided a
clear genetic etiology in up to ~12 % of 356 samples.
Most cases had at least one de novo coding variant; for a
subset of cases, the de novo variant may be causative, al-
though this is difficult to prove without additional cases
or functional studies. Recessive mutations may explain a
minority of cases but are more likely in families where
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consanguinity is present. Post-zygotic, somatic mosaic
mutations are increasingly recognized as an important
cause of disease across a range of disorders. In the epi-
lepsies, many of the mutations in the mTOR pathway
that have been found in patients with brain malforma-
tions are somatic mosaic mutations [75-77]. Individuals
with somatic mutations may present with variable phe-
notypes and severity depending on how many and which
cells carry the mutation. Importantly, somatic mosaic
mutations are not always detectable in DNA from blood,
although increasingly low levels of mosaicism can be de-
tected through deep next-generation sequencing [76]. In
some cases, the mutation may be present only in the af-
fected tissue, which will be difficult to obtain for many
epilepsies. Resection of affected tissue in focal epilepsies
may shed light on how this mechanism may help define
the role of mosaic mutations in epilpesy. Finally, a largely
unexplored area is the impact of mutations in non-
exonic DNA. Rare noncoding mutations have been iden-
tified in some human diseases and are likely to play a
role in epilepsy as well. Whole-genome sequencing in
trios will reveal candidate de novo variants for further
exploration of this hypothesis. Sorting out the complex
genetics of GGE will likely require much larger cohorts
and families to understand the combination of factors
that contribute to genetic risk.

Clinical implications

Establishing the genetic basis of epilepsy in a given patient
is important for counseling with respect to disease progno-
sis, for determining recurrence risk for future pregnancies
and for treatment decisions in select cases [78]. A genetic
diagnosis ends the diagnostic odyssey and eliminates un-
necessary medical tests, and can provide the family with
the opportunity to identify others in a similar situation
and connect with support groups. There has been a recent
growth in family organizations for the EEs, such as the
Dravet Foundation, LGS Foundation, PCDH19 Alliance,
Jack Pribaz Foundation (for those with KCNQ2 mutations)
and FAMILIEScn2A (SCN2A mutations), among others.
These organizations are powerful patient advocates, pro-
viding information and support to affected families; in
addition, some family organizations play an important role
in funding research.

The genetic heterogeneity of epilepsy influences gen-
etic testing, as testing one gene at a time is no longer a
practical approach. The development of gene panels and
the introduction of exome sequencing for clinical diag-
nostics now provide more comprehensive and affordable
options for testing and should be implemented early in
the diagnostic process. Chromosome microarrays should
be considered in severe cases and in GGE with co-
morbid features, where the likelihood of finding a
disease-associated CNV is highest.
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Beyond diagnostics, a major goal of genetic studies is
to identify novel drug targets and to be able to make
treatment choices based on the genetic cause of disease
—an approach termed precision medicine. This will not
be a simple task given the genetic complexity of epilepsy,
in which mutations in different genes cause syndromes
that are clinically indistinguishable, and mutations in a sin-
gle gene, such as SCNIA, can cause a range of phenotypes
varying from febrile seizures to severe EEs. However, re-
cent reports offer the first insights into the power of preci-
sion medicine in treating epilepsy [79, 80]. Exome
sequencing identified a heterozygous missense mutation
in KCNT1 (c.1283G > A; p.Arg428Gln) in a child with mi-
grating partial seizures of infancy (MPSI); the same muta-
tion had been previously reported in three other patients
with MPSI. Functional studies in Xenopus oocytes demon-
strated that the mutant protein caused a hyperactive chan-
nel [81], and that the effects of the mutation could be
partially reversed by quinidine, an antiarrhythmic drug
that is a partial antagonist of the potassium channel
encoded by KCNT1 [70, 82]. Administration of oral
quinidine in this child correlated with diminished or
absent seizure activity and an improvement in psycho-
motor skills. Similarly, the administration of meman-
tine, a US Food and Drug Administration-approved
NMDA (N-methyl-D-aspartate) receptor antagonist,
greatly reduced seizure activity in a patient with early
onset EE caused by a de novo missense mutation in
GRIN2A (p.Leu812Met) [80]. In vitro experiments
testing for activity of the mutant receptor were per-
formed prior to administration of the drug, an im-
portant point as not all mutations affect a protein
equally. In vitro experiments performed on another
GRIN2A mutant protein (p.Asn615Lys), which was
the genetic cause of another child’s early onset EE,
demonstrated that this mutation had a different effect
on protein function entirely. GRIN2A encodes a sub-
unit of the NMDA receptor, which is an ion channel
that is activated by glutamate. Under normal conditions
of synaptic transmission, very few ions pass through the
channel because Mg** blocks the pore. Upon receptor ac-
tivation, Mg”* is displaced, which allows Ca®" and other
cations to move into the cell. A dysfunctional NMDA re-
ceptor can cause excess calcium influx into the cell and
neurotoxicity. The Leu812Met change caused a hyper-
active receptor, while the Asn615Lys mutation had no ef-
fect on receptor activity and acted through loss of the Mg?
* block. Although both mutations resulted in an increased
flow of current, leading to excessive excitatory drive and
early onset EE, it was important to consider the different
pathological mechanisms and drug targets when deciding
treatment options.

These studies highlight the importance of obtaining a
molecular diagnosis early in development when possible,
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the use of cell culture and animal models to aid in the
interpretation of the functional consequences of a muta-
tion, and the need for rigorous clinical trials to
standardize dosing and evaluate potential side effects of
treatment. Other monogenic epilepsies for which a mo-
lecular diagnosis may influence the choice of anti-
epileptic drugs are KCNQ2-related epilepsies and the use
of ezogabine [83, 84], SCN1A-related Dravet syndrome
and the use of clemizole [85], and DEPDCS5 and the use
of the rapamycin derivative everolimus, which has
already been effective in early clinical trials [86].

Conclusions and future directions

Advances in DNA sequencing and interpretation of gen-
etic variation are rapidly changing our understanding of
the causes of epilepsy and its clinical management. It is
unlikely that an individual gene will explain a large pro-
portion of the GGEs, so efforts should be made to se-
quence large cohorts to gain broad insight into the
mechanisms of epileptogenesis. Exome sequencing of
trios has revealed the prominence of de novo mutations
as a genetic cause of severe epilepsies, indicating that
even in the absence of a family history, a genetic cause
should be considered. Another important point to be
taken away from the next-generation sequencing experi-
ments is the diverse classes of genes that are emerging as
being implicated in epilepsy. The recent surge of novel
findings moves beyond the channelopathy hypothesis,
implicating pathways that regulate synaptic vesicle traf-
ficking, mTOR signaling, chromatin remodeling and tran-
scriptional regulation, which offer new insights into
disease-causing mechanisms and provide novel avenues
for therapeutics. Despite recent advances, there are many
genetic mysteries that remain to be unraveled. As whole-
genome sequencing becomes more prevalent, the pace of
discovery is likely to accelerate once again. Collabora-
tions that include large cohorts and the sharing of re-
search data will expedite gene discovery across all types
of epilepsy, and central repositories for large-scale se-
quencing projects and epilepsy-specific findings will aid
in the interpretation of rare variations. Finally, central-
ized variant databases and streamlined approaches to
functional studies will move the field closer to translating
genetic discoveries to directed therapies as we enter the
era of precision medicine.

Abbreviations

ABPE: Atypical benign partial epilepsy; ADNFLE: Autosomal dominant
nocturnal frontal lobe epilepsy; ASD: Autism spectrum disorder;

BECTS: Benign epilepsy with centrotemporal spikes; BFNS: Benign familial
neonatal seizures; CAE: Childhood absence epilepsy; CNV: Copy number
variation; CSWS: Continuous spike and waves during sleep; DOORS: Deafness,
onychodystrophy, osteodystrophy, mental retardation and seizures
syndrome; DS: Dravet syndrome; EE: Epileptic encephalopathy;

EEG: Electroencephalogram; EME: Early myoclonic encephalopathy;
ENCODE: Encyclopedia of DNA Elements; EOEE: Early onset epileptic
encephalopathy; FE: Focal epilepsy; FFEVPF: Familial focal epilepsy with

Page 8 of 11

variable foci; FIME: Familial infantile myoclonic epilepsy; GGE: Genetic
generalized epilepsy; GWAS: Genome-wide association study;

HME: Hemimegalencephaly; ID: Intellectual disability; IS: Infantile spasms;
JME: Juvenile myoclonic epilepsy; LGS: Landau—Kleffner syndrome;

MAE: Myoclonic astatic epilepsy; MMR: Measles-mumps-rubella vaccine;
MPSI: Migrating partial seizures of infancy; NEESBs: Neonatal epileptic
encephalopathy with suppression bursts; OS: Ohtahara syndrome;

PME: Progressive myoclonus epilepsy.

Competing interests
The authors declare that they have no competing interests.

Authors’ information

HCM is a physician scientist at the University of Washington whose research
focuses on gene discovery in pediatric disorders including severe epilepsies.
CTM is a postdoctoral fellow carrying out exome and targeted candidate
gene sequencing in epileptic encephalopathy.

Acknowledgments
HCM receives funding from the National Institutes of Health.

Published online: 25 August 2015

References

1. England MJ, Liverman CT, Schultz AM, Strawbridge LM. Epilepsy across the
spectrum: promoting health and understanding. Washington DC: National
Academies Press; 2012.

2. Hildebrand MS, Dahl HH, Damiano JA, Smith RJ, Scheffer IE, Berkovic SF.
Recent advances in the molecular genetics of epilepsy. J Med Genet.
2013,;50:271-9.

3. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde BW, et al.
Revised terminology and concepts for organization of seizures and
epilepsies: report of the ILAE Commission on Classification and Terminology,
2005-2009. Epilepsia. 2010;51:676-85.

4. Ottman R, Annegers JF, Hauser WA, Kurland LT. Seizure risk in offspring of
parents with generalized versus partial epilepsy. Epilepsia. 1989;30:157-61.

5. Annegers JF, Hauser WA, Anderson VE, Kurland LT. The risks of seizure
disorders among relatives of patients with childhood onset epilepsy.
Neurology. 1982;32:174-9.

6. Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of
the major epilepsy syndromes. Ann Neurol. 1998;43:435-45.

7. Vadlamudi L, Andermann E, Lombroso CT, Schachter SC, Milne RL, Hopper
JL, et al. Epilepsy in twins: insights from unique historical data of William
Lennox. Neurology. 2004;62:1127-33.

8. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR,
et al. A missense mutation in the neuronal nicotinic acetylcholine receptor
alpha 4 subunit is associated with autosomal dominant nocturnal frontal
lobe epilepsy. Nat Genet. 1995;11:201-3.

9. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel
potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of
newborns. Nat Genet. 1998:18:25-9.

10. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C. De Jonghe
Pet. De novo mutations in the sodium-channel gene SCNTA cause severe
myoclonic epilepsy of infancy. Am J Hum Genet. 2001,68:1327-32.

11. Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM, et al. Rare
copy number variants are an important cause of epileptic encephalopathies.
Ann Neurol. 2011;70:974-85.

12. Olson H, Shen Y, Avallone J, Sheidley BR, Pinsky R, Bergin AM, et al. Copy
number variation plays an important role in clinical epilepsy. Ann Neurol.
2014;75:943-58.

13, Marini C, Scheffer IE, Crossland KM, Grinton BE, Phillips FL, McMahon JM,
et al. Genetic architecture of idiopathic generalized epilepsy: clinical genetic
analysis of 55 multiplex families. Epilepsia. 2004;45:467-78.

14.  Hempelmann A, Taylor KP, Heils A, Lorenz S, Prud’homme JF, Nabbout R,
et al. Exploration of the genetic architecture of idiopathic generalized
epilepsies. Epilepsia. 2006;47:1682-90.

15.  de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, et al. Recurrent
microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic
generalized epilepsies. Brain. 2010;133:23-32.



Myers and Mefford Genome Medicine (2015) 7:91

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, et al.
1513.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat
Genet. 2009;41:160-2.

Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, et al.
Genome-wide copy number variation in epilepsy: novel susceptibility
loci in idiopathic generalized and focal epilepsies. PLoS Genet. 20106:
€1000962.

Lal D, Ruppert AK, Trucks H, Schulz H, de Kovel CG, Kasteleijn-Nolst Trenité
D, et al. Burden analysis of rare microdeletions suggests a strong impact of
neurodevelopmental genes in genetic generalised epilepsies. PLoS Genet.
2015;11:21005226.

Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA, Bellows S, et al.
Familial and sporadic 15q13.3 microdeletions in idiopathic generalized
epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet.
2009;18:3626-31.

Helbig I, Hodge SE, Ottman R. Familial cosegregation of rare genetic variants
with disease in complex disorders. Eur J Hum Genet. 2013;21:444-50.
Heinzen EL, Radtke RA, Urban TJ, Cavalleri GL. Depondt C, Need AC, et al.
Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic
epilepsy syndromes. Am J Hum Genet. 2010;86:707-18.

Mullen SA, Carvill GL, Bellows S, Bayly MA, Trucks H, Lal D, et al. Copy
number variants are frequent in genetic generalized epilepsy with
intellectual disability. Neurology. 2013;81:1507-14.

Moller RS, Weber YG, Klitten LL, Trucks H, Muhle H, Kunz WS, et al. Exon-
disrupting deletions of NRXN1 in idiopathic generalized epilepsy. Epilepsia.
2013;54:256-64.

Lal D, Trucks H, Maller RS, Hjalgrim H, Koeleman BP, de Kovel CG, et al. Rare
exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized
epilepsy. Epilepsia. 2013;54:265-71.

Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, Chen HY, et al. Rare
exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for
autism, schizophrenia and seizures. Hum Mol Genet. 2013;22:2055-66.
Epilepsy Phenome/Genome Project & Epi4K Consortium. Copy number
variant analysis from exome data in 349 patients with epileptic
encephalopathy. Ann Neurol. 2015,78:323-8.

Mefford HC. CNVs in epilepsy. Curr Genet Med Rep. 2014;2:162-7.

Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J, et al.
Targeted resequencing in epileptic encephalopathies identifies de novo
mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45:825-30.

Thomas RH, Zhang LM, Carvill GL, Archer JS, Heavin SB, Mandelstam SA,

et al. CHD2 myoclonic encephalopathy is frequently associated with self-
induced seizures. Neurology. 2015;84:951-8.

Carvill GL, McMahon JM, Schneider A, Zemel M, Myers CT, Saykally J, et al.
Mutations in the GABA transporter SLC6AT cause epilepsy with myoclonic-
atonic seizures. Am J Hum Genet. 2015;96:808-15.

Lalani SR, Zhang J, Schaaf CP, Brown CW, Magoulas P, Tsai AC, et al.
Mutations in PURA cause profound neonatal hypotonia, seizures, and
encephalopathy in 5g31.3 microdeletion syndrome. Am J Hum Genet.
2014,95:579-83.

Hunt D, Leventer RJ, Simons C, Taft R, Swoboda KJ, Gawne-Cain M, et al.
Whole exome sequencing in family trios reveals de novo mutations in PURA
as a cause of severe neurodevelopmental delay and learning disability.

J Med Genet. 2014;51:806-13.

International League Against Epilepsy Consortium on Complex Epilepsies.
Genetic determinants of common epilepsies: a meta-analysis of genome-
wide association studies. Lancet Neurol. 2014;13:893-903.

Feenstra B, Pasternak B, Geller F, Carstensen L, Wang T, Huang F, et al.
Common variants associated with general and MMR vaccine-related febrile
seizures. Nat Genet. 2014;46:1274-82.

Veeramah KR, O'Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG,
et al. De novo pathogenic SCN8A mutation identified by whole-genome
sequencing of a family quartet affected by infantile epileptic
encephalopathy and SUDEP. Am J Hum Genet. 2012;90:502-10.

Larsen J, Carvill GL, Gardella E, Kluger G, Schmiedel G, Barisic N, et al. The
phenotypic spectrum of SCN8A encephalopathy. Neurology. 2015;84:480-9.
Ohba C, Kato M, Takahashi S, Lerman-Sagie T, Lev D, Terashima H, et al. Early
onset epileptic encephalopathy caused by de novo SCN8A mutations.
Epilepsia. 2014;55:994-1000.

de Kovel CG, Meisler MH, Brilstra EH, van Berkestijn FM, van't Slot R, van
Lieshout S, et al. Characterization of a de novo SCN8A mutation in a patient
with epileptic encephalopathy. Epilepsy Res. 2014;108:1511-8.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

Page 9 of 11

Estacion M, O'Brien JE, Conravey A, Hammer MF, Waxman SG, Dib-Hajj SD,
et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel
activation in a child with epileptic encephalopathy. Neurobiol Dis. 2014:69:117-23.
Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG, Nabbout R, et al. De
novo mutations in HCNT cause early infantile epileptic encephalopathy.
Nat Genet. 2014;46:640-5.

Tang B, Sander T, Craven KB, Hempelmann A, Escayg A. Mutation analysis of
the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and
HCN2 in idiopathic generalized epilepsy. Neurobiol Dis. 2008;29:59-70.
Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Meller RS, Hjalgrim H,
et al. GABRAT and STXBP1: novel genetic causes of Dravet syndrome.
Neurology. 2014;82:1245-53.

Torkamani A, Bersell K, Jorge BS, Bjork Jr RL, Friedman JR, Bloss CS, et al.

De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol.
2014;76:529-40.

Suls A, Jaehn JA, Kecskés A, Weber Y, Weckhuysen S, Craiu DC, et al. De
novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic
epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum
Genet. 2013;93:967-75.

Lund C, Brodtkorb E, @ye AM, Rasby O, Selmer KK. CHD2 mutations in
Lennox-Gastaut syndrome. Epilepsy Behav. 2014;33:18-21.

Epi4K Consortium & Epilepsy Phenome/Genome Project. De novo mutations
in epileptic encephalopathies. Nature. 2013;501:217-21.

Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, et al. Patterns and
rates of exonic de novo mutations in autism spectrum disorders. Nature.
2012;485:242-5.

Galizia EC, Myers CT, Leu C, de Kovel CG, Afrikanova T, Cordero-Maldonado
ML, et al. CHD2 variants are a risk factor for photosensitivity in epilepsy.
Brain. 2015;138:1198-207.

O'Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al.
Recurrent de novo mutations implicate novel genes underlying simplex
autism risk. Nat Commun. 2014;5:5595.

Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, et al. De
novo mutations in moderate or severe intellectual disability. PLoS Genet.
2014;10:1004772.

Paciorkowski AR, Traylor RN, Rosenfeld JA, Hoover JM, Harris CJ, Winter S,
et al. MEF2C haploinsufficiency features consistent hyperkinesis, variable
epilepsy, and has a role in dorsal and ventral neuronal developmental
pathways. Neurogenetics. 2013;14:99-111.

Zweier M, Gregor A, Zweier C, Engels H, Sticht H, Wohlleber E, et al.
Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a
frequent cause of severe mental retardation and diminish MECP2 and CDKL5
expression. Hum Mutat. 2010;31:722-33.

Lambert L, Bienvenu T, Allou L, Valduga M, Echenne B, Diebold B, et al.
MEF2C mutations are a rare cause of Rett or severe Rett-like
encephalopathies. Clin Genet. 2012;82:499-501.

de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al.
Diagnostic exome sequencing in persons with severe intellectual disability.
N Engl J Med. 2012,367:1921-9.

Nakajima J, Okamoto N, Tohyama J, Kato M, Arai H, Funahashi O, et al. De
novo EEF1A2 mutations in patients with characteristic facial features,
intellectual disability, autistic behaviors and epilepsy. Clin Genet.
2014;87:356-61.

Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J,

et al. Exome sequencing reveals new causal mutations in children with
epileptic encephalopathies. Epilepsia. 2013;54:1270-81.

Abbas W, Kumar A, Herbein G. The eEF1A proteins: at the crossroads of
oncogenesis, apoptosis, and viral infections. Front Oncol. 2015,5:75.
Dibbens LM, de Vries B, Donatello S, Heron SE, Hodgson BL, Chintawar S,
et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci.
Nat Genet. 2013;45:546-51.

Ishida S, Picard F, Rudolf G, Noé E, Achaz G, Thomas P, et al. Mutations of
DEPDCS5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45:552-5.
Lal D, Reinthaler EM, Schubert J, Muhle H, Riesch E, Kluger G, et al. DEPDC5
mutations in genetic focal epilepsies of childhood. Ann Neurol. 2014;75:788-92.
Picard F, Makrythanasis P, Navarro V, Ishida S, de Bellescize J, Ville D, et al.
DEPDC5 mutations in families presenting as autosomal dominant nocturnal
frontal lobe epilepsy. Neurology. 2014;82:2101-6.

Scheffer IE, Heron SE, Regan BM, Mandelstam S, Crompton DE, Hodgson BL,
et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause
focal epilepsy with brain malformations. Ann Neurol. 2014;75:782-7.



Myers and Mefford Genome Medicine (2015) 7:91

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

Baulac S, Ishida S, Marsan E, Miquel C, Biraben A, Nguyen DK, et al. Familial
focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations. Ann
Neurol. 2015;77:675-83.

D'Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere CM, et al.
Mammalian target of rapamycin pathway mutations cause
hemimegalencephaly and focal cortical dysplasia. Ann Neurol.
2015;77:720-5.

Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical
development. Cold Spring Harb Perspect Med. 2015;5:a022442.

Lim JS, Kim WI, Kang HC, Kim SH, Park AH, Park EK; et al. Brain somatic
mutations in MTOR cause focal cortical dysplasia type Il leading to
intractable epilepsy. Nat Med. 2015;21:395-400.

The Epi4K Consortium. Epi4K: gene discovery in 4,000 genomes. Epilepsia.
2012;53:1457-67.

EuroEPINOMICS-RES Consortium. Epilepsy Phenome/Genome Project, and
Epi4K Consortium. De novo mutations in synaptic transmission genes
including DNM1 cause epileptic encephalopathies. Am J Hum Genet.
2014;95:360-70.

Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, et al.
Genotype-phenotype correlations in neonatal epilepsies caused by
mutations in the voltage sensor of K,7.2 potassium channel subunits. Proc
Natl Acad Sci U S A. 2013;110:4386-91.

Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, et al. KCNT1 gain of
function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol.
2014;75:581-90.

Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Migliore M, Migliore R,
et al. Early-onset epileptic encephalopathy caused by gain-of-function
mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel
subunits. J Neurosci. 2015,35:3782-93.

Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR,
et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic
encephalopathy. Ann Neurol. 2012;71:15-25.

O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic
autism exomes reveal a highly interconnected protein network of de novo
mutations. Nature. 2012;485:246-50.

Krumm N, O'Roak BJ, Shendure J, Eichler EE. A de novo convergence of
autism genetics and molecular neuroscience. Trends Neurosci.
2014;37:95-105.

Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De
novo somatic mutations in components of the PI3K-AKT3-mTOR pathway
cause hemimegalencephaly. Nat Genet. 2012;44:941-5.

Jamuar SS, Lam AT, Kircher M, D'Gama AM, Wang J, Barry BJ, et al. Somatic
mutations in cerebral cortical malformations. N Engl J Med.
2014,371:733-43.

Riviere JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al.

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA
cause a spectrum of related megalencephaly syndromes. Nat Genet.
2012;44:934-40.

Poduri A, Sheidley BR, Shostak S, Ottman R. Genetic testing in the
epilepsies-developments and dilemmas. Nat Rev Neurol. 2014;10:293-9.
Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM.
Targeted treatment of migrating partial seizures of infancy with quinidine.
Ann Neurol. 2014;76:457-61.

Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T,
et al. GRIN2A mutation and early-onset epileptic encephalopathy:

personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1:190-8.
Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, et al.

De novo gain-of-function KCNT1 channel mutations cause malignant
migrating partial seizures of infancy. Nat Genet. 2012;44:1255-9.

Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, et al.
Pharmacological activation and inhibition of Slack (Slo2.2) channels.
Neuropharmacology. 2006;51:896-906.

Hu HN, Zhou PZ, Chen F, Li M, Nan FJ, Gao ZB. Discovery of a retigabine
derivative that inhibits KCNQ2 potassium channels. Acta Pharmacol Sin.
2013;34:1359-66.

Orhan G, Bock M, Schepers D, llina El, Reichel SN, Loffler H, et al.
Dominant-negative effects of KCNQ2 mutations are associated with
epileptic encephalopathy. Ann Neurol. 2014;75:382-94.

Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scnla zebrafish
mutant identifies clemizole as a potential Dravet syndrome treatment. Nat
Commun. 2013;4:2410.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

105.

106.

107.

Page 10 of 11

Krueger DA, Wilfong AA, Holland-Bouley K, Anderson AE, Agricola K, Tudor
C, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis
complex. Ann Neurol. 2013;74:679-87.

Chenier S, Yoon G, Argiropoulos B, Lauzon J, Laframboise R, Ahn JW, et al.
CHD2 haploinsufficiency is associated with developmental delay, intellectual
disability, epilepsy and neurobehavioural problems. J Neurodev Disord.
2014;69.

Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, et al. Mutation of
GABRAT in an autosomal dominant form of juvenile myoclonic epilepsy. Nat
Genet. 2002;31:184-9.

Lachance-Touchette P, Brown P, Meloche C, Kinirons P, Lapointe L, Lacasse
H, et al. Novel a1 and y2 GABA, receptor subunit mutations in families with
idiopathic generalized epilepsy. Eur J Neurosci. 2011;34:237-49.

Maljevic S, Krampfl K, Cobilanschi J, Tilgen N, Beyer S, Weber YG, et al. A
mutation in the GABA receptor a;-subunit is associated with absence
epilepsy. Ann Neurol. 2006;59:983-7.

Carvill GL, Regan BM, Yendle SC, O'Roak BJ, Lozovaya N, Bruneau N, et al.
GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet.
2013;45:1073-6.

DeVries SP, Patel AD. Two patients with a GRIN2A mutation and childhood-
onset epilepsy. Pediatr Neurol. 2013;49:482-5.

Lemke JR, Lal D, Reinthaler EM, Steiner |, Nothnagel M, Alber M, et al.
Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes.
Nat Genet. 2013;45:1067-72.

Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al.
GRIN2A mutations in acquired epileptic aphasia and related childhood focal
epilepsies and encephalopathies with speech and language dysfunction.
Nat Genet. 2013;45:1061-6.

Venkateswaran S, Myers KA, Smith AC, Beaulieu CL, Schwartzentruber JA.
FORGE Canada Consortium, et al. Whole-exome sequencing in an individual
with severe global developmental delay and intractable epilepsy identifies a
novel, de novo GRIN2A mutation. Epilepsia. 2014;55:75-9.

Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B,

et al. Towards the identification of a genetic basis for Landau-Kleffner
syndrome. Epilepsia. 2014;55:858-65.

Dyment DA, Tétreault M, Beaulieu CL, Hartley T, Ferreira P, Chardon JW,

et al. Whole-exome sequencing broadens the phenotypic spectrum of rare
pediatric epilepsy: a retrospective study. Clin Genet.

2015,88:34-40.

Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ, et al.
GRIN2B mutations in West syndrome and intellectual disability with focal
epilepsy. Ann Neurol. 2014;75:147-54.

Syrbe S, Hedrich UB, Riesch E, Djémié T, Miller S, Maller RS, et al. De novo
loss- or gain-of-function mutations in KCNA2 cause epileptic
encephalopathy. Nat Genet. 2015;47:393-9.

Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, et al. A
recurrent de novo mutation in KCNC1 causes progressive myoclonus
epilepsy. Nat Genet. 2015;47:39-46.

Richards MC, Heron SE, Spendlove HE, Scheffer IE, Grinton B, Berkovic SF,

et al. Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of
the KCNQ2-calmodulin interaction. J Med Genet. 2004:41:e35.

. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, et al. KCNQ2

and KCNQ3 potassium channel genes in benign familial neonatal
convulsions: expansion of the functional and mutation spectrum. Brain.
2003;126:2726-37.

. Weckhuysen S, Ivanovic V, Hendrickx R, Van Coster R, Hjalgrim H, Maller RS,

et al. Extending the KCNQ2 encephalopathy spectrum: clinical and
neuroimaging findings in 17 patients. Neurology. 2013;81:1697-703.

. Allen NM, Mannion M, Conroy J, Lynch SA, Shahwan A, Lynch B, et al. The

variable phenotypes of KCNQ-related epilepsy. Epilepsia.

2014;55:299-105.

Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, et al. Missense
mutations in the sodium-gated potassium channel gene KCNT1 cause
severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet.
2012;44:1188-90.

Ishii A, Shioda M, Okumura A, Kidokoro H, Sakauchi M, Shimada S, et al. A
recurrent KCNT1 mutation in two sporadic cases with malignant migrating
partial seizures in infancy. Gene. 2013;531:467-71.

McTague A, Appleton R, Avula S, Cross JH, King MD, Jacques TS, et al.
Migrating partial seizures of infancy: expansion of the electroclinical,
radiological and pathological disease spectrum. Brain. 2013;136:1578-91.



Myers and Mefford Genome Medicine (2015) 7:91

108.

109.

110.

112

113.

114.

115.

116.

117.

118.

119.

121.

122.

123.

125.

126.

127.

128.

129.

Vaher U, Néukas M, Nikopensius T, Kals M, Annilo T, Nelis M, et al. De novo
SCN8A mutation identified by whole-exome sequencing in a boy with
neonatal epileptic encephalopathy, multiple congenital anomalies, and
movement disorders. J Child Neurol. 2014;29:NP202-6.

Nakamura K, Kodera H, Akita T, Shiina M, Kato M, Hoshino H, et al. De novo
mutations in GNAOT1, encoding a Gao subunit of heterotrimeric G proteins,
cause epileptic encephalopathy. Am J Hum Genet. 2013;93:496-505.
Berryer MH, Hamdan FF, Klitten LL, Mgller RS, Carmant L, Schwartzentruber
J, et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a
specific form of epilepsy by inducing haploinsufficiency. Hum Mutat.
2013;34:385-94.

. Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S, Krebs MO, et al.

De novo SYNGAPT mutations in nonsyndromic intellectual disability and
autism. Biol Psychiatry. 2011;69:898-901.

Afawi Z, Mandelstam S, Korczyn AD, Kivity S, Walid S, Shalata A, et al.
TBC1D24 mutation associated with focal epilepsy, cognitive impairment and
a distinctive cerebro-cerebellar malformation. Epilepsy Res.

2013;105:240-4.

Corbett MA, Bahlo M, Jolly L, Afawi Z, Gardner AE, Oliver KL, et al. A focal
epilepsy and intellectual disability syndrome is due to a mutation in
TBC1D24. Am J Hum Genet. 2010,87:371-5.

Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri TD, et al.
TBC1D24, an ARF6-interacting protein, is mutated in familial infantile
myoclonic epilepsy. Am J Hum Genet. 2010,87:365-70.

Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe
neurodegeneration. J Med Genet. 2013;50:199-202.

Milh M, Falace A, Villeneuve N, Vanni N, Cacciagli P, Assereto S, et al. Novel
compound heterozygous mutations in TBC1D24 cause familial malignant
migrating partial seizures of infancy. Hum Mutat. 2013;34:869-72.

Poulat AL, Ville D, de Bellescize J, André-Obadia N, Cacciagli P, Milh M, et al.
Homozygous TBC1D24 mutation in two siblings with familial infantile
myoclonic epilepsy (FIME) and moderate intellectual disability. Epilepsy Res.
2015111.72-7.

Strazisar BG, Neubauer D, Paro Panjan D, Writzl K. Early-onset epileptic
encephalopathy with hearing loss in two siblings with TBC1D24 recessive
mutations. Eur J Paediatr Neurol. 2015;19:251-6.

Vanni N, Fruscione F, Ferlazzo E, Striano P, Robbiano A, Traverso M, et al.
Impairment of ceramide synthesis causes a novel progressive myoclonus
epilepsy. Ann Neurol. 2014;76:206-12.

. Thevenon J, Milh M, Feillet F, St-Onge J, Duffourd Y, Jugé C, et al. Mutations

in SLC13A5 cause autosomal-recessive epileptic encephalopathy with
seizure onset in the first days of life. Am J Hum Genet. 2014;95:113-20.
Cohen R, Basel-Vanagaite L, Goldberg-Stern H, Halevy A, Shuper A,
Feingold-Zadok M, et al. Two siblings with early infantile myoclonic
encephalopathy due to mutation in the gene encoding mitochondrial
glutamate/H™ symporter SLC25A22. Eur J Paediatr Neurol. 2014;18:801-5.
Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin
P, et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in
neonatal epileptic encephalopathy with suppression bursts. Clin Genet.
2009;76:188-94.

Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L,
et al. Impaired mitochondrial glutamate transport in autosomal recessive
neonatal myoclonic epilepsy. Am J Hum Genet. 2005;76:334-9.

. Poduri A, Heinzen EL, Chitsazzadeh V, Lasorsa FM, Elhosary PC, LaCoursiere

CM, et al. SLC25A22 is a novel gene for migrating partial seizures in infancy.
Ann Neurol. 2013;74:873-82.

Kodera H, Nakamura K, Osaka H, Maegaki Y, Haginoya K, Mizumoto S, et al.
De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause
early-onset epileptic encephalopathy. Hum Mutat. 2013;34:1708-14.

Ng BG, Buckingham KJ, Raymond K, Kircher M, Turner EH, He M, et al.
Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital
disorder of glycosylation. Am J Hum Genet. 2013,92:632-6.

Alazami AM, Hijazi H, Kentab AY, Alkuraya FS. NECAP1 loss of function leads
to a severe infantile epileptic encephalopathy. J Med Genet. 2014;51:224-8.
Rohena L, Neidich J, Truitt Cho M, Gonzalez KD, Tang S, Devinsky O, et al.
Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual
disability. Rare Dis. 2013;1:e26314.

Schubert J, Siekierska A, Langlois M, May P, Huneau C, Becker F, et al.
Mutations in STX1B, encoding a presynaptic protein, cause fever-associated
epilepsy syndromes. Nat Genet. 2014,46:1327-32.

130.

132.

135.

137.

139.

140.

Page 11 of 11

Deprez L, Weckhuysen S, Holmgren P, Suls A, Van Dyck T, Goossens D, et al.
Clinical spectrum of early-onset epileptic encephalopathies associated with
STXBP1 mutations. Neurology. 2010;75:1159-65.

. Hamdan FF, Gauthier J, Dobrzeniecka S, Lortie A, Mottron L, Vanasse M,

et al. Intellectual disability without epilepsy associated with STXBP1
disruption. Eur J Hum Genet. 2011;19:607-9.

Hamdan FF, Piton A, Gauthier J, Lortie A, Dubeau F, Dobrzeniecka S, et al.
De novo STXBP1 mutations in mental retardation and nonsyndromic
epilepsy. Ann Neurol. 2009,65:748-53.

. Mastrangelo M, Peron A, Spaccini L, Novara F, Scelsa B, Introvini P, et al.

Neonatal suppression-burst without epileptic seizures: expanding the
electroclinical phenotype of STXBP1-related, early-onset encephalopathy.
Epileptic Disord. 2013;15:55-61.

. Michaud JL, Lachance M, Hamdan FF, Carmant L, Lortie A, Diadori P, et al.

The genetic landscape of infantile spasms. Hum Mol Genet.
2014;23:4846-58.

Otsuka M, Oguni H, Liang JS, lkeda H, Imai K, Hirasawa K, et al. STXBP1
mutations cause not only Ohtahara syndrome but also West syndrome—
result of Japanese cohort study. Epilepsia. 2010;51:2449-52.

. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De

novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early
infantile epileptic encephalopathy. Nat Genet. 2008;40:782-8.

Saitsu H, Kato M, Okada I, Orii KE, Higuchi T, Hoshino H, et al. STXBP1
mutations in early infantile epileptic encephalopathy with suppression-burst
pattern. Epilepsia. 2010;51:2397-405.

. Nakashima M, Saitsu H, Takei N, Tohyama J, Kato M, Kitaura H, et al. Somatic

mutations in the MTOR gene cause focal cortical dysplasia type llb. Ann
Neurol. 2015. doi:10.1002/ana.24444.

Abdel-Salam G, Thoenes M, Afifi HH, Kérber F, Swan D, Bolz HJ. The
supposed tumor suppressor gene WWOX is mutated in an early lethal
microcephaly syndrome with epilepsy, growth retardation and retinal
degeneration. Orphanet J Rare Dis. 2014;,9:12.

Ben-Salem S, Al-Shamsi AM, John A, Ali BR, Al-Gazali L. A novel whole exon
deletion in WWOX gene causes early epilepsy, intellectual disability and
optic atrophy. J Mol Neurosci. 2015;56:17-23.

. Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R, et al. The

tumour suppressor gene WWOX is mutated in autosomal recessive
cerebellar ataxia with epilepsy and mental retardation. Brain.
2014;137:411-9.

. Mignot C, Lambert L, Pasquier L, Bienvenu T, Delahaye-Duriez A, Keren B,

et al. WWOX-related encephalopathies: delineation of the phenotypical
spectrum and emerging genotype-phenotype correlation. J Med Genet.
2015;52:61-70.


http://dx.doi.org/10.1002/ana.24444

	Abstract
	The genetic basis of epilepsy
	Copy number variants in epilepsy
	Genome-wide association studies
	Massively parallel sequencing in epilepsy
	Genetic heterogeneity
	Expanding the phenotypic spectrum
	Where are the missing mutations?
	Clinical implications
	Conclusions and future directions
	Abbreviations
	Competing interests
	Authors’ information
	Acknowledgments
	References



