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Abstract

Genomic instability is a hallmark of cancer and, as such, structural alterations and fusion genes are common events
in the cancer landscape. RNA sequencing (RNA-Seq) is a powerful method for profiling cancers, but current
methods for identifying fusion genes are optimised for short reads. JAFFA (https://github.com/Oshlack/JAFFA/wiki)
is a sensitive fusion detection method that outperforms other methods with reads of 100 bp or greater. JAFFA
compares a cancer transcriptome to the reference transcriptome, rather than the genome, where the cancer
transcriptome is inferred using long reads directly or by de novo assembling short reads.

Background

Chromosomal rearrangements have the potential to alter
gene function in many different ways; for example, they
may produce chimeric fusion proteins that gain new
functionality, or place a gene under the control of alter-
native regulatory elements [1,2]. Fusion genes including
BCR-ABL, PML-RAR and EML4-ALK have become tar-
gets for therapy in cancer, and as a result there is great
interest in defining the full complement of oncogenic fu-
sion genes.

Next generation sequencing of RNA (RNA-Seq) has
greatly accelerated the discovery of novel fusion genes in
cancer [3-5]. However, while a large number of tools
have been presented to identify fusion event using RNA-
Seq [5-9], practical use of fusion finding tools is often
hampered by either a high false detection rate or low
sensitivity [10,11]. Many fusion detection methods iden-
tify transcriptional breakpoints by splitting short reads
into even shorter segments and then aligning these seg-
ments to the genome [5,12]. Short read sequences have
lower alignment specificity particularly in the presence
of SNPs, sequencing errors and repeat regions. Incorrect
mapping of these short read fragments has the potential
to lead to false predictions. To overcome this, algorithms
look for supporting information, such as neighbouring
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reads, or read pairs, that cover the same breakpoint.
This strategy can be effective at controlling the false dis-
covery rate, but often requires restrictive filtering that
may limit sensitivity.

Another limitation of many fusion finding algorithms
is that they have been built and tested using reads
shorter than 100 bp. Sequencing reads are becoming
longer, with 100 bp paired-end reads now standard for
many applications, and read lengths are continuing to
increase. The MiSeq and PacBio platforms already pro-
duce reads of several hundred and several thousand
bases, respectively. It is not clear how current fusion
finding algorithms will perform on long read data. For
example, many will not work on long single-end data,
because they require paired-end reads.

In this study we outline a new method for detecting
fusion genes that can be applied to any read length, sin-
gle or paired-end. A critical and unique feature of our
method is that rather than comparing a tumour tran-
scriptome to the reference genome we compare it to the
reference transcriptome. There are several advantages in
alignment to the transcriptome rather than genome; the
complexity of splice site alignment, which can be error
prone [13,14], is avoided as the transcriptome only in-
cludes exonic sequence; identifying fusion transcripts
from those alignments is simplified because we do not
need to check if the break can be explained by splicing;
and finally, the reference transcriptome consists of less
sequence than the reference genome, allowing for
slower, but more accurate alignment algorithms to be
used, such as BLAT [15]. Critically, BLAT works well
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over a range of reads lengths, whereas mapping algo-
rithms used by other fusion finders are optimised for
short reads. For example, bowtie [16], the recommended
aligner for TopHat-Fusion [6], will not map reads longer
than 1,024 bases.

Our new method, called JAFFA, is designed for detect-
ing fusions in RNA-seq data with contemporary read
lengths. Fusions may be identified using reads from 100
bp up to full-length transcripts. Reads shorted than 100
bp can be analysed effectively by assembling them de
novo into contigs of 100 bp or longer - a step which is
performed by JAFFA. Hence, JAFFA is a complete pipe-
line; it uses de novo assembly or raw reads directly to
align to a reference transcriptome and outputs candidate
fusions along with associated information such as the
position of the break in the genome, a prediction of
reading frame, read support metrics and whether the fu-
sion is present in the Mitelman database [17]. JAFFA
also reports the sequence of the fusion read or assem-
bled contig. JAFFA is built using the Bpipe platform [18]
and takes advantages of features such as modularity of
the pipeline stages, running numerous samples in paral-
lel, and integration with computing clusters. JAFFA is
therefore a highly effective tool for large RNA-Seq stud-
ies involving multiple datasets and samples. The idea
behind JAFFA has already been used to successfully
identify fusions in lung cancer [19].

We validated JAFFA on a range of data with different
read-lengths, including 50 bp, 75 bp, 100 bp and 250 bp
paired-end reads as well as ultra-long PacBio reads
[20,21]. We used RNA-Seq from breast cancer cell lines
[22], glioma tumours [23] and simulation, and found
JAFFA has a low false discovery rate without comprom-
ising on sensitivity. JAFFA may be run in three defined
modes: assembling short reads (shorter than 60 bp),
using long reads directly (100 bp or greater), or a hybrid
approach that both assembles and processes unmapped
reads (between 60 bp and 100 bp). We performed a de-
tailed comparison to established methods and found that
JAFFA consistently gave the best performance on con-
temporary data with reads longer than 50 bp. On 100 bp
datasets and longer, JAFFA’s computational requirements
were comparable to those of other fusion finding tools.

Methods

The JAFFA pipeline

JAFFA is a multi-step pipeline that takes raw RNA-Seq
reads and outputs a set of candidate fusion genes along
with their cDNA breakpoint sequences. JAFFA runs in
three modes: (1) ‘Assembly’ mode assembles short reads
into transcripts prior to fusion detection; (2) Direct’
mode uses RNA-Seq reads directly, rather than assem-
bled contigs, by first selecting reads that do not map to
known transcripts; or (3) ‘Hybrid’ mode both assembles
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transcripts and supplements the list of assembled contigs
with reads that do not map to either the reference tran-
scriptome or the assembly. The appropriate mode to
use depends on the read length (Additional file 1: Fig-
ure S1). By default, JAFFA requires 30 bases of flanking
sequence either side of the breakpoint. For reads shorter
than 60 bp, the flanking sequence would be too short to
accurately and efficiently align using BLAT, so the Assem-
bly mode must be used. For reads 60 to 99 bp long, Hy-
brid mode is used, while for reads 100 bp and over there
is no advantage in performing a de novo assembly so the
Direct mode is used. When de novo assembly is per-
formed, Oases [24] is used. We found Oases gave superior
sensitivity compared with other assemblers (Additional
file 1: Material 1, Additional file 2). De novo assembly is
well known to producing a high fraction of false chi-
meras [25,26] and we found an effective method to con-
trol for these by checking the amount of sequence shared
by fusion partner genes at the breakpoint (Additional file 1:
Material 1, Additional file 1: Figure S2).

JAFFA is based on the idea of comparing a sequenced
transcriptome against a reference transcriptome. As a de-
fault, JAFFA uses transcripts from GENCODE [27] as a
reference. For all JAFFA modes, reads aligning to intronic
or intergenic regions are first removed to improve compu-
tational performance (step 1 in Figure 1). Sequences are
then converted into a common form - tumour sequences
- consisting of either assembled contigs or the reads them-
selves. These sequences are processed by a core set of
fusion-finding steps (steps 2 to 6 in Figure 1). First, se-
quences are aligned to a reference transcriptome and
those that align to multiple genes are selected. Second,
read support is determined. Third, putative candidates are
aligned to the genome to check the genomic position of
breakpoints. Finally, JAFFA calculates characteristics of
each fusion and uses this to prioritise candidates for valid-
ation. Each of these pipeline steps is described in detail
below.

Most fusion genes originate from a genomic re-
arrangement with breakpoints in intronic DNA. We
found empirically that transcriptional breakpoints align-
ing to exon-exon boundaries were more indicative of a
true fusion than the number of reads supporting the
breakpoint, and have incorporated this into our ranking
system. Genes with breakpoints aligning to exon-exon
boundaries are classified as either ‘High Confidence’ or
‘Medium Confidence’. These two categories are distin-
guished by either the presence (‘High Confidence’) or
absence (‘Medium Confidence’) of both spanning reads
and spanning pairs. Spanning reads have the fusion
breakpoint sequenced within the read. Spanning pairs lie
on opposite sides of the breakpoint (Step 3 in Figure 1).
For single-end data, only ‘Medium Confidence’ is re-
ported because spanning pairs are not calculated. Unlike
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Figure 1 The JAFFA pipeline. An example of the JAFFA pipeline is demonstrated in detail using the RPS6KB1-VMP1 fusion from the MCF-7 breast
cancer cell line dataset. Step 1: RNA-Seq reads are first filtered to remove intronic and intergenic reads. 50 bp reads would then be assembled
into contigs using Oases. For longer reads, this step is not necessary. Step 2: The resulting tumour sequences are then aligned to the reference
transcriptome and those that align to multiple genes are selected. These contigs make up a set of initial candidate fusions. Step 3: Next, the
pipeline counts the number of reads and read pairs that span the breakpoint. Step 4: Candidates are then aligned to the human genome.
Genomic coordinates of the breakpoint are determined. Step 5: Further selection and candidate classification is carried out using quantities such
as genomic gap size, supporting reads and alignment of breakpoints to exon-exon boundaries. Step 6: A final list of candidates is reported along

other fusion finding algorithms, such as deFuse and
TopHat-Fusion, which apply a threshold on the number
of supporting reads to ensure the false discovery rate is
controlled, JAFFA can detect fusions with a single read,
without compromising the false discovery rate. Fusions
with spanning pairs, but without transcriptional break-
points aligning to exon boundaries are classified as ‘Low
Confidence’. For ‘Low Confidence’ fusions we require

two spanning reads so that chimeric artifacts produced
during library preparation are removed. Fusions without
spanning pairs or breakpoints aligning to exon boundar-
ies are discarded. Finally, JAFFA flags a fourth class of
candidates ‘Potential Regular Transcript, which appear
to be novel transcripts between adjacent genes [28]. We
identify these by a genomic gap between the breakpoints
of less than 200 kb and no evidence for genomic
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rearrangement. Because these candidates are likely to be
caused by read-through transcription [29], they are ex-
cluded from the default reporting of our software. For
candidates within a class, we rank by the sum of span-
ning reads and spanning pairs. When read support is
equal, we rank on the genomic gap size, with smaller
gaps ranked higher as we found empirically that true
positives were often intrachromosomal and localised
(Additional file 1: Figure S3).

Because JAFFA is a pipeline rather than a standalone
software tool, many of its stages rely on external soft-
ware. The choice of these programs, the reference anno-
tation and genome can be easily customised. In JAFFA,
bash and R scripts are used to steer each step, and the
pipeline is implemented using the Bpipe platform [18].
Bpipe handles parallelisation, restarting from midway
through the pipeline and error reporting, and is conveni-
ent for analyses involving a large number of samples.
Below, we describe each stage of JAFFA version 1.06 in
more detail along with the software choices used during
validation. JAFFA is open source and available for down-
load from [30].

Preliminary read filtering

To aid in computation efficiency, JAFFA begins by filter-
ing out any reads that map to intronic, intergenic or
mitochondrial sequence in the genome. This is achieved
through a two-step process. Initially all read pairs that
map concordantly to the reference transcriptome will be
retained. Those that do not map, will move to the sec-
ond step, where they will be mapped to a version of the
human genome, hgl9, with exonic sequence masked
out. Any read pairs that fail to map concordantly will be
retained and merged with those from the initial step.
Approximately, 70% to 95% of reads pass this filter.

Assemble reads

Short reads were de novo assembled using Velvet version
1.2.10 and Oases version 0.2.08 with k-mer lengths of
19, 23, 27, 31 and 35. We required Oases to output con-
tigs with 100 bases or more. Other settings were default.

Remove duplicates
BBMap version 33.41 [31] was used to remove duplicate
reads and convert the fastq reads to fasta format.

Select reads that do not map to known transcripts

In the case of the Direct mode, reads were mapped as
single-end to sequences from GENCODE version 19.
We used bowtie2 with the option ‘-k1 —un’ for the align-
ment. For the Hybrid mode, we mapped reads to the
GENCODE transcriptome, then took the reads that did
not map and attempted to map these to the de novo
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assembled transcriptome. The same bowtie2 settings as
above were used.

Align contigs/reads to known transcripts

We used BLAT [15] to align transcript sequences. When
aligning to the transcriptome, we required 98% sequence
identity over more than 30 bases, with no intronic gaps,
“minldentity = 98 -minScore = 30 -maxIntron = 0. A
tile size of 18 was used to improve computational speed,
“-tileSize = 18] for the assembly mode, or for reads lon-
ger than 100 bp, otherwise a tile size of 15 was used to
improve sensitivity. These BLAT options are the default
in the JAFFA pipeline.

Select contigs/reads that match multiple genes

We first did a loose selection step to identify which tumour
sequences aligned to multiple reference transcripts. The two
(or more) reference transcripts were required to be sepa-
rated by 1 kb in the genome by default. Following this we
calculated the number of bases that the reference transcripts
had in common at the breakpoint. If two genes contained
the same sequence over a length that was more than the
minimum assembly k-mer length (19 bases), a false chimera
may be reported. We controlled for this by only selecting
fusion candidates with 13 bases or less of sequence in
common between the reference genes (Additional file 1:
Figure S2). This step was implemented as an R script.

Counting reads and pairs spanning breakpoints

We counted the number of spanning reads and spanning
pairs across the breakpoint. Spanning reads were defined
as reads that lay across the breakpoint. Spanning pairs
were defined as pairs in which the reads of each pair, lay
in their entirety, on opposite sides of the breakpoint.
This calculation was performed differently depending on
whether the reads were assembled or not. For assembled
reads, the reads were mapped back to the candidate de
novo transcript sequences using bowtie2 with the align-
ment flags of “k1 —no-unal —no-mixed —no-discordant .
Spanning reads were required to have 15 base pairs of
flanking sequence either side of the break. For the direct
mode, spanning pairs were calculated by mapping reads to
the reference transcriptome and searching for discordantly
aligned pairs, consistent with the predicted fusion. Each fu-
sion candidate in Direct mode was initially assigned one
spanning read (that is, since the sequence for which the
candidate was identified was itself a read). Therefore in this
mode, the minimum flanking sequence was 30 bp, the
minimum to identify a fusion. When multiple reads or con-
tigs predicted the same breakpoint the read support was ag-
gregated. Note that spanning pairs will not map when the
break lies close to the beginning or end of a transcript.
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Aligning candidate contigs/reads to the genome

We aligned the candidate fusion sequences to the hu-
man reference genome (hgl9) using BLAT with default
options.

Check genomic gap, frame and classify candidates

The genomic coordinates of each breakpoint were found
and the genomic gap size calculated. In some cases, the
gap was very small (less than 10 kb) indicating that the
candidate was likely to be a false positive, generally due
to families of genes with similar sequence or repeated
sequence in the genome. These candidates were dis-
carded. Candidates between adjacent genes can also be
reported due to run-through transcription or unanno-
tated splicing. We tried to distinguish these scenarios
from genuine fusions with small gaps, by looking for evi-
dence of a genomic rearrangement or inversion, based
on the direction of the de novo transcript with respect to
the genome. If no such evidence was found and the gap
was less than 200 kb the fusion was flagged as a ‘Poten-
tialRegularTranscript’ (not reported by default). Next we
determined whether the breakpoints lay on known
exon-exon boundaries, as would be expected if the fu-
sion occurred within intronic DNA and the exon struc-
ture was preserved. If it did, we checked whether the
fusions were in-frame, using the most common frame of
the gene’s isoforms. Finally, we grouped candidates that
predicted the same genomic breakpoint, aggregated read
counts and selected the sequence with the most span-
ning reads as a representative. For each candidate that
was identified by JAFFA we use the spanning reads,
spanning pairs, whether the transcriptional breakpoint
aligned with exon boundaries and genomic gap to clas-
sify then rank the candidates.

Combine multi-sample results

The pipeline described above was executed in parallel
for each sample in a dataset. As a final step, we merged
the results from all samples, outputting a table of results
and candidate fusion sequences.

Reference data

The reference transcriptome sequences (GENCODE ver-
sion 19), exon structure information and human genome
version hgl9 were downloaded from UCSC. The refer-
ence transcriptomic data are provided with the JAFFA
package.

Datasets used to assess JAFFA

JAFEA’s sensitivity and false discovery rate were evalu-
ated on three simulated datasets and four RNA-seq data-
sets from cancer cell lines and primary patient samples.
Together, these datasets span a range of read length
from 50 bp up to full-length transcripts.
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First, we used simulated data provided by FusionMap
[8,32] to assess JAFFA’s power. The FusionMap dataset
consisted of 57,000 75 bp pair-end RNA-Seq reads. Fifty
fusion events were simulated, with a range of coverage
levels. However, background reads from non-fusion
genes were absent. Therefore we simulated a second
dataset to validate JAFFA’s false discovery rate by gener-
ating 20 million 100 bp paired-end RNA-Seq reads with-
out fusion events - the BEERS dataset. The simulation
was performed using BEERS [33] with default parame-
ters. Finally, a third dataset was simulated to assess
JAFFA and alternative tools on long paired-end reads of
250 bp, similar to those expected by the MiSeq plat-
form - the MiSeq dataset, containing 120 fusions.
Twenty fusions were simulated at each of 1x, 2x, 5,
10x, 50x and 100x average coverage across the fusion
gene. Fusions were created by randomly selecting two
coding transcripts from the RefSeq annotation, ran-
domly selecting an exon edge as a breakpoint, and join-
ing the start sequence of one transcript with the end of
the other. Reads from fusion gene were generated with
a MiSeq error profile using ART [34] and combined
with a BEERS simulation of 5 million read-pairs from
non-fusion genes. The fragment length was set to 500
bp with a standard deviation of 100 bp. The BEERS and
MiSeq datasets are available from the JAFFA website.

Next, we assessed JAFFA’s performance using RNA-
Seq of several breast cancer cell lines, for which numer-
ous fusions have previously been reported and validated.
We did this for a range of read lengths: first, we ran the
Assembly mode on 50 bp paired-end reads from Edgren
et al. [22]. The Edgren dataset contained between 14
and 42 million, 50 bp paired-end reads of each of the
BT-474, SK-BR-3, KPL-4 and MCF-7 cell lines (SRA ac-
cession SRP003186). Next we used the ENCODE dataset
containing 40 million 100 bp paired-end reads of the
MCE-7 cell line (SRA accession SRR534293) to assess
JAFFA’s Direct mode [21]. We also assessed the Direct
mode on an MCF-7 transcriptional profiling dataset pro-
vided by PacBio [20]. The PacBio dataset consisted of
44,531 non-redundant consensus sequences. In the BT-
474, SK-BR-3, KPL-4 and MCE-7 cell lines, used in the
Edgren dataset, a total of 99 fusions have previously
been validated (Additional file 3) [22,35-38]. We used
these fusions as our set of true positives. It is worth noting
that not all previously published fusions are identified in
all datasets. This is likely not only because of limitations
by fusion detection tools, but also because of differences
in sequencing methodology, depth and because of vari-
ation in cell line preparations from different laboratories.
The concordance between different datasets of the MCF-7
cell line is provided in Additional file 1: Figure S4.

Finally, we ran JAFFA on 100 bp paired-end RNA-Seq
from a large glioma study (SRA accession SRP027383)
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[23]. From the full dataset of 272 samples, we selected a
subset of 13 samples to form our glioma validation data-
set (Additional file 4). Each of these samples contained
two or more validated in frame fusions, with 31 true
positives in total (Additional file 4).

Comparison against competing tools

We compared JAFFA to four of the most widely used fu-
sion detection methods; TopHat-Fusion 2.0.13 [6],
SOAPfuse 1.26 [39], DeFuse 0.6.2 [7] and FusionCatcher
0.99.3d [40]. This choice was based on the results from
several studies [6,9,10,22], along with our own assess-
ment of a broader selection of tools using the Edgren
and FusionMap datasets (summarised in Additional
file 1: Table S1). TopHat-Fusion and DeFuse are older
fusion finding programs, but are used broadly. Fusion-
Catcher and SOAPfuse have been released more re-
cently and promise superior performance over existing
tools. Running parameters for each tool can be found
in Additional file 1: Methods 2 and a shell script to re-
produce the results from JAFFA is provided as Additional
file 5. For the analysis of sensitivity and specificity, we only
counted fusion gene pairs with multiple breakpoints once.
True positives were identified by their gene name. Al-
though JAFFA reports fusion names in order of fusion ori-
entations, any order of gene names was accepted and
different gene aliases were also considered.

Results and discussion
JAFFA shows good sensitivity and a low false discovery
rate on simulated data
The performance of JAFFA was first assessed using the
75 bp paired-end reads of the FusionMap simulation.
JAFFA was run using all three modes: Assembly; Direct;
and Hybrid (Table 1). JAFFA's Assembly mode reported
39 out of 50 true positives (78% sensitivity). For the
Direct mode this value was lower, at 34 (68% sensitivity).
Finally, the Hybrid approach reported more true posi-
tives than any other tool (44 out of 50, 88% sensitivity),
indicating that even with reads as short as 75 bp, search-
ing for fusions among reads in addition to assembly, im-
proves sensitivity. For all JAFFA modes, true positives
were reported as either ‘High Confidence’ or ‘Medium
Confidence’. The majority of missed true positives had
low read coverage. In contrast to the previous finding
of a high false positive rate with the FusionMap dataset
(Carrara et al. [10,11], Additional file 1: Table S1A), we
found that JAFFA, TopHat-Fusion, FusionCatcher,
SOAPfuse and deFuse all had very high specificity, with
only SOAPfuse reporting one false positive (Table 1).
Because the FusionMap simulation contained no back-
ground reads, we assessed JAFFA’s false positive rate fur-
ther with a simulation containing no fusions, but with
transcriptional run-through events, the BEERS dataset.
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Table 1 A comparison of fusion detection performance
on simulated RNA-Seq, 75 bp simulation of 50 fusions

Tool True positives Sensitivity False positives
JAFFA - Hybrid 44 (32/12/0) 88% 0
JAFFA - Assembly 39 (28/11/0) 78% 0
SOAPfuse 37 74% 1
JAFFA - Direct 34 (32/2/0) 68% 0
deFuse 34 68% 0
TopHat-Fusion 27 54% 0

FusionCatcher Unable to run on a low number of reads

We ran all three modes of JAFFA in addition to SOAPfuse, TopHat-Fusion,
deFuse and FusionCatcher on a simulation set of 57,000 75 bp RNA-Seq read
pairs provided with FusionMap. JAFFA had the highest sensitivity when run in
Hybrid mode, identifying 44 out of 50 possible fusion events. For all JAFFA
modes, no false positives were reported. In parenthesis we show the value at
each of JAFFA’s classification levels: (high/medium/low) confidence.

On this dataset JAFFA reports no false positives with a
rank of ‘High Confidence’ or ‘Medium Confidence’ in all
modes. However, the Assembly and Hybrid modes re-
ported 23 ‘Low Confidence’ false positives. These false
positives were misassembled because of sequence hom-
ology along with sequencing errors, SNPs and indels.
However, because exon-exon alignment was not pre-
served, they were ranked as ‘Low Confidence’. The Dir-
ect mode, which is the nominal mode for the BEERS
100 bp reads, reported a single ‘Low Confidence’ false
positive. Across all datasets we tested, JAFFA almost al-
ways classified true positives as either ‘High Confidence’
or ‘Medium Confidence’. Therefore, in practice, we ad-
vise that ‘Low Confidence’ candidates be rejected, unless
there is other independent information to support them,
such as presence in the Mitelman database. TopHat-
Fusion reported two false positives on the BEERS data-
set. SOAPfuse reported 111 candidate fusions and
FusionCatcher 79; however, in both cases, the tools
flagged these false positives as transcriptional run-
through events. DeFuse reported 212 false positives, of
which 153 were classified as run-through transcription.
JAFFA also demonstrated excellent sensitivity and a
very low false discovery rate on 250 bp reads simulating
a MiSeq dataset (Table 2). JAFFA reported the highest
number of true positives, 86 out of 120, with a sensitivity
of 100%, 95%, 85%, 90%, 40% and 20% corresponding to
an average fusion gene coverage of 100x, 50x, 10x, 5x,
2x and 1x, respectively. Seventy-one of the true positives
were classed as ‘High Confidence’. SOAPfuse was the
next most sensitive tool with only 61 true positives.
JAFFA reported just three false positives. In each case,
the spanning read identified came from a true positive,
but due to sequence homology with another gene, the
gene name and location of the breakpoint in the gen-
ome were wrong. This was primarily within a gene family
(2 out of 3 false positives), for example, GPR89A-BACE],
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Table 2 A comparison of fusion detection performance on simulated RNA-Seq, 250 bp simulation of 120 fusions

Tool True positives False

Total Fusion gene coverage positives
100x 50x 10x 5x 2x 1x

JAFFA 86 (71/14/1) 20 19 17 18 8 4 3(1/1/1)

SOAPfuse 61 16 17 14 1 1 2 79

deFuse 58 20 15 13 10 0 0 118

FusionCatcher 56 18 16 11 9 1 1 78

TopHat-Fusion 22 1 10 1 0 0 0 0

JAFFA and alternative tools were run on a MiSeq simulation of 120 fusions: 20 fusions at each of 1x, 2x, 5%, 10%, 50x and 100x coverage. The simulation included
5 million 250 bp paired-end background reads. In parenthesis we show the value at each of JAFFA’s classifications levels: (high/medium/low) confidence.

was reported as GPR89B-BACEI. In all three cases, the
corresponding true positive was also reported. SOAPfuse
and FusionCatcher each reported almost 80 false positives,
all of which were marked as either run-through transcrip-
tion or events over a short genomic distance. DeFuse re-
ported over 100 false positives, also primarily run-through
transcripts. TopHat-Fusion did not report any false posi-
tives, but was the least sensitive tool.

JAFFA has excellent performance across a range of read
lengths on cancer RNA sequencing
Short reads (50 bp)
On the Edgren dataset, SOAPfuse reported the highest
number of true positives, 41, with other tools reporting
between 27 and 35 (Additional file 1: Table S2A). Of the
40 validated fusions previously published for the Edgren
dataset [22,38], 37 were rediscovered by at least one of
the tools tested. In addition, eight fusions that had been
validated in other datasets [35-37] of the same cell lines
were reported by at least one tool. Of the total 48 true
positives, JAFFA missed 20, predominantly as a result of
failing to be assembled (for example, Additional file 2).
In addition to the true positives, all tools reported a
number of additional candidates. A subset of these are
likely to be novel true positives, and we attempted to
distinguish these from other reported candidates using
either of the following criteria: (1) candidates reported
by three or more tools, after excluding those marked as
run-through transcription (Additional file 1: Figure S5);
or (2) candidates where one of the partner genes is a so-
called ‘promiscuous fusion gene partners, defined as a
gene implicated in multiple true positive fusions within
the same sample. For example, an unconfirmed candi-
date, SULF2-ZNF217 was identified by JAFFA in the
MCE-7 cell lines. Because MCF-7 harbours multiple val-
idated fusions involving SULF2 (SULF2 partnered with
ARFGEF2, NCOA3 and PRICKLE2), SULF2-ZNF217
was counted as a probable true positive (Additional file
1: Table S2A). Promiscuous fusion gene partners were
also observed to occur within the same sample (the

MCE-7 and BT-474 cell lines) by Kangaspeska et al.
[38]. Kangaspeska et al. noted that some promiscuous
fusion gene partners were amplified and speculate the
mechanism for multi-fusion formation may involve
breakage-fusions-bridge cycles where the breakage re-
peatedly occurs within the same gene.

The number of reported fusions that were neither true
positives, nor probable true positives varied substantially
between each tool, from 4 (FusionCatcher) to 221
(TopHat-Fusion). A high number of reported fusions
that are not true positives likely indicates a high number
of false positives. However, the absolute number of re-
ported fusions is often not as informative as assessing
the ranking of true positives, which we did using an
ROC style plot (Figure 2A). DeFuse and TopHat-Fusion
each provided a probability value to rank candidates on.
For other tools, we ranked using the output information
that maximised the area under the ROC curve. For both
FusionCatcher and SOAPfuse this was the number of
spanning reads. Probable true positives were excluded
from the plot. SOAPfuse, FusionCatcher and JAFFA
ranked most known fusions high, however SOAPfuse
achieved far greater sensitivity than all other tools with-
out compromising on specificity.

All tools had similar computational performance, with
the exception of TopHat-Fusion taking longer to run
(27 h on a single core of a modern computing cluster
compared to under 11 h for all others). Unlike the other
tools, JAFFA’'s RAM utilisation in assembly mode was
not constant, but scaled with the input reads due to the
de novo assembly (Additional file 1: Figure SOA and B).

Long reads (100 bp)

JAFFA’s Direct mode, which is suitable for reads of 100
bp and longer was assessed on the ENCODE MCEF-7
data (Figure 2B, Additional file 1: Table S2B). JAFFA re-
ported the highest number of true positives (27) of the
fusion detection tools and a large number of probable
true positives (6), however JAFFA also reported the high-
est number of other detections (114). These were largely
classified as ‘Medium Confidence’ (91% of candidates) and



Davidson et al. Genome Medicine (2015) 7:43

Page 8 of 12

A
o _ L
<
o _|
o ™ (7]
[ [
= =
£ =
o (o]
o o | o
o ()
= 2
= =
o _|
o
I T T T T 1 [ T T T T 1
0 10 20 30 40 50 0 20 40 60 80 100
Other Reported Fusions Other Reported Fusions
0 _ C
@
[}
o
=
:‘(7"
c — JAFFA
g ——- FusionCatcher
= e LT T e SOAPfuse
deFuse
—— TopHat-Fusion

12 5 10

Million Read Pairs Per Sample

1
Full sample (15-35)

Figure 2 Performance of JAFFA and four other tools on cancer RNA-Seq. (A) A ROC-style curve for the ranking of candidate fusions in the Edgren
dataset. The Edgren dataset consists of between 7 and 21 million 50 bp read pairs of the BT-474, SK-BR-3, KPL-4 and MCF-7 cell lines. The number
of true positives fusions are plotted against the number of other reported fusions from a ranked list of fusion candidates. Probable true positives
(see text for detail) are removed. Higher curves indicate a better ranking of the true positives. For each fusion detection tool, we ranked the candidates
using the tools own scoring system, or if absent, the supporting data that maximised the area under the curve. SOAPfuse ranked true positives higher
than other tools, followed by FusionCatcher and JAFFA. (B) On long read data - the ENCODE dataset consisting of 20 million 100 bp read pairs of the
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pairs per samples as other tools on 10 million read pairs per sample.

supported by only a single read (89%) (Additional file 1:
Table S2B). Thirty-three percent of the other reported fu-
sions were intrachromosomal, and 21% had a genomic
gap of less than 3 Mb. Many involved a non-linear order-
ing of genes. The proportion of local rearrangements were
consistent with fusions in the Mitelman database [17]
(Additional file 1: Figure S3). We note that JAFFA’s Direct
mode reported very few false positives on the simulated
datasets, and only a single false positive was marked as
‘Medium Confidence; this is in contrast to the characteris-
tics of the other reported fusions from real data and may
indicate that at least some have a biological origin. Fur-
thermore, they are unlikely to be artifacts from reverse
transcriptase template switching during library prepar-
ation [41,42], because the breakpoints align with exon-
boundaries, suggesting that the fusion event occurred
prior to splicing. An interesting possibility, is that the

unknown positives are rare trans-splicing events, such as
those found in normal tissue [43,44]. These are also often
localised [45,46]. Despite the larger number of unvalidated
detections, JAFFA outperformed all other tools in its abil-
ity to rank known true positives before other positives
(Figure 2B). Again, probable true positives were excluded
from the ROC curve. Finally, we compared JAFFA’s Dir-
ect mode against the Hybrid and Assembly modes
(Additional file 1: Figure S7, Table S3), which confirm
that there is no advantage in performing an assembly
for longer reads (>=100 bp). On the contrary, assembly
requires substantially more computational resources
(Additional file 1: Figure S6C and D).

As a validation of the superior performance of JAFFA
with 100 bp reads, we assessed a second dataset consist-
ing of 13 glioma samples with 31 validated fusions.
JAFFA detected the highest number of true positives (30
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out of 31) and the highest number of probable true posi-
tives (45) (Additional file 1: Table S2C). Many of the
probable true positives can be explained as out-of-frame
fusions. Bao et al. identified 147 out-of-frame fusions
that were not followed up for validation. TopHat-Fusion
and DeFuse reported the equal second highest number
of true positives (29), however, we note that the fusions
validated by Bao et al. were first identified as the inter-
section of candidates reported by these two tools, so it is
expected that they should have close to perfect recall. In
an attempt to avoid this bias that favours TopHat-Fusion
and DeFuse we next downsampled the dataset to depths
of 1, 2, 5 and 10 million read pairs per sample. Across
the range of read depths, JAFFA had significantly higher
sensitivity in all cases (Figure 2C, Additional file 1:
Table S4), while consistently ranking those true posi-
tives highly (Additional file 1: Figure S8). For example,
we found that with just 2 million read pairs JAFFA
achieved the same sensitivity as all other tools achieved
on 10 million read pairs, without compromising the
false discovery rate (Additional file 1: Figure S9). The
sensitivity of JAFFA comes from its ability to reliably
call fusions with very low coverage. For example, three
of the true positives detected exclusively by JAFFA on
the 2 million pair dataset, had just a single read sup-
porting them. This high sensitivity may allow fusions to
be identified in samples with low tumour purity or in
samples in which a particular fusion is only present in a
clone which is a small proportion of tumour cells.

The other positives reported by JAFFA on the full
depth dataset, of which there were approximately 300
per sample, displayed similar characteristic to those in
the ENCODE dataset, such as a high number of local-
ised rearrangements (Additional file 1: Figure S3,).
These were primarily supported by a single read (80%)
(Additional file 1: Table S2) and aligned with exon-
boundaries. If needed, these calls could be removed by
requiring multi-read support. We applied a multi-read
requirement to the Edgren, ENCODE and gliomas
datasets and found that the sensitivity was only slightly
reduced (Additional file 1: Figure S10, Additional file 1:
Table S2).

On 100 bp reads, all tools were comparable in terms of
computational performance (Additional file 1: Figure S6E
and F). On the ENCODE dataset, containing 20 million
read-pairs, the fusion finding programs took from 7 to
20 h on a single core and 6 to 13 GB of memory. JAFFA
required 16 h and 8 GB of RAM. On the gliomas dataset,
13 samples in the range of 15 to 35 million read-pairs
were run in parallel. The fusion finding tools required 13
to 50 h and 6 to 13 GB of RAM. JAFFA took 23 h and 11
GB of RAM. Across the Edgren, ENCODE and gliomas
datasets, FusionCatcher was consistently the fastest and
SOAPfuse consistently used the least memory.
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Ultra-long reads and pre-assembled transcriptomes

Read lengths are increasing, and technologies such as
Ion Torrent, MiSeq and PacBio can already produce
reads from several hundred bases up to several kilobases.
JAFFA is intrinsically designed for the analysis of such
data, because it is based on the idea of comparing tran-
scriptomes. By contrast, it is unclear how well other
short read tools work on these data. For example,
SOAPfuse, FusionCatcher and deFuse require paired-
end reads. TopHat-Fusion cannot be run on ultra-long
reads with its recommended aligner, bowtie, because
bowtie only aligns reads 1,024 bp and shorter.

To assess the performance of fusion detection
methods on ultra-long read data we used the PacBio
MCE-7 dataset that has an average sequence length of
1,929 bp. JAFFA was run using the Direct mode and
compared with PacBio’s own fusion predictions, released
with the data [20] (software unavailable). We were un-
able to successfully run Bowtie2, which aligns longer
reads, with TopHat-Fusion. JAFFA reported a similar
number of true or probable true positives as the PacBio
method (17 compared to 16), but fewer other positives
(5 compared to 66). The five unknown positives reported
by JAFFA, were also predicted by PacBio. One of these
was also predicted by JAFFA in the ENCODE dataset.
These results indicate that JAFFA has excellent specifi-
city on ultra-long reads, while still achieving sensitivity
similar to tools purpose built for such reads.

Optimal choice of read layout and length

Using the ENCODE dataset, we next addressed the
questions of whether paired-end reads perform better
than single-end reads, and whether there is any advan-
tage in using 100 bp reads over 50 bp. This question
aims to inform experimental design when the sequen-
cing costs of 100 bp, 50 bp, single-end and paired-end
are similar for a given number of total bases sequenced.
The ENCODE dataset has 100 bp paired-end reads, and
was used to create pseudo single-end reads, by selecting
one read from each pair, and pseudo 50 bp reads, by
trimming off the final 50 bases of each read using
FASTX-Toolkit [47]. JAFFA’s Assembly mode was run
on the 50 bp reads and the Direct mode was run on the
100 bp reads. Each dataset was created with 4 billion se-
quenced bases, that is, 20 million 100 bp pairs, 40 million
100 bp single-end reads, 40 million 50 bp pairs and 80
million 50 bp single-end reads. Note that the 20 million
100 bp pairs were the same dataset used for the 100 bp
validation presented earlier in this manuscript.

When considering each combination of read layout,
length and fusion finding algorithm, we found that
JAFEA with 100 bp paired-end reads produced the highest
number of true positives, with a total of 27 (Figure 3A).
However, deFuse, SOAPfuse and TopHat-Fusion reported
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a similar number of true positives on 50 bp paired-end
reads with 26, 24 and 24, respectively. To determine if
these tools were effective at separating the true posi-
tives from other predictions, we used a ROC-style
curve (Figure 3B). For each tool we show the combin-
ation of read length and layout that maximised the
ROC performance. For SOAPfuse, deFuse and TopHat-
Fusion, this was 50 bp paired-end reads and for JAFFA
and FusionCatcher, 100 bp paired-end reads. JAFFA on
100 bp paired-end reads not only reported the highest
number of true positives, but provided the best ranking of
those true positives (Figure 3B). This trend held across a
range of sequencing depths (250 million and 1 billion se-
quenced bases, Additional file 1: Figures S11 and S12).
Taken together with the results from the simulation,
Edgren and glioma datasets, we recommend that data-
sets with 50 bp paired-end reads be analysed with

SOAPfuse. However any datasets with reads longer than
50 bp or single-end reads should be analysed with
JAFFA. When considering how to design an experiment
to detect fusion genes, it appears that optimal perform-
ance is obtained with 100 bp paired-end sequencing
followed by analysis using JAFFA.

Conclusions

We have presented JAFFA, a method for the discovery
of fusion genes in cancer transcriptomes by comparing
them to a reference transcriptome. The cancer transcrip-
tome is either a set of contigs created by de novo assem-
bly of short reads or the reads themselves for longer
read sequencing. Therefore one major advantage of
JAFFA over previous methods is that it detects fusions
using RNA-seq reads of any length, with either single or
paired-end reads. JAFFA also provides a simple and
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effective method of ranking fusions based on read sup-
port and exon-exon boundary alignment. This approach
means that we avoid restrictive filtering that may reduce
sensitivity.

A limitation of our approach is that JAFFA is not sen-
sitive to fusion genes incorporating intronic or intra-
genic sequence, because the reference includes only
exonic sequence. Moreover, JAFFA down ranks fusions
when the breakpoint occurs within an exon, rather than
at the boundary. In this case the fusion is ranked as
‘Low Confidence’. These two classes of fusions are rare
[48,49] and we argue that on balance, the overall improve-
ment in sensitivity and ranking outweighs the potential
for these fusion types to be missed. In addition, because
JAFEA reports whether a fusion is found in the Mitelman
database, fusions classified as ‘Low Confidence’ that are
recurrent in cancer remain identifiable to the user.

In nearly all scenarios we tested, JAFFA outperformed
other methods for identifying fusions. The only excep-
tion was on 50 bp paired-end reads, where SOAPfuse
had the best performance. When we examined the opti-
mal sequencing read layout and length for fusion detec-
tion, we found that JAFFA was the most sensitive on
100 bp pair-end reads compared with any other scenario
or tool.

The pipeline we have presented is customisable, such
that component programmes, for example, the assem-
bler or aligner, can be easily swapped to current state-of-
the-art software. Known fusions that were missed by
JAFFA on 50 bp reads were lost during the assembly
stage. Transcriptome assembly is still maturing, hence
there is potential for JAFFA to produce even better fu-
sion detection sensitivity on short reads in the future.

The validation of JAFFA on simulation and RNA se-
quencing of cancer revealed that our approach has ex-
cellent power. In comparison to other fusion detection
methods, we found in every scenario with reads longer
than 50 bp, JAFFA had the best ranking of true positives
above other detections. This included standard short
read sequencing, contemporary longer read lengths such
as MiSeq 250 bp and ultra-long read PacBio sequencing.
This makes JAFFA a fusion detection method that can
accommodate the fast pace of change in sequencing
technologies.

Additional files

Additional file 1: Includes 12 supporting figures and four
supporting tables. A description of each is given within the file.

Additional file 2: Performance of four transcriptome assemblers on
the Edgren dataset. A table of which true positive breakpoint sequences
were assembled by Trinity, Oases, TransABySS and SOAPdenovo-Trans on
the Edgren dataset. Oases assembled the highest number of true positive
breakpoints with 31.
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Additional file 3: Fusion genes in the BT-474, SK-BR-3, KPL-4 and
MCF-7 cell lines. A list of the true positive fusion genes used in the
validation of JAFFA on the Edgren and ENCODE dataset, along with a list
of the probable true positives, and the fusion calls from JAFFA, FusionCatcher,
SOAPfuse, defuse and TopHat-Fusion.

Additional file 4: Fusion genes in the glioma dataset. A list of the
true positive fusion genes, probable true positives and results from
JAFFA, SOAPfuse, defuse and TopHat-Fusion for the gliomas dataset.

Additional file 5: JAFFA commands. This script provides commands to
reproduce the results from JAFFA and other tools shown in the manuscript.
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