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Abstract

Background: Acute promyelocytic leukemia (APL) is a sub-type of acute myeloid leukemia (AML) characterized by a
block of myeloid differentiation at the promyelocytic stage and the predominant t(15:17) chromosomal translocation.
We have previously determined that cells from APL patients show increased expression of genes regulated by
hypoxia-inducible transcription factors (HIFs) compared to normal promyelocytes. HIFs regulate crucial aspects of solid
tumor progression and are currently being implicated in leukemogenesis.

Methods: To investigate the contribution of hypoxia-related signaling in APL compared to other AML sub-types, we
reverse engineered a transcriptional network from gene expression profiles of AML patients’ samples, starting from a list
of direct target genes of HIF-1. A HIF-1-dependent subnetwork of genes specifically dysregulated in APL was derived
from the comparison between APL and other AMLs.

Results: Interestingly, this subnetwork shows a unique involvement of genes related to extracellular matrix interaction
and cell migration, with decreased expression of genes involved in cell adhesion and increased expression of genes
implicated in motility and invasion, thus unveiling the presence of characteristics of epithelial-mesenchymal transition
(EMT). We observed that the genes of this subnetwork, whose dysregulation shows a peculiar pattern across different
AML sub-types, distinguish malignant from normal promyelocytes, thus ruling out dependence on a myeloid
developmental stage. Also, expression of these genes is reversed upon treatment of APL-derived NB4 cells with
all-trans retinoic acid and cell differentiation.

Conclusions: Our data suggest that pathways related to EMT-like processes can be implicated also in hematological
malignancies besides solid tumors, and can identify specific AML sub-types.
Background
Acute promyelocytic leukemia (APL) is the M3 sub-type
of acute myeloid leukemia (AML) according to the
French American British (FAB) classification. AMLs are
a heterogeneous class of hematologic malignancies char-
acterized by a block of differentiation at different stages
of myeloid lineage specification and abnormal prolifera-
tion and self-renewal of hematopoietic cells in the bone
marrow and blood [1].
APL is characterized by a differentiation arrest at the

promyelocytic stage and by the specific t(15;17) chromo-
somal translocation, which fuses the promyelocytic
* Correspondence: linda.pattini@polimi.it
1Department of Electronics, Information and Bioengineering, Politecnico di
Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
Full list of author information is available at the end of the article

© 2014 Percio et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
leukemia gene (PML) and the retinoic acid receptor
alpha gene (RARA), which together encode the onco-
genic PML-RARA fusion protein [2].
The hypoxia-inducible transcription factor HIF-1 is a mas-

ter regulator of cell responses to hypoxia and its pathways
are often up-regulated in solid tumors, where it is associated
with metastasis and poor prognosis [3]. In solid tumors,
HIF-1 activates a wide range of adaptive responses like an-
aerobic metabolism, migration, invasion, metastasis and
angiogenesis [4,5], while its involvement in leukemogenesis
is less studied. It was recently shown that the HIF-1α gene
is expressed in the stem cell compartment of mouse lymph-
oma and human AML [6], and that it plays a crucial role in
promoting the maintenance of leukemia stem cells in AML
and chronic myeloid leukemia [6,7]. The involvement of the
HIF-1 network in leukemogenesis remains, however, to be
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fully characterized along with its specific contribution to dis-
tinct leukemia subtypes.
We have previously found that, in the M3 subtype of

AML, HIF-1α is activated by the fusion protein PML-
RARα throughout the leukemia bulk, where it regulates not
only self-renewal of leukemia stem cells but also cell migra-
tion, chemotaxis and neo-angiogenesis [8].
Gene expression profiling can improve our comprehen-

sion of altered transcriptional regulation in disease, thus
allowing the identification of genes related to pathophysio-
logical mechanisms, while at the same time addressing the
inherent heterogeneity of oncologic pathologies. To further
elucidate the specificity of the hypoxia response in APL
with respect to other AML subtypes, we constructed a rele-
vance network [9] from gene expression profiles of two in-
dependent publicly available data sets of AML samples,
using a list of HIF-1-direct targets as a seed. To increase
specificity, only interactions confirmed in both data sets
have been retained. Further selection of the genes differen-
tially expressed in APL samples versus other AML subtypes
allowed us to delineate a key HIF-1-dependent gene
module in AML, which shows a specific dysregulation that
typifies APL. Interestingly, this APL-specific gene signature,
configured as a network module, encompasses genes
mainly involved in extracellular matrix (ECM) interaction,
with decreased expression of genes involved in cell
adhesion and increased expression of genes implicated in
motility and invasion; these signalling effectors with
their specific and coordinated dysregulation pinpoint an
epithelial-mesenchymal transition (EMT)-like gene expres-
sion program.

Methods
Acute myeloid leukemia gene expression data sets
We analyzed gene expression profiles belonging to two in-
dependent clinical data sets of AML samples publicly
available. The first data set was retrieved from the Gene
Expression Omnibus (GEO) repository (accession number
GSE1159). It contains transcriptomic profiles of bone
marrow or peripheral blood from 293 subjects with differ-
ent FAB classifications (19 M3 samples) hybridized to the
Affymetrix Human Genome U133A Array. The second
data set was retrieved from The Cancer Genome Atlas
(TCGA) Data Portal (accession LAML). It contains sam-
ples of bone marrow from 197 patients (20 M3 samples)
analyzed using the Affymetrix Human Genome U133 Plus
2.0 Array; for 178 of these samples (16 M3 samples) tran-
scriptome deep sequencing (RNA-Seq) data were also
available, obtained with the Illumina GAllx platform.

Data preprocessing
Since the data sets were analyzed through different plat-
forms, only the 22,215 probe sets common to the two
microarray types were considered in our analysis. The
level of expression of each probe set was centered on its
mean intensity computed across all samples and loga-
rithmically (base 2) transformed. Variability across the
samples was assessed by means of the MATLAB (The
MathWorks, Inc., Natick, MA, USA) function geneentro-
pyfilter, removing probe sets with entropy values less
than the 10th percentile. Transcripts that were neither
informative (due to the low variability) nor differentially
expressed in the comparison between APL and the other
AML subtypes were discarded. For RNA-Seq data,
RPKM (reads per kilobase per million mapped reads)
values at the gene level were used.

Network analysis
For both data sets, adjacency matrices containing the mu-
tual information for pairwise gene dependencies were
computed by means of ARACNe, a specific tool within
the GeWorkbench v2.4.1 framework [10], providing the
list of the 119 bona fide HIF-1 targets (Additional file 1)
as a starting point and selecting the adaptive partitioning
algorithm.
A consensus network was then obtained selecting only in-

teractions that were significant in both the adjacency matri-
ces (the significance thresholds were set to P-value <10e-15
in the first data set and P-value <10e-10 in the second data
set to take into account the different numbers of samples).
The overall AML network was further pruned leaving

only APL dysregulated transcripts (differentially expressed
with FDR adjusted P-value <0.05 in the t-tests accom-
plished for both the data sets) to obtain the APL specific
subnetwork.
The gene networks were visualized by means of the

software Cytoscape v2.3 [11].

Comparison between normal and leukemic
promyelocytes
Gene expression data were obtained for five normal pro-
myelocytes (PM) and 14 APL samples from the GEO data
series GSE12662 acquired using the Affymetrix Human
Genome U133 Plus 2.0 Array platform. The same probe
sets found for the APL-specific gene signature were ana-
lyzed for this comparison, accomplished by means of un-
supervised hierarchical clustering (correlation coefficient
metric and average linkage) and principal component ana-
lysis in the MATLAB environment.

MicroRNA analysis
MicroRNA expression data were available for the TCGA
data set. The Pearson correlation coefficient was computed
between transcripts found down-regulated in the APL sub-
network and microRNAs up-regulated (t-test, Bonferroni
corrected P-value <0.05) in APL versus other AML sub-
types. The predictor MiRanda v.3.3a [12] was exploited to
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assess the proportion of microRNA-target relationships
with a recognizable binding site.

Annotation analysis
The annotation enrichment analysis was performed using
David (The Database for Annotation, Visualization and In-
tegrated Discovery) [13,14].

Patients’ samples
Bone marrow samples from AML patients containing
primary leukemia blasts were collected upon written in-
formed consent in accordance with the Declaration of
Helsinki by the Hematology and Bone Marrow Trans-
plantation Unit at IRCCS Ospedale San Raffaele and
stored at OSR AML Bio Bank. The study was approved
by the Institutional Review Boards of San Raffaele Scien-
tific Institute, Milan.
Four bone marrow samples containing >70% leukemic

blasts were selected for each leukemia subtype analyzed
(M3 and M5, according to the FAB classification).

Cell culture and reagents
NB4 APL cells were maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum and antibi-
otics (Lonza Group Ltd, Basel, Switzerland). HEK-293 T
embryonic kidney cells were maintained in IMDM
medium supplemented with 10% fetal bovine serum and
antibiotics. All cell lines were maintained at 37°C in hu-
midified atmosphere containing 5% CO2. Experiments
under hypoxic conditions (0.2% O2) were performed in a
hypoxia workstation (Invivo2 400, Ruskinn Technology,
Ltd., Bridgend, South Wales, UK).
The RNA antagonists EZN-2968 (a locked nucleic

acid-modified oligonucleotide, LNA-ON, for HIF-1α)
and EZN-3088 (control LNA-ON for HIF-1α) [15] were
provided by Belrose Pharma Inc., Princeton, NJ, USA,
and used in accordance with the manufacturer’s instruc-
tions. EZN-2968 and EZN-3088 were transfected in an
Amaxa™ 4D-Nucleofector™ System (Lonza).

Lentiviral vectors
GIPZ HIF-1α small hairpin RNA (shRNA) or control
shRNA plasmids were from Open Biosystems, GE
Healthcare Dharmacone, Lafayette, CO, USA. Lentiviral
vectors were obtained by HEK-293 T transfection with
calcium phosphate and subsequent concentration as pre-
viously described [16]. NB4 cells were transduced with
concentrated vectors by spinoculation, and sorted for
GFP expression at least 2 weeks post-infection.

Real-time PCR
RNA was isolated with the RNeasy mini kit (Qiagen Inc.,
Valencia, CA, USA) from cell lines and with the Relia-
Prep™ RNA Cell Miniprep System (Promega Corporation,
Madison, WI, USA) from bone marrow samples of AML
patients. cDNA was obtained by retro-transcription of 1 to
2 μg total RNA using Advantage RT for PCR Kit (Takara
Bio Europe/Clontech, Saint-Germain-en-Laye, France) or
SuperScript® III First-Strand Synthesis SuperMix (Invitrogen,
Thermo Fisher Scientific Inc., Waltham, MA, USA) and an-
alyzed by real-time PCR with TaqMan assay using a 7900
Fast-Real Time PCR System (Applied Biosystems, Thermo
Fisher Scientific Inc., Waltham, MA, USA).
All probes for TaqMan assays were purchased from Ap-

plied Biosystems. 18S was used as an internal control. The
relative expression of different cDNAs was calculated
using the 2-ΔΔCt method except for assessing the relative
expression of MMP2, KRT18, IGFBP2, ITGB2, HMOX1,
LRP1 and TWIST1 in AML samples, which was calculated
by the 2-ΔCt method.

Results and discussion
HIF-1 downstream network inference in acute myeloid
leukemia
With the aim of elucidating the contribution of HIF-1 sig-
naling in APL, we used a list of direct target genes of
HIF-1 characterized by hypoxia-dependent transcriptional
induction and the presence of functional hypoxia respon-
sive elements in their promoters validated by HIF-1 chro-
matin immunoprecipitation to examine the transcriptional
networks linked to hypoxia signaling. Using these 119
genes as a seed (Additional file 1), we reconstructed two
distinct transcriptional networks based on two data sets of
gene expression profiles in AML: the first data set includes
293 AML samples, out of which 19 are classified as M3,
analyzed by Affymetrix HG-U133A Array [17]; the second
data set contains 197 AML samples, out of which 20 are
classified as M3, analyzed by Affymetrix HG-U133 Plus
2.0 Array (TCGA - Acute Myeloid Leukemia). Only probe
sets present in both platforms were processed. Moreover,
probe sets showing low variability across the samples,
assessed through an entropy measurement [18], and probe
sets that were not significant in the comparison between
APL samples and other AML subtypes were discarded.
Network identification was accomplished through ARA-

CNe [19], a reverse engineering method of regulatory net-
work reconstruction that exploits the mutual information
(MI) operator to estimate the pairwise correlation between
transcripts. The significance threshold for MI was set to
P <10e-15 for the first data set and P <10e-10 for the second
data set, in order to obtain a comparable number of nodes
in the two parallel analyses (3,865 and 3,768, respectively).
Then, to increase the reliability of the results, we retained
only pairwise interactions occurring in both networks.
The consensus network that was obtained with this ana-

lysis is shown in Figure 1A: it contains 3,405 edges for 1,908
nodes, out of which 94 are probe sets corresponding to 52
HIF-1 direct targets (highlighted in green).



Figure 1 Reconstructed AML network starting from HIF-1 direct target genes. (A) Transcriptional network of gene interactions
corresponding to pairwise dependencies that were found statistically significant in both gene expression data sets of AML samples. Each circle
represents a transcript (probe set). Transcripts corresponding to known HIF-1 direct target genes are highlighted in green. The largest module (1)
is enriched for the Gene Ontology terms 'defense response', 'actin cytoskeleton', and 'integral to plasma membrane'; module 2 is enriched for
'ribonucleoprotein complex', 'chaperone', and 'mitochondrion'; module 3 is enriched for 'translational elongation' and 'ribosome'; and module 4 is
enriched for 'ncRNA metabolic process'. (B) Significance in differential expression versus connectivity. For each node of the network, the P-value
of the t-test for the comparison of APL with other AML subtypes is reported against its degree (number of nodes directly connected). ITGB2, LRP1
(two transcripts) and HMOX1, indicated by arrows in both panels, emerge as hubs of the network and are highly dysregulated as well.
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Given the modularity of the network, we analyzed the an-
notations for the most crowded modules. The main moule
is significantly enriched for the Gene Ontology terms
'defense response' (P =1.84e-16), 'actin cytoskeleton'
(P =1.14e-05), and 'integral to plasma membrane'
(P =1.67e-05). Two numerous modules communities
are centered on two distinct transcripts of the nucleo-
phosmin 1 gene (NPM1), which is associated with AML
development [20], with enrichment for the terms 'ribo-
nucleoprotein complex' (P =1.03e-29), 'chaperone'
(P =1.31e-10), and 'mitochondrion' (P =1.39e-10) and
for the terms 'translational elongation' (P =3.58e-73)
and 'ribosome' (P =2.17e-67), respectively. Then, a commu-
nity centered on the carbamoyl-phosphate synthetase
2, aspartate transcarbamylase, and dihydroorotase gene
(CAD) is enriched for 'ncRNA metabolic process'
(P =2.31e-04).
Subsequently, we performed differential analysis of gene

expression data by comparing M3 samples with the other
AML samples for each data set. A diagram of differential
analysis significance versus connectivity (Figure 1B) shows
for each node the number of connections (degree) and the
worst (least significant) P-value between the two differen-
tial analyses accomplished on the two separate datasets.
As expected, genes with a high level of connectivity, which
are commonly referred to as hubs, show lower significance
in terms of differential expression [21]. Exception are
represented by a few genes indicated by arrows in
Figure 1A,B (ITGB2, LRP1 and HMOX1), which show a
very high degree of connectivity together with a high level of
M3-specific dysregulation, thus emerging as key elements.
Interestingly, the two hubs most de-regulated in APL are

both involved in mediating interaction with the ECM and
cell migration. Specifically, expression of β2 integrin
(ITGB2) has been variously associated with cell motility
[22], and is specifically down-regulated on the cell surface of
M3 blasts compared with other AMLs [23]. The low-density
lipoprotein receptor-related protein 1 (LRP1) is a large re-
ceptor whose extracellular domain mediates the binding of
various ligands associated with the ECM, and cooperation
between LRP1 and ITGB2 was reported to mediate cell ad-
hesion in leukocytes [24]. Similarly to ITGB2, LRP1 has also
been variously associated with tumor progression by regulat-
ing the balance of adhesion detachment in malignant cells
amongst other functions [25]. Finally, the third hub encodes
heme oxygenase 1 (HMOX1), an enzyme involved in
defense of cells from oxidative stress and that, due to this
cytoprotective function, may influence the resistance of can-
cer cells to pharmacological treatment [26].

A distinctive subnetwork for acute promyelocytic
leukemia
In a further step, we integrated gene expression analysis
and network analysis by selecting from the global network
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only transcripts differentially expressed in APL. We con-
sidered only transcripts that were significant (false discov-
ery rate (FDR) adjusted P-value <0.05) in both data sets.
The subnetwork obtained with this analysis is depicted in
Figure 2A (transcripts up-regulated are in red, transcripts
down-regulated in blue). Only a few nodes are neglected,
which refer to isolated transcripts or small circuits con-
taining at most 10 genes.
Two main modules can be seen in the network: one

contains a few up-regulated transcripts, while the other
Figure 2 A HIF-1-dependent subnetwork is specifically dysregulated i
AML network only transcripts that are differentially expressed (FDR adjusted
subtypes in two AML data sets. Six HIF-1 direct targets are included: MMP2
and LRP1 in the vast community that is mostly down-regulated and center
subtypes (from M0 to M5). Down-regulated transcripts are in blue, up-regu
empty circles.
represents a wider group of transcripts that are mostly
down-regulated in APL. The part of the network con-
taining down-regulated genes includes the probe sets for
ITGB2, HMOX1 and LRP1, which were already identi-
fied as hubs in the AML network specifically dysregu-
lated in APL with respect to other AML subtypes.
Consistent with down-regulation of a vast group of

genes showing overall enrichment for cell adhesion,
probe sets corresponding to the highly correlated HIF-1
target genes MMP2, KRT18 and IGFBP2 are found
n APL. (A) A subnetwork was obtained by extracting from the overall
P-value <0.05) in the comparison between APL (M3) and other AML

, KRT18 and IGFBP2 in the up-regulated module; and ITGB2, HMOX1
ed on them. (B) The same subnetwork observed across different AML
lated transcripts are in red, non-differentially expressed transcripts are
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amongst the nodes of the first group, which are up-
regulated in APL with respect to all other AML subtypes
(Figure 2A; Additional file 2). Matrix metalloproteinase
MMP2 is a degradative enzyme involved in ECM break-
down and tumor growth, metastasis and angiogenesis
[27]. The transcripts for MMP2 and the cytoskeletal pro-
tein KRT18 display a high level of correlation across all
AML samples, and are directly linked (highly dependent)
and both connected to the WT1 and MLC1 genes in the
specific subnetwork identified in APL. The Wilms tumor
1 gene (WT1) encodes a transcription factor for which
some variants have been already associated with leukemia
and cancer [28]; moreover, high WT1 mRNA levels in the
bone marrow of AML patients were associated with poor
prognosis [29]. The protein product of MLC1 is not func-
tionally characterized but sequence analysis suggests a
possible role as an integral membrane protein [30].
Insulin-like growth factor binding protein 2 (IGFBP2)

is a recognized oncogene whose role was shown in sev-
eral cancer types. Generally, IGFBP2 expression corre-
lates with disease progression [31]. IGFBP2 can exert
IGF-independent functions by interacting with ECM
components and integrins. The integrin binding function
of IGFBP2 has been shown to be responsible for de-
creased cell adhesion and increased cell migration in a
Ewing’s sarcoma cell line [32]. Moreover, in glioblast-
oma, IGFBP2 enhances cell invasion by activating
MMP2, to which it is highly correlated in both glioblast-
oma [33] and APL. Finally, it was recently reported that
IGFBP2 is over-expressed in APL, where it exerts a key
role in mediating survival and migration [34].
The MMP2 gene appears to play a pivotal role in the

subnetwork since it connects the module of the up-
regulated genes with the integrin-dependent community
(Figure 2), through a direct link with the genes CPA3,
TNFRSF4, CDC42EP3, MAP1A and LILRA2. These
genes are all down-regulated in APL, like the vast major-
ity of the community to which they belong. Among
them, CDC42EP3 and MAP1A are genes known to par-
ticipate in cytoskeleton organization, with CDC42EP3
being involved in actin cytoskeleton remodeling during
changes in cell shape [35], and MAP1A being associated
with microtubule assembly [36].
Overall, by integrating differential analyses of AML

samples it emerges that a distinctive subnetwork of HIF
target genes is peculiarly dysregulated in APL, with genes
involved in invasion up-regulated and genes key for adhe-
sion concordantly down-regulated. The specific modula-
tion of these genes in APL shows characters typical of
EMT, which is strongly associated with the pathogenesis
of solid tumors, and only recently is beginning to be im-
plicated in leukemia [37].
EMT is a fundamental process during embryogenesis

characterized by a loss of cell-cell adhesion, anchorage
to the substrate and apical-basal polarity, and increased cell
motility [38]. EMT is also a crucial aspect in tumor progres-
sion: it confers on cancer cells migration properties and inva-
siveness, which lead to metastasis formation [39].
Several transcription factors have been implicated in

EMT, with HIF-1 included among them since a number
of direct HIF-1 target genes are involved in regulating
cell motility, cytoskeletal organization and ECM metab-
olism [40]. Thus, we examined the expression of the
main EMT regulators across the AML subtypes. We
found a striking up-regulation of TWIST1 expression in
APL compared with all other subtypes (FDR adjusted
P <0.0018), although limited to the TCGA dataset. Given
the recognized role of this transcription factor in EMT,
we decided to also consider this gene in the validation
phase.
The APL-specific subnetwork is gradually dysregulated
across different AMLs
We next analyzed the APL-specific subnetwork across
different FAB subtypes to study its behavior following
progressive differentiation states of leukemic cells. In
Figure 2B, transcripts are depicted as empty circles if
they were not differentially expressed in the comparison
between each AML subtype and the other AMLs, while
they are filled in blue or red, if they are down- or up-
regulated, respectively. As apparent, this topologically
characterized gene signature shows very specific behav-
ior from M0 to M5 (from minimally to highly differenti-
ated leukemic cells). The up-regulation of MMP2,
KRT18, IGFBP2 and their neighbor genes is exclusive to
M3, and the crowded group of genes related to β2 integ-
rin shows a clear trend from absence of dysregulation in
M0 to progressive down-regulation up to M3. After-
wards, a clear switch takes place from M3 to M4, involv-
ing the whole subnetwork. The specific behavior of these
genes can be appreciated also in the heatmap of the
clustered profiles (Additional file 3), which also shows a
clear segregation of M3 samples. This analysis suggests
that dysegulation of genes related to EMT-like charac-
teristics and cell migration downstream of HIF-1 is not a
general phenomenon of leukemic transformation within
the myeloid lineage but rather segregates with specific
leukemia subtypes.
Validation
To validate that the HIF-1 target genes identified by our
study are regulated by HIF-1 also in the hematopoietic con-
text, HIF-1α was silenced in APL-derived NB4 cells and ex-
pression of MMP2, KRT18, IGFBP2, ITGB2, HMOX1, and
LRP1 was assessed by RT-PCR. Expression levels of all
genes except KRT18 was significantly affected by HIF-1α
down-regulation in NB4 cells (Additional file 4). Moreover,



Percio et al. Genome Medicine 2014, 6:84 Page 7 of 11
http://genomemedicine.com/content/6/12/84
all genes except KRT18 were significantly up-regulated in
NB4 cells upon exposure to hypoxia (Additional file 5).
The module of dysregulated genes specific to APL was

identified by processing two independent gene expression
data sets, retaining only significantly differentially expressed
genes found in both. To validate the results obtained with
the microarray data, we assessed the expression for the six
key genes of the subnetwork along with TWIST1 in RNA-
Seq data available for 178 out of the same 197 patients of
the TCGA microarray data set. As reported in Additional
file 6, we confirmed the differential expression of these
genes in M3 compared with other FAB subtypes.
Finally, we assessed by RT-PCR the expression of the

same genes in bone marrow samples from AML patients of
IRCCS Ospedale San Raffaele. As representative samples,
we selected four patients with M3 and four patients with
M5, as these two leukemias represented opposite patterns of
expression of the genes of the subnetwork. In addition, we
also validated differential expression of TWIST1. The com-
parison between M3 and M5 (Additional file 7) confirmed
the dysregulation trend observed in the two main cohorts of
AML patients for the key genes of the subnetwork and also
for the EMT regulator TWIST1.

The acute promyelocytic leukemia subnetwork
discriminates leukemic promyelocytes from their normal
counterpart
To assess if the differential expression of the genes of
the APL subnetwork is dependent on the specific
Figure 3 The APL-specific HIF-1-dependent subnetwork distinguishes
Unsupervised clustering shows a clear segregation between normal (PM, n
bar cluster) samples. (B) Comparison of the HIF-dependent subnetwork in
component analysis.
developmental stage of affected cells, we analyzed their
values in a dataset of samples comprising leukemic pro-
myelocytes (APL, n =14) and their normal counterpart
(PM, n =5) [41]. Profiles were extracted for the 329
transcripts (corresponding to 246 genes) present in the
M3-specific subnetwork. Unsupervised clustering of ex-
pression profiles (Figure 3A) shows a clear segregation
of PM samples from APL samples, which is confirmed
by principal component analysis (Figure 3B). These data
clearly indicate that dysregulated expression of these
genes when compared with other AML subtypes is not
caused by their expression levels in normal promyelo-
cytes, but is indeed specific of APL promyelocytes.
We then assessed the expression of the HIF-1 target

genes belonging to the subnetwork in NB4 cells treated
with all-trans retinoic acid (ATRA) at different time
points [42]. ATRA treatment provoked the reversal of
gene expression changes observed in APL for ITGB2,
HMOX1, IGFBP2 and MMP2 (Figure 4A). Also, looking
at the overall subnetwork at the last time point (72 h) of
the experiment (Figure 4B), the vast majority of APL
down-regulated genes (in blue) show a positive fold-
change relative to the absence of treatment and, con-
versely, most APL up-regulated genes (in red) show a
decrease in expression after treatment.
Taken together, these data indicate that although dif-

ferential expression of the HIF-related network in APL
versus other AML subtypes is not caused by the differ-
ent cells of origin (promyelocytes versus other types of
leukemic promyelocytes from their normal counterpart. (A)
=5, grey bar cluster) and leukemic promyelocytes (APL, n =14, black
leukemic versus normal promyelocytes through principal



Figure 4 Response of the subnetwork genes to ATRA treatment. (A) mRNA expression profiles of a time-course experiment in NB4 cell lines
after ATRA administration are reported; values are relative to the time of drug administration (0 h), empty symbols indicate genes that are
up-regulated in APL, filled symbols genes that are down-regulated. Reversal of APL-specific dysregulation is observed for four genes: IGFBP2 and
MMP2 show decreased expression whereas ITGB2 and HMOX1 show decreased expression upon ATRA treatment. (B) Overall behavior of the
whole subnetwork (APL down-regulated transcripts in blue, APL up-regulated transcripts in red), observed 72 hours after treatment, highlights a
general inversion of APL dysregulation. FC, fold change.
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myeloid cells), nonetheless when promyelocytes are in-
duced to differentiate by ATRA treatment the expression
of these genes is significantly affected, thus suggesting
that this subnetwork may play an important role in the
processes of leukemogenesis or leukemia maintenance.
microRNAs of the miR-181 family are the most correlated
with the down-regulated genes in the APL module
Because the subnetwork that we have identified includes a
large community of down-regulated genes (the β2
integrin-dependent group), we searched for microRNAs



Figure 5 microRNAs of the miR-181 family have the highest
number of anti-correlated genes in the APL subnetwork.
microRNAs are listed according to the number of anti-correlated genes
(Pearson correlation coefficient less than −0.4) found in the APL
subnetwork. All the microRNAs reported are significantly up-regulated
in APL (Bonferroni corrected P-value <0.05). The proportion of potential
direct targets predicted by MiRanda is indicated for each microRNA.
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that can potentially target these genes. To do this, we
exploited microRNA expression data available for the
samples of the second data set (from TCGA Data Portal).
We identified the microRNAs significantly (Bonferroni
corrected P-value <0.05) up-regulated in M3 and showing
a correlation coefficient lower than −0.4 with respect to at
least one transcript belonging to the β2 integrin gene
group. A list of 10 microRNAs was generated in this way.
They are ordered in Figure 5 according to the number of
anti-correlated transcripts belonging to the down-regulated
part of the APL subnetwork; these anti-correlated tran-
scripts are significantly enriched for the SP_PIR keyword
'cell adhesion' (Bonferroni corrected P-value =5.41e-04).
For each microRNA, the proportion of transcripts that are
predicted as direct targets by MiRanda (that is, with the
recognition of a potential biding site) is also reported. It is
worth noting that among the selected microRNAs, miR-
100 was already found up-regulated in pediatric APL [43]
and miR-424 is considered as a 'hypoxamir', being impli-
cated in oxygen-dependent changes by stabilizing HIF-1α
and increasing transcription of its target genes. It is up-
regulated in cells during angiogenesis, vascular remodeling,
invasion and proliferation [44].
More importantly, the microRNAs with the highest

amount of potential targets belong to the miR-181 fam-
ily, which was very recently found to promote EMT in
ovarian cancer progression [45].

Conclusions
By applying an integrated approach to study the contri-
bution of HIF-1 signaling to APL, we have identified a
gene subnetwork that distinguishes APL from other
AML subtypes; it is centered around genes whose tran-
scription is hypoxia inducible and are further modulated
in APL unveiling characteristic of EMT gene expression
programs.
Starting from the known direct targets of HIF-1, we

constructed a downstream regulatory network depicting
the contribution of this master regulator of hypoxia
adaptation to the APL transcriptional signature. Gene
expression profiles from two independent AML data sets
derived from patient samples were processed: to enforce
the prediction, only interactions and changes in expres-
sion confirmed in both datasets were retained. The net-
work module that was identified shows overexpression
of genes linked to migration and invasiveness (for ex-
ample, KRT18 and MMP2) along with down-regulation
of a vast community of genes whose main hub is the in-
tegrin ITGB2 gene, showing an overall enrichment for
genes regulating cell adhesion. Altogether, dysregulation
of this gene network in APL implicates the involvement
of EMT-like processes in this specific leukemia subtype.
Accordingly, microRNAs previously implicated in EMT
and metastasis in solid tumors, such as those belonging
to the miR-181 family, are also dysregulated in APL,
possibly participating in the down-regulation of cell ad-
hesion genes.
The process of hematopoietic and leukemic cell migra-

tion from bone marrow to peripheral blood and other
tissues is not fully elucidated, but according to our data,
it appears to play an important role in the development
or progression of APL. Our results show that processes
occurring during EMT in solid tumors could also be im-
plicated in the pathophysiology of some types of
leukemia downstream of HIF-1. Interestingly, within
AML subtypes, dysregulation towards EMT-like charac-
teristics appears to be particularly relevant to APL devel-
opment or progression and, in the future, it will be
interesting to elucidate the molecular details of this
regulation.
Additional files

Additional file 1: List of the 119 HIF-1 direct targets used in this
study. Genes were selected for presence of functional hypoxia
responsive elements (HREs) in their promoters validated by HIF-1
chromatin immunoprecipitation and experimental evidence of
hypoxia-dependent transcriptional induction. Gene symbol, aliases, gene
ID, gene name and reference PubMed ID are reported for each gene.

Additional file 2: Scatter plots reporting pairwise correlations
between HIF-1 target genes included in the up-regulated module of
the APL subnetwork. (A) Correlation between KRT18 and MMP2. (B)
Correlation between IGFBP2 and MMP2. (C) Correlation between IGFBP2
and KRT18. Correlations are computed from the TCGA gene expression
data set as Pearson’s correlation coefficients (r) and P-values (p) represent
the statistical significance of the dependence testing the null hypothesis
of no correlation.

http://genomemedicine.com/content/supplementary/s13073-014-0084-4-s1.xlsx
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Additional file 3: Unsupervised hierarchical clustering of the
expression values of the transcripts belonging to the APL HIF
subnetwork. The heatmap shows the mean-centered log2 expression
values of probe sets (rows) across the AML samples (columns) of the
TCGA dataset. APL samples segregate in a specific cluster indicated by
the black bar.

Additional file 4: HIF-1α silencing. Real-time PCR analysis of MMP2,
KRT18, IGFBP2, ITGB2, HMOX1 and LRP1 upon HIF-1α silencing in NB4 cells.
Data represent mean values (± standard error of the mean) of three
independent experiments. N.s., not significant.

Additional file 5: Functional relationship between the APL
subnetwork and hypoxia. Real-time PCR analysis of MMP2, KRT18,
IGFBP2, ITGB2, HMOX1, and LRP1 in NB4 cells cultured in hypoxic
conditions for different time points. Data represent mean values
(±standard error of the mean) of three technical replicates. Significance
is shown at 16 h compared with normoxia (0 h). N.s., not significant.

Additional file 6: Confirmation of APL subnetwork dysregulation
using RNA-Seq data. The comparison between M3 samples (n =16) and
other subtypes (n =162) is reported for MMP2, KRT18, IGFBP2, ITGB2,
HMOX1, LRP1 and TWIST1. Data are expressed as RPKM.

Additional file 7: Real-time PCR analysis of MMP2, KRT18, IGFBP2,
TGB2, HMOX1, LRP1 and TWIST1. Expression values in bone marrow
samples from M3 (n =4) and M5 (n =4) patients. Differential expression is
confirmed for all genes of the subnetwork and for TWIST1.
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