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Abstract

New strategies to combat complex human disease require systems approaches to biology that integrate
experiments from cell lines, primary tissues and model organisms. We have developed Pathprint, a functional
approach that compares gene expression profiles in a set of pathways, networks and transcriptionally regulated
targets. It can be applied universally to gene expression profiles across species. Integration of large-scale profiling
methods and curation of the public repository overcomes platform, species and batch effects to yield a standard
measure of functional distance between experiments. We show that pathprints combine mouse and human blood
developmental lineage, and can be used to identify new prognostic indicators in acute myeloid leukemia.
The code and resources are available at http://compbio.sph.harvard.edu/hidelab/pathprint

Background
Complex human diseases arise from perturbations of the
cellular system [1]. Defining these changes from a systems
biology perspective provides the opportunity to relate the
function of genes, pathways, and processes. The ability to
compare experiments across model organisms and
humans directly influences our capacity to determine the
basis of disease [2-4], and the importance of cross-species
data analysis has been well illustrated: human disease
genes have been identified by large-scale meta-analysis of
conserved human-mouse co-expression [5], gene-based
cross-species distance metrics have highlighted diseases
that activate similar human and mouse pathways [6], and
oncogenetic expression signatures have been prioritized by
comparing human cancer and mouse model expression
profiles [7-9]. Gene expression provides the most extensive
resource to profile functional changes, and the opportunity
for large-scale meta-analyses has been made possible by
the development of public data repositories such as the
National Center for Biotechnology Information Gene
Expression Omnibus (GEO) [10] and the European Bioin-
formatics Institute ArrayExpress [11]. Cross-study analysis
and integration is an area of extremely active research;
however, most gene-based approaches are confounded by

the challenge of comparing gene activity between different
platforms and species. Consistent and scalable methods
for combining these data are now required so that
researchers can perform comprehensive integration of
existing knowledge with new experiments, identify consis-
tent signals, compare heterogeneous data, and validate
hypotheses.
Methods for cross-study integration of gene expression

data have tended to focus on differential expression in
well-matched control and experimental samples [12],
because approaches based on correlation or absolute pro-
files [13] are dominated by laboratory and platform varia-
bility in cross-study analyses [14]. The ability to leverage
public data to address platform-effects has been demon-
strated most recently by the Gene Expression Barcode
(GEB) and Gene Expression Commons, both of which
define absolute gene expression scores based on a back-
ground distribution [15,16]. However, by virtue of their
reliance on gene level comparisons, these compelling
simplifying approaches are restricted to selected plat-
forms, and so do not address global comparison of bio-
logical function across experiments and species.
We sought to develop a new function-based approach

for comparing profiles, which can truly scale across the
diversity of available experiments, platforms, and species.
Expression of biological functions across batches and
divergent expression platforms shows higher concordance
than across genes [17], and assigning genes to pathways
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[18-20] or ontologies [21] is effective for revealing pheno-
type associations [22-25], performing cross-platform inte-
gration [14], and specifying disease subgroups [26]. To this
end, we have developed Pathprint, a global pathway activa-
tion map spanning 6 species and 31 array technologies,
which represents expression profiles as a ternary score
(underexpressed (-1), intermediately expressed (0), or
overexpressed (+1)) in a set of 633 pathways, networks,
and transcriptionally regulated targets. The method
leverages a static background built from public data repo-
sitories, integrating pathway annotation and prediction
with large-scale profiling.
Pathprint provides both a quantitative definition of cel-

lular phenotype and a functional distance between all
experiments, based on their global pathway activity. It
presents a significant methodological advance over sin-
gle-study, relative enrichment methods such as Gene Set
Enrichment Analysis (GSEA) [27] and existing gene-
based methods for comparison between platforms and
species. Pathprinting provides a robust framework for
large-scale meta-analyses of clinical data, and allows phy-
logenetic reconstruction of developmental lineages from
a functional perspective. We demonstrate the use of
pathprinting for retrieval of functionally matched sam-
ples from cross-platform expression databases, recon-
struction of the blood developmental lineage across
species, and integration of data from mouse experiments,
human samples, and clinical studies to develop new prog-
nostic indicators and drug targets in acute myeloid leuke-
mia (AML).

Methods
The pipeline to create a pathprint of an array is shown
in Figure 1. A score of 0 in the final pathprint vector
represents pathway expression at a similar level to the
majority of arrays of the same platform in the GEO
database, while scores of 1 and -1 reflect significantly
high and low expression respectively. Below we describe
the individual steps used to construct the method.

Expression data for building pathway background
distributions
A list of arrays from 31 of the most highly represented
one-channel gene expression platforms in GEO that pro-
filed Homo sapiens, Mus musculus, Rattus norvegicus,
Danio rerio, Drosophila melanogaster, and Caenorhabditis
elegans was compiled (see Additional file 1) and the nor-
malized expression tables retrieved. All normalization
methods were accepted. After discarding incomplete
records, this list contained 176,971 arrays. It was necessary
to restrict the platform coverage to one-channel arrays,
because two-channel arrays provide the relative expression
of genes between test and control samples, hindering
direct comparison of the test sample between experiments

when the control sample differs. The expression data were
mapped to Entrez Gene identifications (IDs) using system-
atically updated annotations from AILUN (Array Informa-
tion Library Universal Navigator) [28]. Multiple probes
were merged to unique Entrez Gene IDs by taking the
mean probe set intensity. It should be noted that although
the mean expression level will produce stable gene expres-
sion values, it also ‘averages out’ the effects of alternative
promoter usage and splice variants. Tissue-specific splicing
has been recognized as an important factor in defining cel-
lular function [29]; however, at the present time, there are
insufficient data to allow consistent mapping of individual
splice variants to pathways.

Pathway databases
Canonical pathway gene sets were compiled from Reac-
tome [18], Wikipathways [20], and KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) [19], which were chosen
because they include pathways relating to metabolism, sig-
naling, cellular processes, and disease. For the major signal-
ing pathways, experimentally derived transcriptionally
upregulated and downregulated gene sets were obtained
from Netpath [30]. The pathways provide structured rela-
tionships between genes, unlike ontologies such as the
Gene Ontology (GO) database [21] that define relation-
ships between but not within terms.

Static modules
Pathprint is built to leverage expertly curated biological
knowledge found in canonical pathway databases within a
systematic framework. This approach provides a consis-
tent biological annotation of datasets in terms that are
well understood by the community. However, a uniquely
pathway-centric approach would introduce an inherent
curation bias towards well-studied genes and processes.
Therefore, we have supplemented the curated pathways
with non-curated sources of interactions by including
highly connected modules from a functional-interaction
network, termed ‘static modules.’ This functional-interac-
tion network was constructed by extending curated path-
ways with non-curated sources of information, including
protein-protein interactions, gene co-expression, protein
domain interaction, GO annotations and text-mined pro-
tein interactions. The final functional-interaction network
contains 181,706 interactions between 9,452 genes [31],
representing close to 50% of the total human proteome.
A Markov cluster algorithm was applied to decompose the
network, yielding 144 closely related functional-interaction
clusters or ‘static modules’, ranging from 10 to 743 nodes.
Each cluster was named according to the member gene
with the highest interaction degree. The modules cover
6,458 genes, 1,542 of which are not represented in any of
the pathway databases. These static modules offer the
opportunity to examine the activity of less studied or
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annotated biological processes, and also to compare their
activity with that of the canonical pathways. To provide
biological context for the static modules, the top GO
terms associated with all the pathways have been compiled
(see Additional file 2).

Compiling cross-species gene sets
M. musculus, R. norvegicus, D. rerio, D. melanogaster,
and C. elegans gene sets were inferred using homology
based on the HomoloGene database [32]. HomoloGene
uses pairwise gene comparison combined with a guide
tree and gene neighborhood conservation. HomoloGene
was selected because, compared with alternative infer-
ence methods, it provides a better functional proxy and
higher specificity for the resolution of shared cellular
ontogeny, albeit with lower overall coverage [33].

Summary of the pathprint gene sets
All of the modules and pathways were converted to flat
gene sets, so intra-pathway gene-level interaction data
were not used. Combined, the canonical pathways, down-
stream targets, and static modules totaled 633 human
gene sets. The gene membership of these sets is described
in Table 1, within the R package Pathprint, and on the
Pathprint website (for the number of genes overlapping
between each of the data sources see Additional file 3).
Specific pathway sub-sub-sets may also be used in indivi-
dual analyses.
Calculating pathway expression
Genes were ranked by expression level, from 1 (low
expression) to T (high expression), where T is the total
number of genes in the array. For a pathway, P, of size
k, represented in an array by genes G1, G2...Gn, the path-
way expression score, En(P), is defined by the mean
squared rank

En(P) =
1
n

×
n∑

i=1

R2
i ,

where Ri is the rank of gene Gi in a pathway contain-
ing n genes. Rank normalizations provide robust sum-
mary statistics to calculate pathway expression scores
[6,13] that can be applied across all technologies, and
does not depend on the dynamic range of an array. The
mean squared rank was chosen based on a survey of sta-
tistical approaches for gene set analysis [34], and out-
performed other summary statistics in a series of classi-
fication benchmarks based on tissue-specific pathway
expression (see benchmarking section below).
Normalization and probability of expression
When comparing gene-set expression scores between
experiments, it is essential to assess the expression
against a suitable null hypothesis [35]. In this case, com-
parison of the expression of a gene set in one array with
its expression in all other arrays, that is, sample permu-
tation, is required to account for the internal gene
expression correlation structure within gene sets, which
is expected to be particularly high within pathways [36].
For each gene set, the expression score was normalized
against a background built using all arrays of the same
platform type. To our knowledge, this is the first study
comparing database-wide gene set expression, and the
expected distribution scores are not known. We adopted
a similar approach to the GEB [15], which estimates
which genes are expressed and which are unexpressed
in data from single microarrays. The GEB converts gene
expression levels to binary scores based on a static back-
ground distribution built from public expression data for
three distinct platforms. In this study, we constructed
static pathway expression background distributions for

Figure 1 The Pathprint pipeline. Rank-normalized gene expression is mapped to pathway expression. A distribution of expression scores across
the Gene Expression Omnibus (GEO is used to produce a probability of expression (POE) for each pathway. A pathprint vector is derived by
transformation of the signed POE distribution into a ternary score, representing pathway activity as significantly underexpressed (-1),
intermediately expressed (0), or overexpressed (+1).
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each pathway across 31 platforms in GEO [10], and then
fitted each of these distributions to a two-component
uniform-normal mixture model [37]. The normal com-
ponent represents the core distribution of pathway
expression scores for a particular pathway, that is, not
significantly high or low expression. The uniform com-
ponent represents outlying pathway expression due to
significantly high or low expression. A signed probability
of expression (POE), representing the probability that a
pathway expression score belongs to the uniform com-
ponent of the fitted mixture model, can be calculated.
We took advantage of the increase in computation
speed afforded by the expectation-maximization imple-
mentation of POE in the R package metaArray [38].

Application of a ternary threshold
High/low thresholds [15], or filters with weight vectors
approaching the thresholding limit [6], operate as an effec-
tive noise filter to remove uninformative signal variation.
POE values were converted to a ternary score by the trans-
formation:

Fi = 1 : T ≤ POEi

Fi = 0 : −T < POEi < T
Fi = −1 : POEi ≤ −T,

where POEi (i = 1, 2... n) represents the POE for gene set
i, T is the threshold and Fi are components of the pathprint
vector. Selection of the threshold, T, is of vital importance,
as this directly modulates the sensitivity and specificity at
which gene sets are scored as significant. Large values of T
(high stringency) is appropriate for gene expression [15],
while small values of T (low stringency) increase the weight-
ing of subtle differences in expression, and may be required
to discriminate arrays at the pathway level, where the coor-
dinated effects of multiple genes are under consideration.
The threshold was optimized by combining multiple bench-
marks (see below). Thresholding improves sample cluster-
ing (see below), provides a read-out for sample annotation,
and simplifies quantification of sample relationships.

Constructing consensus pathprints
To summarize the activity of a group of pathprints, we
defined the consensus score for each pathway as

Ci = 1 : µi > t
Ci = −1 : µi > −t,

where μi is the mean score for pathway i across the
group of pathprints, and t is a consensus threshold value.
The consensus pathprint is the vector constructed by cal-
culating the consensus score for each pathway, represent-
ing the consistently significantly expressed pathways
across the group. The rationale behind introducing a
threshold is to associate a set of pathways with a pheno-
type, and so provide a discrete functional representation of
a cell type based on a collection of pathprints.

Defining distance between pathprints
A functional distance between experiments is defined as
the distance between two pathprint vectors. We defined
the distance by the Manhattan distance, providing a sim-
ple read-out for the number of pathway scores differing
between two samples. We defined the distance from a
consensus pathprint to any other pathprint by the Man-
hattan distance between the subset of the pathprint vec-
tors that contain only the pathways for which the
consensus pathprint is non-zero. This ensures that only
differences in the consistently expressed pathways that
make up the consensus pathprint are considered.

Optimizing threshold value
The threshold value was optimized using cross-platform,
cross-species gene expression data from a panel of
human and mouse tissue samples [15] and an indepen-
dent dataset profiling brain sub-regions in human,
mouse, and rat [39].
Four approaches were used to determine the optimum

threshold.
1) Cross-validation
The datasets were divided into five sub-sets of equal, or
approximately equal, size. One of the sub-sets (the test
set) was omitted, and mean pathprints were calculated
for each tissue from the remaining samples (the train-
ing set). Next, the samples in the test set were assigned
to the tissue with the closest mean tissue pathprint in
the training set by Euclidean or Manhattan distance
(both yielded similar results). An error rate was calcu-
lated by comparing these assignments with the known

Table 1 Summary of gene sets used in Pathprint

Pathways, n Mean size, n Median size, n Minimum size, n Maximum size, n Total genes, n

Reactome 53 154 108 11 932 4,874

Wikipathways 173 50 33 6 260 3,918

Netpath 36 170 83 8 816 3,811

KEGG 227 76 55 6 1,138 5,990

Static modules 144 45 21 9 733 6,458

All 633 74 41 6 1,138 10,903

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes.
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annotations. This was repeated, omitting each of the
sub-sets in turn, to obtain a mean error rate. The
cross-validation procedure was performed 10 times for
each threshold value to estimate the mean and standard
deviation (SD) of the error rate. The SD was small rela-
tive to the change in mean error rate over the thresh-
olds, and so this number of repetitions was deemed
sufficient (see Additional file 4). The procedure was also
performed as a ‘leave-one-out’ cross-validation, equiva-
lent to dividing the data into a number of sub-sets equal
to the same number of samples, with similar results.
2) Cluster validity (intra-tissue versus. inter-tissue distance
and principal components analysis)
Cluster validity was determined by the ratio of the intra-
to inter-tissue variance, where variance was defined as
sum of the squared Euclidean distance between each
sample and the mean pathprint for each tissue. A lower
ratio indicates tighter clustering within tissues and/or
better separation of the tissue type clusters. The clusters
formed by pathprints had an intra-cluster/inter-cluster
distance ratio of 0.63, compared with 1.26 for GEB and
0.92 for Spearman correlation (see Additional file 4).
3) Retrieval: precision recall of cross-species tissue data
The combined human and mouse dataset was ranked by
distance from each sample (Manhattan, Euclidean, or
Spearman correlation). These ordered retrieval lists were

used to calculate average interpolated precision-recall
curves at a range of threshold values. Decreasing the
stringency of the threshold initially improved perfor-
mance, but at thresholds of less than 0.001, the difference
became less significant, summarized by the plot of mean
average precision (see Additional file 4). Pathprinting
improves the performance of tissue retrieval across spe-
cies compared with gene expression measurements (both
GEB and Spearman correlation) and results obtained
with randomly constructed gene sets (Figure 2). Pathway
expression scores based on the mean squared rank out-
performed the mean rank, as assessed by precision-recall
curves for the tissue-species data. In addition, an identi-
cal analysis pipeline was also constructed using the
GSEA algorithm, as applied to single samples [25], as the
initial step, in place of the mean squared rank. It was
found that the enrichment scores were highly correlated,
and yielded no significant improvements in precision or
recall. There was also a much greater computational bur-
den associated with running GSEA on 180,000 arrays
compared with using the mean squared rank on the same
number of assays.
4) Comparison with randomly constructed gene sets
A pathprint based on ‘random’ gene sets was con-
structed to test whether the ‘expert’ knowledge con-
tained within the pathways and modules contributed to

Figure 2 Cross-species integration. (a) Precision recall within the tissue training dataset for the pathprint (red indicates mean average
precision (MAP) = 0.90), unthresholded POE (dashed; MAP =, 0.88), random gene sets (black, MAP = 0.83), Gene Expression Barcode (blue, MAP
= 0.73), Spearman gene expression correlation (green, MAP = 0.71). (b) Comparison of distance metrics; precision-recall curves for aggregated
mouse to human tissue data based on a thresholded pathprint build produced using Euclidean (blue), Manhattan (green), and Mahalanobis (red)
distances. (a,b) Tissue-dominated versus platform/species-dominated clustering showing plots of the two most significant principal components
(PCs) for (c) the pathprint and (d) the Gene Expression Barcode (red, brain; yellow, kidney; green, liver; light blue, lung; dark blue, muscle; pink,
spleen; circles, Mouse 430A2; diamonds, Human 133plus2; crosses Human 133A). (e) Functional classification of tissues and blood cell types.
Hierarchical clustering of consensus pathprints for human and mouse tissues on three platforms based on the Wikipathway and Reactome
pathways that significantly contributed to clustering. Colors indicate scores: red, 1; white, 0; and blue, -1).
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the success of the pathprint, over and above the effect of
simply reducing the dimensionality of the data. These
random gene sets contained genes sampled without
replacement from the genes used in the original path-
ways, and retained the size distribution of the original
pathway list. The performance of the precision-recall
curves for pathprint based on random gene sets (Figure 2;
see Additional file 4) were inferior to pathprint, and this
was especially pronounced at stringent thresholds. At less
stringent thresholds, the difference between the curves
was smaller, implying that both the reduction in data
dimensionality and the integration of biological knowledge
contribute to the effectiveness of pathprint.
A threshold value of 0.001 was chosen on the basis

that it performed optimally across the majority of the
performance measures. It is interesting to note that a
highly stringent threshold, approximately 0.9, did not
perform well in cross-validation but yielded good results
for the precision-recall and cluster-validity tests, and
produced the greatest difference in performance com-
pared with the equivalently thresholded random gene
sets. These results show that moderate pathway expres-
sion levels best characterize samples, but the most
highly expressed pathway expression scores are also
informative. Further work is required to determine
whether combining more than one thresholding regimen
would be beneficial.

Phenotype matching using the GEO database
Any set of arrays, such as tissue-specific arrays, can be
used as a ‘seed’ to construct a consensus pathprint profile
representing the commonly expressed functions of the set
(Figure 2). The distance of every array in the GEO path-
print collection can then be measured to produce a table
of GEO samples, ordered on the basis of their phenotypic
similarity to the seed set, that is, a ranked list of retrieved
samples (see Additional file 5).

Distribution of distances
In considering the distribution of distances from a consen-
sus pathprint, a major problem is how to assign a measure
of significance. This is particularly important if it is neces-
sary to impose a cut-off point at which to evaluate
retrieved results. Calculating significance based on the dis-
tribution of pathprint scores across the full GEO database
is complicated because 1) each pathway has a different dis-
tribution of ternary scores, and 2) the pathways scores are
known to be correlated. An alternative strategy is to use
the distribution of the database to define a background
distribution, based on the following assumptions: first, that
there are two distinct populations, namely, a small number
of closely matched and a large number of non-matched
samples; and second, that the distances of the non-
matched samples are normally distributed. The estimated

distribution of the non-matched samples is derived from
the interquartile range of the full distribution. The signifi-
cance with which an array is matched with a pathprint, or
with a consensus pathprint, is then calculated using the P-
value, based on the normal distribution function based on
this estimated distribution. This approach is clearly an
oversimplification, and a more complete significance
model will form the basis of further study. We expect a
large number of the samples contained in GEO to be dis-
ease-related, representative of a research focus bias inher-
ent in the scientific literature, and so we are aware that the
underlying distribution could be multimodal, owing to
perturbed transcriptional programs and copy-number var-
iations associated with disease, specifically cancer cell
types. The correlation between this estimated P-value and
the precision for each of the six tissue samples is shown
(see Additional file 5).

Phylogenetic analysis
Pathprints corresponding to hematopoietic gene expres-
sion datasets GSE24759 [40] and GSE6506 [41] were
calculated using the pathprint pipeline. A consensus
pathprint was constructed for each of cell types using
an arbitrarily selected threshold of 0.75. Phylogenetic
analysis was performed using the R package Phangorn
[42]. Optimized parsimony and (non-parametric) boot-
strapped trees were found by nearest neighbor inter-
change with a cost matrix based on the difference
between pathprint scores.

Self renewal-associated signature and survival analysis
Gene expression data for leukemia stem cells, normal
stem cells, and progenitor cells in mouse and human
were obtained from the GEO database (GSE24006 and
GSE3722). Pathprints were calculated for each sample
using the Pathprint package in R. Pathways shared by
leukemic and normal stem cells that are differentially
expressed in progenitor cells were identified for the
human and mouse datasets. The self renewal-associated
signature (SRAS) was defined as the set of pathways
common to the human and mouse signatures. Gene
expression arrays and the associated survival data were
obtained from GEO for four clinical studies of AML
(GSE10358, GSE12417, GSE1159, and GSE14468). Path-
prints were calculated for each sample in these datasets.
Survival plots and associated P-values were derived
using the Kaplan-Meier method by stratifying patient
samples into two groups by the sum of their pathprint
scores across the SRAS pathways. For each dataset, the
approach was repeated 1,000 times using random per-
mutations of the pathprint pathways with the same
number of member pathways as the SRAS set to pro-
duce a background distribution of P-values against
which to compare the SRAS result.
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Code and Pathprint R package
The code and data to process gene expression arrays
to pathprints have been compiled into the R package
Pathprint. Pathprints have also been pre-calculated for
approximately 180,000 gene expression profiles from the
GEO repository and included in the R package, along with
their associated metadata, in order to create a searchable
cross-platform matrix covering 31 platforms and 6 species
(see Additional file 1). Future versions of Pathprint will
extend the acquisition pipeline to encompass the remain-
ing platforms and incorporate data from other reposi-
tories. The package and the complete R code (as Sweave
documents) required to reproduce the analysis and figures
contained within this manuscript are available online [43].

Results and Discussion
The ability of pathprints to classify cross-platform and
species data was tested on a series of tissue-specific data-
sets, and compared with the GEB [15], gene expression
correlation, and a pathprint based on random gene sets
(Figure 2; see Additional file 4). In each test, pathprints
improved sample classification, and clustered tissues
together across platform and species. The biological and
technical variation across pathprints in the tissue-specific
dataset was investigated by principal components analysis
(Figure 2c). The first two principal components separated
most tissue types, irrespective of their originating plat-
form and species, with some convolution of the lung and
spleen samples. Notably, a corresponding plot produced
from GEB data clustered samples first by platform and
then tissue type (Figure 2d).
A high degree of overlap in gene membership is intro-

duced when combining multiple pathway databases.
Overlapping gene membership can be due to redundancy
in the pathway sets, for example different views of the
Wnt pathway in the Reactome, Wikipathway, and KEGG
databases, or due to a close biological relationship
between pathways and so sharing of a subset of their
genes, such as ‘G1 to S cell cycle control’ and ‘DNA repli-
cation’. Overlapping genes will result in correlation
between the gene expression scores of these pathways. In
addition to the correlation due to overlapping genes, it is
well recognized that pathways do not function as discrete
elements, but rather are organized into cascades and co-
regulatory networks. We did not attempt to make a
quantitative definition of the second source of correla-
tion, but we did test the effect of correcting for overlap-
ping genes by incorporating a pathway covariance matrix
to adjust the contribution of each gene set using the
Mahalanobis distance. The covariance matrix was calcu-
lated using pathway expression scores from 10,000 ran-
domly permuted expression profiles to providing a
measure of the covariance due to the gene-member over-
lap, without the additional complication of gene-gene

expression correlations. In the benchmark tests,
the Mahalanobis distance did not improve performance
over the simpler Euclidean and Manhattan distances
(Figure 2b), thus, all pathways, irrespective of size and
including overlapping gene sets, were retained in the
pathprint. No additional correction was made, as we
wished to maximize the utility of the pathprint as a
source of annotation of samples and for sample cluster-
ing and organization. Plans to include feature selection of
gene sets that contribute the most toward performance,
for example by non-negative matrix factorization, are the
subject of ongoing algorithmic development.
We will now outline a series of case studies demon-

strating major applications of pathprinting, focusing on
integrating data from human and mouse.

Tissue-specific pathway profiles
The consensus pathprints derived from the tissue-specific
datasets described above define consistent functional
identities for each tissue; for example, skeletal muscle
expresses myogenesis, liver and kidney express metabolic
pathways, and brain expresses neuroactive ligand recep-
tors (Figure 2e). To validate these tissue-specific pathway
combinations, the full GEO matrix of pathprints,
approximately 180,000 samples, were ranked based on
pathprint distance from each tissue profile. Originating
tissue types were assigned for each GEO sample using
the metadata in the database, allowing validation of the
matched samples and the construction of precision-recall
curves for each tissue. The results showed remarkable
specificity (Table 2; see Additional file 5): the 50 human
and mouse brain Affymetrix arrays used to build a brain
profile retrieved approximately 8,500 brain samples at
95% precision, spanning 4 species (human, mouse, rat,
and zebrafish) and 25 different platforms (from Affyme-
trix, Illumina, and ABI). For 5 of 6 tissues, over 1,000
correctly matched arrays were retrieved at 95% precision.
Although performance was noticeably worse for spleen, a
high proportion of spleen mass is blood, and therefore
blood samples, predominantly leukocytes, ranked highly
in the retrieval list, lowering the observed precision.

Table 2 Pathprint-based retrieval of data from the Gene
Expression Omnibus (GEO); arrays retrieved from GEO
from consensus tissue pathprints at 95% precision

Seed
arrays, n

Correct
retrievals, n

Platforms, n Species, n

Brain >50 8,691 25 4

Kidney 81 1,156 14 3

Liver 196 4,797 22 4

Lung 142 1,735 13 3

Skeletal muscle 29 2,919 18 3

Spleen 33 179 5 2
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We tested the ability of the brain and liver consensus
pathprints of mouse and human to retrieve samples from
each of the other species covered by the pathprint; rat,
zebrafish, fruit-fly, and nematode. The top matches for
the brain consensus were all brain samples for rat and
zebrafish, head samples for fruit-fly, and a more hetero-
geneous set that included neuron samples for nematode.
The top samples retrieved by the liver consensus were
liver in rat and zebrafish, and whole samples for nema-
tode and fruit-fly (see Additional file 6).

Development of a pluripotent pathprint
The study and characterization of embryonic stem cells
(ESCs) is dominated by subjective choices of selection
markers. ESCs express consistent transcriptional profiles
that provide benchmarks for pluripotency [44]; however,
to date, it has not been possible to consistently assess
ESC signatures across all available data and platforms,
and it is becoming increasingly important to provide bio-
logically interpretable functional signatures that are
robust across a range of experimental origins. An ESC
pathprint was derived from 127 human and mouse sam-
ples (see Additional file 7) that includes high expression
of known ESC-related functions such as DNA repair,
one-carbon metabolism [45], and a network centered on
SUMO1, the ubiquitin-related modifier thought to target
and stabilize Oct4 [46]. The profile is a consistent indica-
tor of pluripotency; 90% of the 1,000 closest pathprint-
matched samples in GEO are ESCs and induced pluripo-
tent stem cells (iPSCs) from 140 different human and
mouse studies and 13 platforms (see Additional file 8; see
Additional file 9). The non-ESC/iPSC samples retrieved
were cancer cell lines known to express ESC pathways,
consistent with the concept that pathways required for
stem cell specification play fundamental roles in tissue
regeneration and cancer. Systematically profiling stem
cells using pathprints to integrate data from mouse mod-
els, human primary tissue, and clinical studies will resolve
the contributions of these stem cell pathways to develop-
ing and aberrant systems and reveal pathways of clinical
relevance.

Integration of the human and mouse hematopoietic
lineage
Mapping cellular lineages has traditionally relied on
direct observation, or on endogenous or genetically
engineered markers. Defining cell types using a combi-
nation of markers is not always possible, and often the
link between marker and cellular function is not under-
stood. Hematopoietic differentiation has been analyzed
in the context of the canonical view of blood lineage
using gene expression profiles of surface marker-purified
cell populations in human [40] and mouse [41]. Path-
printing allows a novel pathway-based phylogenetic

approach for an unsupervised definition of this lineage
by maximum-parsimony reconstruction using the dis-
crete pathprint states. The reconstruction recapitulates
the known lineage ontogeny, and allows integration of
human and mouse data, using the common informative
pathways (Figure 3; see Additional file 10). The phylo-
geny resolves the major myeloid and lymphoid branches,
independent of species. Species-specific contributions
overcome some cell-type groupings, but this is unsur-
prising, because marker selection and immune presenta-
tion differ between the experiments. A comprehensive
survey of mouse immune-cell gene expression is in pro-
gress [47]. As these and further data become available,
pathprints will allow integration with the existing
human and mouse ontogenies, identifying functional dif-
ferences, and resolving problems of data availability and
incomplete lineage coverage.

Self-renewal pathways in acute myeloid leukemia
Well-characterized mouse models of AML (AML) have
been used to explore the molecular basis for the stem
cell-like behavior of sub-populations of leukemia cells
[48]. An SRAS that is activated in both hematopoietic
stem cells and leukemia initiating cells has been identi-
fied. An analogous study of human AML has identified
a clinically relevant stem cell-associated signature
expressed in human normal hematopoietic and leukemia
stem cells [49]. There are only four genes common to
the published human and mouse signatures, and the
extent to which the mouse model functionally recapitu-
lates the human system is unknown. A pathprint analy-
sis systematically extracted and compared the pathways
defining stem phenotypes in each of these studies, identify-
ing four common human and mouse stem cell-associated
pathways. The common pathways are translation factors
and class B secretin-like G protein-coupled receptors
(GPCRs) from Wikipathways, and static modules centered
on 1-phosphatidylinositol-4,5-bisphosphate phosphodiester-
ase gamma-2 (PLCG2) and RAS-related nuclear protein
(RAN) (Figure 4a). There is no overlap between these path-
ways at the gene level. The combinatorial clinical relevance
of these pathways was tested by calculating pathprints for
four independent clinical studies of gene expression in
patients with AML [50-53]. The patient samples were
grouped into high-expression and low-expression groups
by k-means clustering of the sum of their pathprint scores
in the common self-renewal pathways. High scores were
associated with poor prognosis in each of the studies, and
were also significant compared with a background of ran-
dom pathway permutations (Figure 4b; see Additional file
11). The identification of translation factors suggests that
modulation of translation might be a therapeutic approach
in poor-prognosis AML, consistent with studies targeting
this process in early-phase clinical trials [54]. The set of
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stem cell pathways that are conserved across human and
mouse have significantly greater clinical relevance than do
either the human or mouse pathways on their own,
demonstrating the value of a cross-species analysis in this
case study (see Additional file 12). The GPCR, PLCG2, and
RAN modules may represent new pathways for clinical
investigation; a clear relationship between the pathprint
score and clinical outcome was found for the PLCG2

module, which comprises a tightly connected set of genes
involved in signaling and metabolism (Figure 4c; see Addi-
tional file 13).

Conclusions
The pathprinting project provides the scientific commu-
nity with a consistent, functional annotation of gene
expression across a fixed ‘set’ of pathways. It moves

Figure 3 Functional classification of blood cell types. (a) Maximum-parsimony phylogenetic reconstruction of the hematopoietic lineage
using pathprints calculated from (a) human [40] and (b) mouse [41] gene expression experiments. (c) Combined human-mouse tree based on
shared informative pathways that resolve trees (a) and (b) and the pathway heat-map. The myeloid (yellow) and lymphoid (purple) branches are
indicated, and dark branches represent agreement with the canonical lineage. See Additional file 10 for pathway annotations.
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beyond traditional approaches, resolving the major bot-
tleneck on the road towards efficient systems biology-
based modeling by addressing the inherent experimental
and platform biases that confound microarray analyses.
Pathprinting is now being applied to group the function
of datasets within the Harvard Stem Cell Institute Stem
Cell Commons [55] so that samples that have similar
function can be discovered within stem cell data. A
Cytoscape plug-in is also in development as part of the
National Heart, Lung, and Blood Institute Progenitor
consortium [56], and we have integrated the method
into the Stem Cell Discovery Engine (SCDE) [57] to
provide web-based accessibility. The SCDE is a portal
for integrated access to tissue and cancer stem cell

experimental information and molecular profiling analy-
sis tools via a web-based Galaxy instance. Pathprinting
is also embedded within the toolbench distribution of
Galaxy. We encourage the community to employ path-
printing to communicate functional findings more con-
sistently. It is important to note that pathprinting is
effective for use on single samples; a sample can easily
be pathprinted and compared with ‘what is there’. This
has important implications for applications in persona-
lized medicine and single cell analyses.
The R package Pathprint is provided to calculate path-

prints (or continuous pathway scores) from expression
arrays and pathway enrichments from input gene lists.
The package also contains a database of approximately

Figure 4 Clinically important self renewal-associated signature (SRAS) in acute myeloid leukemia (AML). (a) Pathways differentially
expressed in stem and non-stem cell profiles in leukemic and normal samples were found in human and mouse experiments. Four common
SRAS pathways were identified. (b) The SRAS pathprint scores of patients with AML were significantly associated with survival. (c) A single
pathway of interest is highlighted, the overall PGCL2 (a 2u globulin) module is upregulated in normal and cancer stem cells but individual
genes differ between species. This pathway is strongly associated with survival (see Additional file 13).
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180,000 pathprints from GEO. The packages, along with
Sweave files detailing the package usage and analysis in
this paper are available online [43]. A supplementary
package, pathprintTF, is also provided, containing a
similar framework and database to pathprint but built
upon protein interaction modules centered on transcrip-
tion factors rather than pathways to enable cross-plat-
form comparison of transcriptional control elements.
The transcription factor modules are based on protein-
protein interaction sub-networks centered on a series of
1,022 transcription factors. The package and more
details are provided on the Pathprint website.
The correlation of mRNA expression with protein

levels, and also with phenotype, depends on a variety of
factors such as translation efficiency, mRNA abundance,
ribosome occupancy, and protein abundance and turn-
over. Gene expression levels are a good surrogate for
protein levels for housekeeping genes (ribosomal pro-
teins, glycolytic enzymes, and tricarboxylic acid cycle
proteins) but mRNA levels correlate less well with pro-
tein levels for kinases, proteases, secreted proteins and
transcription factors, and overall mRNA variability
explains only approximately 40% of the variability in
protein levels. Pathprinting establishes a standardized
method for large-scale quantitative comparisons of cel-
lular function, and any analysis of this type depends on
the availability of large-scale quantitative genome-wide
datasets. Gene expression data repositories are currently
the only resource expansive enough to address this
need. Future versions of Pathprint will extend the value
of existing array data by integrating RNA-sequencing,
epigenetic and proteomic profiles, providing context for
new experiments from the existing body of microarray
data, and helping resolve the links between regulation
and expression of cellular function.

Additional material

Additional file 1: Table listing platforms covered by Pathprint.

Additional file 2: Table listing pathway sources, retrieval dates,
website addresses, and the top Gene Ontology (GO) term that is
enriched in each pathway (hypergeometric distribution P-value).

Additional data 3: Table of the overlap in the genes covered by
each gene set resource across in Pathprint (human pathways).

Additional file 4: Supplementary Figure 1. Benchmarking and
threshold optimization. Benchmarking is based on the tissue dataset
(above) and brain sub-types (below). (a,d) Mean error rate based on ten
repeats of a five-fold cross-validation over a range of probability of
expression (POE) thresholds. Error bars indicate -/+ 1SD. The black line
indicates the ratio for the unthresholded POE matrix, and the red for the
Gene Expression Barcode (GEB), and dashed lines indicate -/+ 1SD. (b,d)
Intra-cluster versus inter-cluster variance ratio over a range of POE
thresholds. Dashed line indicates the ratio for the unthresholded POE
matrix. (c,f) Mean average precision over a range of POE thresholds for
the pathprint (black circles) and a pathprint build on random gene sets
of equivalent size distribution (blue circles). Solid lines indicate the mean
average precision for GEB (blue), Spearman correlation (green), and the

unthresholded pathprint (red). NB: GEB or gene expression correlation
data were not calculated for the brain subtype dataset.

Additional file 5: Supplementary Figure 2. Precision-recall curves
across the full set of Gene Expression Omnibus (GEO) samples and
distribution of distances of GEO samples from each tissue
pathprint: (a) Precision-recall curves for each of the tissues across the
pathprint-mapped GEO database; brain (red), kidney (yellow), liver
(green), lung (cyan), skeletal muscle (blue), and spleen (magenta). (b)
Precision curves for each of the tissues across the pathprint-mapped GEO
database (red; right axis) and histogram of distance of samples in the
pathprint-mapped GEO database from each tissue consensus pathprint
(black; left axis). Distance scales between 0 (all pathway scores matched)
to 1 (all pathway scores mismatched, that is, 1 versus -1). (c) Estimated P-
values: A P-value was assigned to every sample in the GEO pathprint
matrix to assess the likelihood of association with the consensus
pathprint for each tissue. The plots the relationship between this P-value
and the precision (that is, the proportion correctly matched to each
tissue), as determined from the GEO metadata, when samples are ranked
according to P-value.

Additional file 6: Table of the Rattus norvegicus, Danio rerio,
Drosophila melanogaster, and Caenorhabditis elegans arrays that are
most closely matched to human/mouse brain and liver samples.

Additional file 7: Table listing the pathways in the pluripotent
consensus pathprint.

Additional file 8: Supplementary Figure 3. Embryonic stem cell
(ESC) differentiation timecourse. (a) Distance from the ESC pathprint
signature of two mouse ESC lines, J1 and R1, differentiating to embryoid
bodies. The data were obtained from Gene Expression Omnibus (GEO)
accessions GSE2972 (J1) and GSE3749 (R1). (b) Heat-map of pathways in
the ESC pathprint signature that varied over both differentiation time
courses (blue = -1, white = 0, red = +1). The column labeled ‘ES’ denotes
the ESC pathprint signature.

Additional file 9: Table listing the pluripotent seed arrays and top
arrays matching the pluripotent consensus pathprint.

Additional file 10: Supplementary Figure 4. Combined human and
mouse blood lineage tree: Pathway heat-map based on shared
informative pathways that resolve trees (b) and (c) in Figure 2.

Additional file 11: Supplementary Figure 5. Pathway-based survival
analysis. (a) Kaplan-Meier curves of patients in four independent acute
myeloid leukemia (AML) clinical datasets stratified by expression of
common mouse and human self renewal-associated signature (SRAS)
pathways; translation factors (Wikipathways), G protein-coupled receptors
(GPCRs), class B secretin-like (Wikipathways), 1-phosphatidylinositol-4,5-
bisphosphate phosphodiesterase gamma-2 (PLCG2) (static module), and
RAS-related nuclear protein (RAN) (static module). The red and blue lines
indicate high and low pathprint scores respectively (b) P-value of Kaplan-
Meier estimate of patients stratified by expression of common mouse
and human SRAS pathways in four independent clinical datasets, relative
to a background of randomly selected pathways from the full pathprint
set, (c) Common genes relative to a background of randomly selected
genes from expression chip (only single dataset shown), and (d)
common SRAS pathways relative to a background of randomly selected
human SRAS pathways. A red dot indicates the P-value; the grey cone is
a bean plot representing the distribution of P-values from 1,000
randomly selected sets of pathways or genes; and the blue line indicates
P = 0.05.

Additional file 12: Supplementary Figure 6. Pathway-based survival
analysis by species. Kaplan-Meier curves of patients with acute myeloid
leukemia (AML) stratified by expression of (a) common human and
mouse, (b) human, and (c) mouse self-renewal-associated signature
(SRAS) pathways in four independent clinical datasets. The red and blue
lines indicate high and low pathprint scores, respectively.

Additional file 13: Supplementary Figure 7. The 1-
phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2
(PGLC2) module. (a) The protein-protein interaction network of a single
human/mouse common self renewal-associated signature (SRAS)
pathway: the PGLC2 module. Node color represents fold change in the
combined leukemic/normal blood dataset (expression in normal and
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leukemia stem cells divided by expression in progenitor cells). (b) The
pathprint score of this single pathway in patients with acute myeloid
leukemia (AML) was associated with survival in four independent clinical
datasets (red, +1; yellow, 0; blue, -1)
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