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Abstract

Background: Although microarray technology allows the investigation of the transcriptomic
make-up of a tumor in one experiment, the transcriptome does not completely reflect the
underlying biology due to alternative splicing, post-translational modifications, as well as the
influence of pathological conditions (for example, cancer) on transcription and translation. This
increases the importance of fusing more than one source of genome-wide data, such as the
genome, transcriptome, proteome, and epigenome. The current increase in the amount of
available omics data emphasizes the need for a methodological integration framework.

Methods: We propose a kernel-based approach for clinical decision support in which many
genome-wide data sources are combined. Integration occurs within the patient domain at the level
of kernel matrices before building the classifier. As supervised classification algorithm, a weighted
least squares support vector machine is used. We apply this framework to two cancer cases,
namely, a rectal cancer data set containing microarray and proteomics data and a prostate cancer
data set containing microarray and genomics data. For both cases, multiple outcomes are predicted.

Results: For the rectal cancer outcomes, the highest leave-one-out (LOO) areas under the
receiver operating characteristic curves (AUC) were obtained when combining microarray and
proteomics data gathered during therapy and ranged from 0.927 to 0.987. For prostate cancer, all
four outcomes had a better LOO AUC when combining microarray and genomics data, ranging
from 0.786 for recurrence to 0.987 for metastasis.

Conclusions: For both cancer sites the prediction of all outcomes improved when more than one
genome-wide data set was considered. This suggests that integrating multiple genome-wide data
sources increases the predictive performance of clinical decision support models. This
emphasizes the need for comprehensive multi-modal data. We acknowledge that, in a first phase,
this will substantially increase costs; however, this is a necessary investment to ultimately obtain
cost-efficient models usable in patient tailored therapy.
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Background

Kernel methods are a powerful class of methods for pattern
analysis. In recent years, they have become a standard tool
in data analysis, computational statistics, and machine
learning applications [1]. Based on a strong theoretical
framework, their rapid uptake in applications such as
bioinformatics [2], chemoinformatics, and even compu-
tational linguistics is due to their reliability, accuracy, and
computational efficiency. In addition, they have the
capability to handle a very wide range of data types (for
example, kernel methods have been used to analyze
sequences, vectors, networks, phylogenetic trees, and so on).
The ability of kernel methods to deal with complex struc-
tured data makes them ideally positioned for heterogeneous
data integration. More specifically, in this study we used a
weighted least squares support vector machine (LS-SVM),
an extension of the support vector machine (SVM) for super-
vised classification [3-5]. Compared to the SVM, the LS-SVM
is easier and faster for high dimensional data because the
quadratic programming problem is converted into a linear
problem. To account for the unbalancedness in many two-
class problems, this linear problem is extended with weights
that are different for the positive and negative classes.

The growing amount of data combined with factors such as
time, cost, and personalized treatment is complicating
clinical decision making. Using advanced mathematical
models such as the above mentioned LS-SVM can aid clinical
decision support because information arising from clinical
risk factors (for example, tumor size, number of positive
lymph nodes) is not accurate enough to reliably predict
patient prognoses. Patients with the same clinical and patho-
logical characteristics but different clinical outcomes can
potentially be discerned with microarray technology. This
technology investigates the transcriptomic make-up of a
tumor in one experiment. A decade ago, it was first used in
cancer studies to classify tissues as cancerous or non-cancerous
[6,7]. Within the domain of cancer, microarray technology
has earned a prominent place for its capacity to characterize
underlying tumor behavior in detail. Although the first gene
expression profile signature is being validated in clinical
trials [8-10], microarray technology can not measure the
complete transcription profile due to the limited number of
probes per gene on a chip; nor does the transcriptome
completely reflect the biology underlying a disease.

Besides transcription, pathological conditions such as cancer
also influence alternative splicing, chromosomal aberra-
tions, and methylation [11,12]. For example, chromosomal
aberrations have been found in the general population as
well as in all major tumor types [13,14]. These regions of
increased or decreased DNA copy number can be detected
using, for example, array comparative genomic hybridiza-
tion (CGH) technology. This technique measures copy
number variations (CNVs) within the entire genome of a
disease sample compared to a normal sample [11]. Many
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small aberrations have emerged as prognostic and predictive
markers. Numerous aberrations, however, also affect large
genomic regions, encompassing multiple genes or whole
chromosome arms.

Due to differential splicing or post-translational modifica-
tions such as phosphorylation or acetylation, the proteome is
many orders of magnitude bigger than the transcriptome.
This makes the proteome, which reflects the functional state
of the cell, a potentially richer source of data for unraveling
diseases [15]. It can be measured using mass spectrometry
[16], or protein or antibody microarrays [17]. Additionally,
other available omics data, such as epigenomics - the study
of epigenetic changes such as DNA methylation and histone
modifications [12] - and single nucleotide polymorphism
genotyping [18], should be considered as they promise to be
useful in unraveling cancer mechanisms and the refinement
of their molecular descriptions. Although the technologies
are available, joint analysis of multiple hierarchical layers of
biological regulation is at a preliminary stage.

In this study we investigate whether the integration of
information from multiple layers of biological regulation
improves the prediction of cancer outcome.

Related work

Other research groups have already proposed the idea of
data integration, but most groups have only investigated the
integration of clinical and microarray data. Tibshirani and
colleagues [19] proposed such a framework by reducing the
microarray data to one variable, addable to models based on
clinical characteristics such as age, grade, and size of the
tumor. Nevins and colleagues [20] combined clinical risk
factors with metagenes (that is, the weighted average
expression of a group of genes) in a tree-based classification
system. Wang et al. combined microarray data with know-
ledge on two clinicopathological variables by defining a gene
signature only for the subset of patients for whom the
clinicopathological variables were not sufficient to predict
outcome [21].

A further evolution can be seen in studies in which two
omics data sources are simultaneously considered, in most
cases microarray data combined with proteomics or array
CGH data. Much literature on such studies involving data
integration already exists. However, the current definition of
the integration of high-throughput data sources as it is used
in the literature differs from our point of view.

In a first group of integration studies, heterogeneous data
from different sources were analyzed sequentially; that is,
one data source was analyzed while the second was used as
confirmation of the found results or for further deepening
the understanding of the results [22]. Such approaches are
used for biological discovery and a better understanding of
the development of a disease, but not for predictive pur-
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poses. For example, Fridlyand and colleagues [23] found
three breast tumor subtypes with a distinct CNV pattern
based on array CGH data. Microarray data were sub-
sequently analyzed to identify the functional categories that
characterized these subtypes. Tomioka et al. [24] analyzed
microarray and array CGH data of patients with neuro-
blastoma in a similar way. Genomic signatures resulted from
the array CGH data, while molecular signatures were found
after the microarray analysis. The authors suggested that a
combination of these independent prognostic indicators
would be clinically useful.

The term data integration has also been used as a synonym
for data merging in which different data sets are conca-
tenated at the database level by cross-referencing the
sequence identifiers, which requires semantic compatibility
among data sets [25,26]. Data merging is a complex task due
to, for example, the use of different identifiers, the absence
of a ‘one gene-one protein’ relationship, alternative splicing,
and measurement of multiple signals for one gene. In most
studies, the concordance between the merged data sets and
their interpretation in the context of biological pathways and
regulatory mechanisms are investigated. Analyses of the
merged data set by clustering or correlating the protein and
microarray data can help identify candidate targets when
changes in expression occur at both the gene and protein
levels. However, there has been only modest success from
correlation studies of gene and protein expression. Bitton et
al. [27] combined proteomics data with exon array data,
which allowed a much more fine-grained analysis by
assigning peptides to their originating exons instead of
mapping transcripts and proteins based on their IDs.

Our definition for the combination of heterogeneous
biological data is different. We integrate multiple layers of
experimental data into one mathematical model for the
development of more homogeneous classifiers in clinical
decision support. For this purpose, we present a kernel-
based integration framework. Integration occurs within the
patient domain at a level not so far described in the
literature. Instead of merging data sets or analyzing them in
turn, the variables from different omics data are treated
equally. This leads to the selection of the most relevant
features from all available data sources, which are combined
in a machine learning-based model. We were inspired by the
idea of Lanckriet and colleagues [28]. They presented an
integration framework in which each data set is transformed
into a kernel matrix. Integration occurs on this kernel level
without referring back to the data. They applied their
framework to amino acid sequence information, expression
data, protein-protein interaction data, and other types of
genomic information to solve a single classification problem:
the classification of transmembrane versus non-transmem-
brane proteins. In this study by Lanckriet and colleagues, all
considered data sets were publicly available. This requires a
computationally intensive framework for determining the
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relevance of each data set by solving an optimization
problem. Within our set-up, however, all data sources are
derived from the patients themselves. This makes the
gathering of these data sets highly costly and limits the
number of data sets, but guarantees more relevance for the
problem at hand.

We previously investigated whether the prediction of distant
metastasis in breast cancer patients could be improved when
considering microarray data besides clinical data [29]. In
this manuscript, we consider not only microarray data but
also high-throughput data from multiple biological levels.
Three different strategies for clinical decision support are
proposed: the use of individual data sets (referred to as step
A); an integration of each data type over time by manually
calculating the change in expression (step B); and an
approach in which data sets are integrated over multiple
layers in the genome (and over time) by treating variables
from the different data sets equally (step C).

We apply our framework to two cases, summarized in
Table 1. In the first case on rectal cancer, tumor regression
grade, lymph node status, and circumferential margin
involvement (CRM) are predicted for 36 patients based on
microarray and proteomics data, gathered at two time points
during therapy. The second case on prostate cancer involves
microarray and copy number variation data from 55
patients. Tumor grade, stage, metastasis, and occurrence of
recurrence were available for prediction [30,31].

Materials and methods

Data set I: rectal cancer

Patients and treatment

Forty patients with rectal cancer (T3-T4 and/or N+) from
seven Belgian centers were enrolled in a phase I/II study
investigating the combination of cetuximab, capecitabine,
and external beam radiotherapy in the preoperative
treatment of patients with rectal cancer [32]. These patients
received preoperative radiotherapy (1.8 Gy, 5 days/week for
5 weeks) in combination with cetuximab (initial dose
400 mg/m2 intravenous given 1 week before the beginning
of radiation followed by 250 mg/m2/week for 5 weeks) and
capecitabine for the duration of radiotherapy (first dose
level, 650 mg/m2 orally twice-daily; second dose level,
825 mg/m? twice-daily; including weekends). Details of the
eligibility criteria, pretreatment evaluation, radiotherapy,
chemotherapy and cetuximab administration, surgery,
follow-up, and histopathological assessment of response to
chemoradiation have been published [32].

Data preprocessing

Tissue and plasma samples were gathered at three time
points: before treatment (7)); after the first loading dose of
cetuximab but before the start of radiotherapy with
capecitabine (T)); and at the moment of surgery (T,). All
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Overview of the two case studies on rectal and prostate cancer

Data set I: rectal cancer

Data set II: prostate cancer

Number of samples 36
Data sources Microarray
Proteomics

Number of features (after preprocessing)

WHEELER
pN-STAGE
CRM

Outcomes

Ty: 6,913 genes; 90 proteins
T,: 6,913 genes; 92 proteins

55

Microarray
Genomics

6,974 genes
7,305 CNVs

GRADE
STAGE
METASTASIS
RECURRENCE

experimental procedures were done following standard
laboratory procedures, or following the manufacturers’
instructions. Because of the exclusion of some patients due to
a missing outcome value, death before surgery, or not having
surgery, the data set ultimately contained 36 patients.

The frozen tissue samples were hybridized to Affymetrix
human U133 2.0 plus gene chip arrays. The resulting data
were first preprocessed for each time point separately using
robust multichip analysis [33]. Secondly, the number of
features was reduced from 54,613 probe sets to 27,650 genes
by taking the median of all probe sets that matched on the
same gene. Probe sets that matched on multiple genes were
excluded because of the danger of cross-hybridization. Taking
into account the low signal-to-noise ratio of microarray data,
we finally filtered out genes with low variation across all
samples. Only retaining the genes with a variance in the top
25% reduced the number of features to 6,913 genes.

Ninety-six proteins known to be involved in cancer were
measured in the plasma samples using a Luminex 100
instrument. Proteins that had absolute values above the
detection limit in less than 20% of the samples were
excluded for each time point separately. This resulted in the
exclusion of six proteins at T, four at 7}, and six at T,. The
proteomics expression values of transforming growth factor
alpha, which had too many values below the detection limit,
were replaced by the results of ELISA tests performed at the
Department of Experimental Oncology in Leuven, Belgium.
For the remaining proteins the missing values were replaced
by half of the minimum detected for each protein over all
samples, and values exceeding the upper limit were replaced
by the upper limit value. Because most of the proteins had a
positively skewed distribution, a log transformation (base 2)
was performed.

In this paper, only the data sets at T, and T, were used
because our goal is to predict the four different outcomes

before therapy or early in therapy.

Response classification

A semiquantitative classification system has been described
by Wheeler et al. [34] for determining histopathological
tumor regression (that is, the therapy response). There are
also two prognostic factors important in rectal cancer:
pathologic lymph node involvement and CRM [35]. Because
the completeness of tumor resection relies on the assess-
ment of resection margins by the pathologist, knowledge of
the CRM before therapy provides important prognostic
information for local recurrence and for development of
distant metastasis and survival [36].

These three outcomes were registered for 36 patients at the
moment of surgery. For all these outcomes, ‘responders’ are
distinguished from ‘non-responders’. The grading of
regression established by Wheeler and colleagues [34] (from
now on referred to as WHEELER) is a modified pathological
staging system for irradiated rectal cancer. It includes a
measurement of tumor response after preoperative therapy:
grade 1, good responsiveness (tumor is sterilized or only
microscopic foci of adenocarcinoma remain); grade 2,
moderate responsiveness (marked fibrosis but still with a
macroscopic tumor); grade 3, poor responsiveness (little or
no fibrosis with abundant macroscopic tumor). Tumors are
classified as ‘responder’ when assigned to grade 1 (26
patients) and ‘non-responder’ when assigned to grade 2 or 3
(10 patients). Response can also be evaluated with the
pathologic lymph node stage at surgery (pN-STAGE). The
‘responder’ class contains 22 patients with no lymph nodes
found at surgery while the ‘non-responder’ class contains 14
patients with at least 1 regional lymph node. CRM was
measured according to the guidelines of Quirke et al. [37].
CRM was considered positive when the distance between the
tumor and the mesorectal fascia was <2 mm. Tumors with a
negative CRM are classified as ‘responder’ (27 patients),
while tumors with a positive CRM belong to the ‘non-
responder’ class (9 patients). Thirteen patients belong to the
‘responder’ class for all three outcomes, while there is an
overlap of two patients between the ‘non-responder’ classes.
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Data set II: prostate cancer

Patients and treatment

We also applied our method to a publicly available data set
of prostate cancer. Lapointe and colleagues [30] first
profiled gene expression in 71 prostate tumor cases of which
62 were primary and 9 had lymph node metastases. All
tumors were removed by radical prostatectomy (that is, the
surgical removal of the prostate gland). A cDNA microarray
was used, containing 39,711 human cDNAs representing
26,260 mapped genes. Additionally, DNA CNVs were
profiled on ¢cDNA microarrays for CGH for 64 prostate
tumor cases, among which 55 were primary tumors and 9
had pelvic lymph node metastases. The arrays were obtained
from the Stanford Functional Genomics Facility and
included 39,632 human c¢DNAs corresponding to 22,279
genes [31]. Among the primary tumors, the available gene
expression and genomics data were in common for 55.

Data preprocessing

Median fluorescence ratios were calculated for genes
represented by multiple arrayed c¢DNAs. Missing gene
expression values were imputed unsupervised using the k-
nearest neighbors method of Troyanskaya et al. [38]. The
parameter k was set to 15 such that a missing value for a spot
S in a sample was estimated as the weighted average of the
15 spots that are most similar to spot S in the remaining
samples. The same unsupervised prefiltering as applied on
the rectal cancer data set was used for both the microarray
and genomics data sets. Features with a variance in the top
50% were retained, reducing the data sets to 6,974 genes and
7,305 CNVs, respectively.

Response classification

Two pathological variables, stage and grade, metastasis of the
tumor, as well as the outcome after prostatectomy defined as
recurrence were considered. For grade (from now on referred
to as GRADE), the Gleason Grading system was used, which
is based on the most common and second most common
architectural patterns of the glands of the tumor [39]. Two
groups could be distinguished based on the architecture of
the most common pattern: 36 tumors were well differentiated
(that is, low-grade), 19 were poorly differentiated (that is,
high-grade). According to the extent of the primary tumor
(STAGE), 25 samples were of stage T2 (that is, the cancer is
confined within one lobe of the prostate gland), while 25
samples were of advanced stage T3 (that is, the tumor has
extended through the fibrous tissue surrounding the prostate
gland but no other organs are affected). The stage of the
remaining five patients was not known. The cancer had
metastasized to distant lymph nodes in 12 tumors, while the
cancer had not spread beyond the regional lymph nodes in 38
of the tumors (METASTASIS). Tumor recurrence was defined
as a rise in prostate-specific antigen of at least 0.07 ng/ml or
as occurrence of clinical metastasis (RECURRENCE). Seven
tumors recurred while 22 tumors did not. The recurrence
status of the remaining 26 patients was not available.
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Kernel methods and weighted least squares support vector
machines

Kernel methods are a group of algorithms that can handle a
very wide range of data types, such as vectors, sequences,
networks, and so on. They map the data x from the original
input space to a high dimensional feature space with the
mapping function ®(x). This embedding into the feature
space is performed by a mathematical object K(x, , x;), called
a ‘kernel function’. This function efficiently computes the
inner product { ®(x;),P(x;) ) between all pairs of data items x;,
and x, in the feature space, resulting in the kernel matrix. The
size of this matrix is determined only by the number of data
items, whatever the nature or the complexity of these items.
For example, a set of 100 patients each characterized by 6,913
gene expression values is still represented by a 100 x 100
kernel matrix [40]. The representation of all data sets by this
real-valued square matrix, independent of the nature or
complexity of the data to be analyzed, makes kernel methods
ideally positioned for heterogeneous data integration.

Any symmetric, positive semidefinite function is a valid
kernel function, resulting in many possible kernels - for
example, linear, polynomial, and diffusion kernels. They all
correspond to a different transformation of the data,
meaning that they extract a specific type of information from
the data set. In this paper, the normalized linear kernel
function:

I%(xk ,x) =K, x) / \/{K(xk , X)) K(xp , x)}

where K(x;., x) = xfx is used instead of the linear kernel
function K(x; , x;) = xfx;. With the normalized version, the
values in the kernel matrix will be bounded because the data
points are projected onto the unit sphere while these
elements can take very large values without normalization.
Normalizing is thus required when combining multiple data
sources to guarantee the same order of magnitude for the
kernel matrices of the data sets.

A kernel algorithm for supervised classification is the SVM
developed by Vapnik [41] and others. Contrary to most other
classification methods and due to the way data are
represented through kernels, SVMs can tackle high
dimensional data (for example microarray data). Given a
training set (x;, y )., of N samples with feature vectors
X, € R and output labels y, € {-1, + 1}, the SVM forms a
linear discriminant boundary y(x) = sign[w” ®(x) + b] in the
feature space with maximum distance between samples of
the two considered classes, with w representing the weights
for the data items in the feature space and b the bias term.
This corresponds to a non-linear discriminant function in
the original input space. A modified version of SVM,
LS-SVM, was developed by Suykens et al. [3,4]. On high
dimensional data sets, this modified version is much faster
for classification because a linear system instead of a
quadratic programming problem needs to be solved.
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The constrained optimization problem for an LS-SVM has
the following form:

1 1 N
min (—wTw + y— Ze,?)
w,b,e 2 2 .

subject to:
ylwTdx) +bl=1-¢,k=1,..N

with e, the error variables, tolerating misclassifications in
cases of overlapping distributions, and y the regularization
parameter, which allows tackling the problem of overfitting.
It has been shown that regularization seems to be very
important when applying classification methods on high
dimensional data [42].

In many two-class problems, data sets are skewed in favor of
one class such that the contribution of false negative and
false positive errors to the performance assessment criterion
are not balanced. We therefore used a weighted LS-SVM in
which a different weight {, is given to positive and negative
samples in order to account for the unbalancedness in the
data set [5]. The objective function changes into:

1 1 Y
min (—wTw + y— E &ed)
wbe o P

with

¢ :{Z%ifykzﬂ
Ay =

and N, and N representing the number of positive and
negative samples, respectively.

Feature selection

Univariate feature selection techniques are computationally
simple but do not incorporate feature-feature interactions.
However, due to small sample size limitations, multivariate
approaches are often not appropriate for discovering the
underlying complex, multivariate correlations. Because it
has been shown that univariate gene selection methods lead
to good and stable performances across many cancer types
and yield in many cases consistently better results than
multivariate approaches [43], we used the method DEDS
(differential expression via distance synthesis) [44]. This
technique is based on the integration of different univariate
test statistics via a distance synthesis scheme because
features highly ranked simultaneously by multiple statistics
are more likely to be differentially expressed than features
highly ranked by a single test statistic. The statistical tests
combined are ordinary fold changes, ordinary t-statistics,
SAM (significance analysis for microarrays) statistics and
moderated t-statistics. DEDS is available as a BioConductor
package in R.
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We applied DEDS to the microarray data sets as well as the
genomics data set. From our experience, DEDS is less
appropriate for data with a limited set of features (data not
shown). Since the proteomics data on rectal cancer contain
only 90-92 cancer-related proteins, one test statistic suffices,
for which we chose the Wilcoxon rank sum test.

Model building

To determine the optimal number of features, we use a
leave-one-out (LOO) cross-validation approach in which we
increase the number of included features iteratively
according to the obtained feature ranking but in which we do
not include more features than the number of samples in the
data set on which the optimal number of features is
determined, as discussed by Li and Yang [45]. Besides the
number of features, the parameters of the kernel method
(parameter yfor LS-SVM with normalized linear kernel) also
need to be selected. This selection occurs on a k-dimensional
grid with k-1 the number of data sets included. We
considered 40 possible values for y, ranging from 104 to 10°
on a logarithmic scale. In each LOO iteration, a sample is left
out, feature selection is performed on the remaining n -1
samples, and models are built for all possible combinations
of parameters on this grid. Each model with the instantiated
parameters is evaluated on the left out sample. This whole
procedure is repeated for all samples. The model parameters
are chosen corresponding to the model with the highest LOO
area under the receiver operating characteristic (ROC) curve
(AUC). If multiple models have the same AUC, the model
with the lowest balanced error rate and an as high as
possible sum of sensitivity and specificity is chosen. For each
considered outcome, the AUC of the best performing model
is compared with the AUC of the other models using the
method of Hanley and McNeil [46]. The final features are
chosen as those that occurred most often in the top rankings
determined in each LOO iteration.

Three kinds of model building strategies are proposed, different
in the degree of integration. Figure 1 shows these strategies in
more detail. The data sets are represented as matrices with rows
corresponding to patients and columns corresponding to genes,
proteins, or CNVs. The matrices representing microarray or
genomics data are larger than those for the proteomics data to
emphasize the difference in dimensionality.

All three strategies were applied to the microarray and
proteomics data sets of rectal cancer. For the prostate cancer
data set, however, only two strategies were applicable due to
a lack of measurements repeated over time. For all models
the parameters were trained according to the same
approach, which makes the corresponding LOO results
comparable for each outcome separately.

Step A models: single data set
In a first step, LS-SVM models are built on each data set
separately, mimicking the results that would have been
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obtained when only static data from one platform were
available. For rectal cancer, the single data sets are micro-
array at T,, microarray at T, proteomics at 7T,, and
proteomics at T, for the prediction of a regression grading
system and two prognostic factors (Figure 1a). For prostate
cancer, LS-SVM models are built on the microarray and
genomics data separately for the prediction of grade, stage,
metastasis, and recurrence. Because of only one set of
features, a two-dimensional grid is used for the optimization
of the regularization parameter and the number of features.

Step B models: manual integration of data over time

When measurements are repeated at multiple time points,
knowledge over time can be exploited. For rectal cancer,
data were available before and early in therapy and,
therefore, can be combined in the models. This is done for
each data type separately by manually calculating the change
in gene expression or protein abundance between the first
two time points (T,-T,). These changes over time are used as
features for the models as shown in Figure 1b. Also for these
models, a two-dimensional grid suffices for the optimization
of the regularization parameter and the number of features.

Step C models: multiple omics integration approach

The previous two types of models (steps A and B) are
considered to verify whether complex integration of data
over multiple layers of biological regulation is crucial. The
ability of kernel methods to deal with complexly structured
data makes them ideally positioned for more advanced
integration of heterogeneous data sources. We will use the
intermediate integration method proposed in [47] in which a
kernel matrix is computed for each data source separately.
Subsequently, these data sources can be integrated in a
straightforward way by summing the multiple kernel
matrices. Positive semidefiniteness of the linear combina-
tion of kernel matrices is guaranteed by constraining the
weights of the kernels to be non-negative. A weighted LS-
SVM is trained on the explicitly heterogeneous kernel matrix.
The choice of the weights to give to each data set is impor-
tant. A kernel framework for optimizing weights is proposed
in [48]. This optimization is important when dealing with
many data sets of which only several are relevant. However,
when the number of data sets is limited and most of them
are reliable and relevant to the problem at hand, a trade-off
needs to be made between performance and computational
burden (for example, extra required cross-validation loops).
Due to the rather small sample size in both case studies,
weights were chosen equally. Moreover, our aim is to
emphasize that classification becomes more accurate when
data from multiple layers in the genome are available and to
offer a machine learning-based method for integrating these
data sources, rather than to improve an algorithm for the
optimization of weights (for example, [48]). A three-
dimensional grid is used for the optimization of the
parameters, that is, the regularization parameter, the
number of genes selected from the microarray data sets, and
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the number of proteins or CNVs obtained from the
proteomics data sets or the genomics data set, respectively.
For the data on rectal cancer, the number of genes/proteins
selected at T, and T, were taken equally when data from
both time points were considered. Figure 1c gives an

overview of the strategy.

Results

Study I: rectal cancer

Using the methodologies shown in Figure 1, models were
built using microarray and proteomics data of 36 rectal
cancer patients at two time points during therapy for the
prediction of three outcomes registered at the moment of
surgery: a tumor regression grading system (WHEELER)
and two prognostic factors, pathologic N stage at surgery
(pN-STAGE) and the circumferential margin involvement
(CRM). The models with the highest AUC, lowest balanced
error rate and an as high as possible sum of sensitivity and
specificity are shown in Table 2. The step A models are MT,
(model based on microarray data at T,), MT, (model based
on microarray data at T,), PT, (model based on proteomics
data at T,), and PT, (model based on proteomics data at 7).
The step B models consist of MT,-T, (model based on
change in gene expression between T, and T,) and PT,-T,
(model based on change in protein abundances between T,
and T)). Finally, the step C models comprise MT,, (model
based on microarray data at both time points), PT,, (model
based on proteomics data at both time points), MPT, (model
based on microarray and proteomics data at T,), MPT, (model
based on microarray and proteomics data at 7;), all possible
combinations of three data sets (using the same name
convention), and MPT,, (model based on all data (microarray
and proteomics data at both time points)). The numbers of
genes and proteins were chosen to optimize the LOO
performance of the LS-SVM models. The features selected
most often in the 36 LOO iterations are listed and discussed.
For each outcome, the ROC curve of the best model was
compared with the ROC curves of all other models [46]. The
P-values of these significance tests are reported as well.

Table 2 shows the LS-SVM models for the considered
combinations of data sets to predict WHEELER, pN-STAGE,
and CRM with the optimal number of genes and proteins
selected with DEDS and the Wilcoxon rank sum test,
respectively. The corresponding ROC curves are shown in
Additional data file 1. The performance of the models based
on three data sets is given in Additional data file 2. Due to
the slightly, but not significantly, better performance for
each outcome of one model based on three data sets
compared to models based on two data sets, we report the
results for the best model combining two data sets. Such
models would only require a sample to be taken at one time
point (MPT,, MPT,) or one technology to be applied on two
time points (MT,,, PT,,). For the prediction of WHEELER,
the expression of 25 genes and 12 proteins at 7, was best,

Genome Medicine 2009, 1:39

Daemen et al. 39.7



http://genomemedicine.com/content/1/4/39 Genome Medicine 2009, Volume |, Issue 4, Article 39 Daemen et al.
features 1 features 2 outcome
3
Q.
IS
3
c
data set 1 data set 2
| |
surgery
—p (n-1) samples N\ (a)
LOO > 1 sample Optimal
P<EEEEEEEgE| parameters
oo 8 NF
Co £ |:>
) = gamma
Ll oy gamma =
. yO=0=e
C Oi0=e
NF/
| | |
To T, surgery
*T T (n-1) samples N\ (b)
1 sample Optimal
O parameters
: : 8 I:> NF
. v gamma = gamma
yO=0= e
Oif0=e
NF /
|
sur?ery
\
(c)
Optimal
parameters
@ NF,
1 sample g |:> NFz
oo o = | gamma
|
| gamma
v
O=0=e
£0=0e NF, /
NF,

Figure |
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LS-SVM models for the prediction of WHEELER, pN-STAGE and CRM in rectal cancer

Outcome Model NG* NPt AUC (SE)¥ p-value’
WHEELER
A MT, 4 0.7538 (0.1085) 0.0987
MT, 29 0.9038 (0.0502) 0.6861
PT, 35 0.7423 (0.0867) 0.0540
PT, I 0.9038 (0.0575) 0.7273
B MT T, 32 0.6846 (0.1215) 0.0598
PT, T, 5 0.8654 (0.0621) 0.4135
C MT,, 3T 0.7808 (0.0985) 0.1320
PT,, 211 0.7692 (0.0831) 0.0831
MPT, 3 35 0.8461 (0.0718) 0.2760
MPT, 25 12 0.9269 (0.0425)
MPT,, 21 311 0.8846 (0.0558) 0.4858
MT,PT, 2 4 0.9385 (0.0444) 0.8101*
pN-STAGE
A MT, 25 0.6493 (0.0914) 2.315e-4
MT, 22 0.8506 (0.0665) 0.0362
PT, 2 0.6753 (0.0906) 6.65%e-4
PT, 12 0.8409 (0.0652) 0.0238
B MT,T, 4 0.6071 (0.0986) 1.359¢-4
PT,;T, 9 0.7662 (0.0900) 0.0153
C MT,, 241 0.9286 (0.0450) 0.1998
PT,, 341 0.8182 (0.0695) 0.0145
MPT, 27 27 0.9188 (0.0469) 0.1591
MPT, 21 14 0.9870 (0.0135)
MPT,, 231 161 0.9610 (0.0280) 0.3421
MT,PT,, 26 201 1 (0) 0.3347¥
CRM
A MT, 33 0.6790 (0.1016) 0.0072
MT, 9 0.9259 (0.0472) 0.4955
PT, 34 0.8518 (0.0624) 0.0935
PT, 34 0.7654 (0.0831) 0.0281
B MT,T, 6 0.9136 (0.0480) 0.4030
PT,;T, 2 0.8272 (0.0709) 0.0849
C MT,, 161 0.8066 (0.0846) 0.0468
Ty 31 0.7531 (0.0865) 0.0227
MPT, 7 27 0.8477 (0.0688) 0.1340
MPT, 7 33 0.9630 (0.0344)
MPT,, 21 31 0.8230 (0.0771) 0.0973
MT,PT, 6 14 0.9630 (0.0376) |
MT,,PT, 9 29 0.9876 (0.0146) 0.4924¥

*Number of genes selected in each LOO iteration. TNumber of proteins selected in each LOO iteration. ¥Area under the ROC curve (standard error)
obtained with leave-one-out. $Comparison of AUC between each model and the best model in bold [46]. TNumber of features used at both time points.

¥This model is better than the model in bold we compare with.

although not significantly, with an AUC of 0.9269. Also for
pN-STAGE, combining both data sets at 7, using the
expression of 21 genes and 14 proteins resulted in the best
LOO AUC of 0.9870. This performance is significantly better
than all step A and B models as well as PT,,. Finally, the

inclusion of 7 genes and 33 proteins at T, led to an AUC of
0.9630 for the prediction of CRM. Four models based on
only one data type perform significantly worse compared to
MPT,. For all outcomes, none of the selected proteins are a
product of the selected genes.
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Table 3

Genome Medicine 2009,

Volume |, Issue 4, Article 39

Features for (colo)rectal cancer selected by MPT, and known to be involved in this type of cancer

Outcome™ Gene/protein Hitst Region Function Up/downt Reference
w Cox-2 36 19q25.2-q25.3 Progression Up [50]
W IL-1B 36 2ql4 Inflammatory response Up [50]
w Ferritin 36 I1ql3; 19q13.3-q13.4 Iron storage Down [63]
w EGF 36 4q25 Cell growth/proliferation/ differentiation Up [64]
w MMP-2 36 16q13-q21 Invasion/metastasis Up [65]
w TGFo 36 2pl3 Angiogenesis/cell proliferation Down [51]
w SELE 25 1q22-q25 Progression/metastasis Up [66]
W GM-CSF 24 5q31.1 Maintenance of granulocytes/macrophages Up [67]
w MMP-1 15 11q22.3 Tumor invasion/ metastasis/poor prognosis Up [68]
N Reg4 36 Ipl13.1-pl2 Early carcinogenesis Down [69]
N MuUC2 36 I1pl5.5 Deregulated by TNFo Down [70]
N CAl 36 8ql3-q22.1 Carbonate dehydratase activity Down [71]
N CA2 36 8q22 Carbonate dehydratase activity Down [71]
N CLDNS8 36 21q22.11 Tumorigenesis Down [72]
N CEA 36 19q13.1-q13.2 Cell adhesion; tumor marker for recurrence Down [53]
N IL-1ra 36 2ql4.2 Carcinogenesis Up [73]
N CAI9-9 36 Tumor marker for recurrence Down [53]
N Ferritin 36 11q13; 19q13.3-q13.4 Iron storage Down [63]
N IL-1beta 36 2ql4 Inflammatory response Down [50]
N beta2-microglobulin 36 15q21-q22.2 Metastasis Up [74]
N RARRES | 31 3q25.32-q25.33 Cell proliferation Down [75]
N IL-8 28 4ql3-q21 Progression/metastasis Down [52]
N TNFRII 24 1p36.3-p36.2 Apoptosis Up [76]
C ICAM-1| 36 19p13.3-pl13.2 Metastasis Down [77]
C CEA 36 19q13.1-q13.2 Cell adhesion; tumor marker for recurrence Down [53]
C MMP-2 36 16ql3-q21 Invasion/metastasis Up [65]
C Adiponectin 36 3q27 Metabolic/hormonal processes Down [78]
C Thrombospondin-| 36 15q15 Angiogenesis/tumor growth Up [79]
C EGFR 36 7pl2 Cell growth/ proliferation/ differentiation Up [49]
C Tissue factor 35 1p22-p21 Angiogenesis/metastasis Up [80]
C CYPIBI 35 2p21 Drug metabolism Down [811
C EGF 32 4q25 Cell growth/proliferation/ differentiation Up [64]

*W, WHEELER; N, pN-STAGE; C, CRM. tNumber of occurrences of the gene/protein in the 36 LOO iterations. fUp/down-regulation in the good
responders with respect to moderate or poor responders; no lymph nodes with respect to at least one regional lymph node; negative CRM with respect

Daemen et al. 39.10

to positive CRM. CRC, (colo)rectal cancer.

The contribution of the genes and/or proteins in rectal or
colorectal cancer that were selected most often in the LOO
iterations of MPT, and predicted most accurately WHEELER,

PN-STAGE, or CRM are shown in Table 3. A protein
important for CRM, for example, is the epidermal growth
factor receptor (EGFR), involved in signaling pathways
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Table 4

Genome Medicine 2009,

Volume |, Issue 4, Article 39

LS-SVM models for the prediction of GRADE, STAGE, METASTASIS and RECURRENCE in prostate cancer

Outcome Model NG* NC*t AUC (SE)¥ p-value’
GRADE
A M 24 0.8304 (0.0623) 0.2727
G 8 0.7822 (0.0632) 0.0503
C MG 6 8 0.9006 (0.0413)
STAGE
A M I8 0.6576 (0.0778) 00191
G 32 0.7936 (0.0631) 0.3466
C MG 42 22 0.8528 (0.0550)
METASTASIS
A M I8 0.9759 (0.0178) 0.4392
G 12 0.8114 (0.0755) 0.0166
C MG 18 3 0.9868 (0.0121)
RECURRENCE
A M 24 0.7208 (0.0936) 0.5392
G 26 0.4481 (0.1433) 0.0354
C MG 32 2 0.7857 (0.0934)

*Number of genes selected in each LOO iteration. TNumber of copy number variations selected in each LOO iteration. ¥Area under the ROC curve
(standard error) obtained with leave-one-out. $Comparison of AUC between each model and the best model in bold [46].

affecting cellular growth, differentiation, and proliferation.
This protein represents one of the most promising targets
allowing progress in colorectal cancer treatment. It has been
suggested that EGFR polymorphisms as well as poly-
morphisms of other genes active in the EGFR pathway may
be potential indicators of radiosensitivity in patients with
rectal cancer treated with chemoradiation [49]. In colorectal
cancer, pro-inflammatory cytokines such as interleukin-1
beta and interleukin-6 may be accountable for the over-
expression of Cox-2, important in the early stage and for
progression [50]. Transforming growth factor alpha, down-
regulated in our patients with a good responsiveness to
preoperative therapy, is implicated in metastatic spread of
colon cancer cells [51]. The expression of interleukin-8 is
associated with induction and progression of colorectal
carcinoma and the development of colorectal liver meta-
stases [52]. In our data set, it is down-regulated in the group
of patients with no lymph nodes found at surgery. Finally,
elevated carcinoembryonic antigen and cancer antigen 19-9
are related to poor outcome in colorectal cancer [53]. Their
levels are low in patients with no lymph nodes, while
carcinoembryonic antigen is also less expressed in patients
with a negative CRM, that is, belonging to the class of
‘responders’. A complete list of the genes and proteins
chosen by the models MPT, are shown, for each outcome
separately, in Additional data file 3. The predictions seem to
depend on mainly different subsets of features. The gene
encoding PAI-2 is important for both WHEELER and CRM,
while the proteins important for two of the three outcomes
are interleukin-4, ferritin, apolipoprotein H, epidermal
growth factor, matrix metalloproteinase-2, and lympho-
tactin. Notably, these genes and proteins were also selected

by the other models based on microarray and/or proteomics
data at T, although the specific feature ranking depends on
the number of features included. Some of these genes and
proteins were also included in the models based on data at T,,.

Study llI: prostate cancer

The same methodology was applied to microarray and
genomics data of 55 patients with prostate cancer. Table 4
shows the results for the prediction of the grade and stage of
the tumor (GRADE and STAGE), as well as the tumors that
metastasized to distant lymph nodes (METASTASIS) or that
recurred (RECURRENCE). Because the data were gathered
at one time point, only step A and C models are applicable.
The step A models are represented as M (model based on
microarray data) and G (model based on genomics data),
and the step C model based on both microarray and genomics
data as MG. Also, after having optimized the essential
number of features to be included using a LOO cross-
validation, the final genes and CNVs were selected based on
their position and number of occurrences in the 55 LOO
rankings.

We obtained similar results as for rectal cancer. Combining
gene expression with measurements at the DNA level (MG)
led, for all four outcomes, to an improvement in classifi-
cation accuracy and was significant in some cases (Table 4).
For the prediction of GRADE, six genes and eight CNVs
selected with DEDS resulted in an AUC of 0.9006. For
STAGE, 42 genes and 22 CNVs were needed for a perfor-
mance of 0.8528. The model MG for the prediction of
METASTASIS had an AUC of 0.9868 when fusing the
expression of 18 genes with 3 CNVs. Finally, the prediction
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Table 5

Genome Medicine 2009,

Volume |, Issue 4, Article 39

Features for prostate cancer selected by MG and known to be involved in this type of cancer

Outcome*™ Gene/CNV Hitst Region Function Up/downt Reference
SFRP4 55 7pl4.1 Inhibitor of PT growth/invasion Up [55]
VCAN 55 5ql4.3 Contributor to PC pathology Up [82]
ALOXI5B 36 17p13.1 Suppressor of PT development Down [54]
S MAGEA4 50 Xq28 Only expressed in PC (diagnosis and therapy)  Down [83]
S ANPEP 50 15925-q26 PT cell invasion Down [84]
S POU4FI 50 13g31.1 PC cell growth Down [85]
S CXCLI4 48 5q31 Inhibitor of PT growth Up [56]
S RNASEL 48 1q25 Polymorphic changes as tumor; suppressor Up [62]
in hereditary PC
S GDEP 41 4q21.1 Prostate-specific gene Down [86]
M ERG 50 21q22.3 Proto-oncogene; early prostate carcinogenesis Up [57]
M AREG 49 4ql3-q21 PC progression/growth via TARP Down [87]
M VAV3 49 Ipl3.3 Oncogene; PC development/ progression Up [59]
M ADAMTSI 26 21q21.2 Negatively affected by TGFbetal, which Down [82]
increases VCAN-expression
R AZGPI 29 7q22.1 Inversely associated to tumor stage; Down [88]
predictor of biochemical recurrence
R TIAMI 29 21q22.1-11 Predictor of decreased disease-free Up [60]
survival/recurrence
R FGG 28 4q28 PC cell growth Down [89]
R ATF3 26 1932.3 Inversely related to invasion/ angiogenesis; Down [90]
positively correlated to metastases
R JAGI 26 20p12.1-11.23 Cell growth/progression/metastasis Up [61]
R ERG 14 21q22.3 Proto-oncogene; early prostate carcinogenesis Up [57]
R ALOXI5B 14 17p13.1 Suppressor of PT development Down [54]

*G, GRADE; S, STAGE; M, METASTASIS; R, RECURRENCE. TNumber of occurrences of the gene/CNYV in all LOO iterations (number of LOO iterations
for G =55, S =50, M = 50, R = 29). fUp/down-regulation in high-grade with respect to low-grade; advanced stage with respect to early stage; metastasis
with respect to no metastasis; recurrence with respect to no recurrence. PC, prostate cancer; PT, prostate tumor.

of RECURRENCE was most difficult, with an AUC of 0.7857
when combining 32 genes and 2 CNVs. Additional data file 1
shows the ROC curves of the models listed in Table 4.

Several genes and CNVs have been selected by MG and are
known to be involved in, and important for, prostate cancer
(Table 5). The gene ALOX15B is a suppressor of prostate
tumor development [54] and in this data set is down-
regulated in tumors of high-grade and in tumors that
recurred. Both SFRP4 and CXCL14 on the other hand are
inhibitors of prostate tumor growth [55,56]. SFRP4 is up-
regulated in tumors of high-grade, and CXCL14 in tumors of
advanced stage. A small deletion involving chromosomal

band 21q22.3 fuses all coding exons of ERG to androgen-
related sequences in the promoter of the prostate-specific
TMPRSS2 gene. This chromosomal rearrangement is a
highly prevalent oncogenic alteration in prostate tumor cells
and leads to an aberrant expression of the ERG proto-
oncogene, important for early prostate carcinogenesis [57].
In this data set, ERG is overexpressed in tumors in which the
cancer metastasized to distant lymph nodes. It has been
shown that this genetic biomarker is a strong prognostic
factor for disease recurrence, and can be used for early
detection and outcome prediction in prostate cancer [58].
VAV3, an oncogene involved in development and progres-
sion of prostate cancer, is up-regulated in tumors that
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Table 6

Genome Medicine 2009,

Volume |, Issue 4, Article 39

Comparison of our kernel-based integration approach with the ensemble approach

Outcome AUC (SE)*: MPT /MG AUC (SE)*: ensemble approach p-value
WHEELER 0.9269 (0.0425) 0.9500 (0.0339) 0.6160
pN-STAGE 0.9870 (0.0135) 0.9253 (0.0432) 0.1422
CRM 0.9630 (0.0344) 0.7860 (0.0783) 0.0384
GRADE 0.9006 (0.0413) 0.8567 (0.0521) 0.3745
STAGE 0.8528 (0.0550) 0.8304 (0.0582) 0.6836
METASTASIS 0.9868 (0.0121) 0.9452 (0.0309) 0.1313
RECURRENCE 0.7857 (0.0934) 0.4545 (0.1352) 0.0182

*Area under the ROC curve (standard error) obtained with leave-one-out. fComparison in AUC between the best models obtained with our strategy
(MPT, for rectal cancer, MG for prostate cancer) and the corresponding ensemble models based on the same number of features [46].

metastasized [59]. It has previously been shown that strong
overexpression of TIAM1 is significantly associated with
disease recurrence and a decreased disease-free survival
[60]. Also, JAG1 is significantly associated with recurrence
[61] and plays a role in cell growth, progression, and
metastasis. In this data set, both genes are up-regulated in
the group of tumors that recurred. Finally, several germline
mutations or variants in RNASEL have been observed
among hereditary prostate cancer cases, indicating that
polymorphic changes within the RNASEL gene may be
associated with increased risk of familial but not sporadic
prostate cancer [62]. A list of all the genes and CNVs
selected by the models MG are shown in Additional data
file 3. As for rectal cancer, the outcomes for prostate cancer
seem to be characterized by mainly different sets of features.
Five genes overlap between at least two outcomes (ERG,
AHSG, SEMA4G, F5, and ALOX15B), while the same holds
for four CNVs of the genes GPD1L, KCTDi2, SMYD5, and
TRO.

Comparison with an ensemble approach

To assess the benefit of our kernel-based integration approach
over standard data fusion techniques, we implemented an
ensemble approach in which each data set gives rise to a
separate LS-SVM classifier. These individual LS-SVM models
were built similarly to the step A models, with the same
number of genes, proteins or CNVs selected as included in
the best models MPT, and MG. Subsequently, as a late
integration step, the continuous outputs of these models

were added.

For the study on rectal cancer, the AUC values of the
ensemble models integrating the microarray and proteomics
data set gathered at T}, and the corresponding AUC values of
the best model obtained with our strategy (MPT,) are shown
in Table 6. The P-values of the significance tests comparing
the ROC curves are reported as well [46]. For CRM, our
strategy was significantly better than the ensemble approach
at a significance level of 0.05. For WHEELER and pN-

STAGE, the AUC values did not differ significantly. Similarly
for the study on prostate cancer, the AUC values of MG were
compared with the AUC values of the ensemble models
combining microarray and genomics data (Table 6). For all
four outcomes, the AUC of MG was better than the AUC of
the ensemble models, although being significantly better for
RECURRENCE only.

Correlation analysis

We additionally verified whether, in both cases, data from
multiple layers of molecular biology were complementary.
After mapping the entities of the data sets based on their
entrez gene IDs, we investigated the correlation between the
microarray and proteomics data of rectal cancer on the one
hand, and between the microarray and genomics data of
prostate cancer on the other hand. Using the Spearman
correlation coefficient, there was no significant correlation
for rectal cancer between the abundances of the 90-92
proteins and their corresponding transcripts at a
significance level of 0.05. The microarray and genomics data
sets for prostate cancer were slightly more correlated. While
for GRADE the 6 genes selected by the model MG did not
correlate with their DNA expression, 2 of the 42 selected
genes for STAGE were significantly correlated (P < 0.05).
For METASTASIS and RECURRENCE, there was a
significant correlation for one and three genes, respectively.
The regions, with involved CNVs selected from the genomics
data, were also compared with the regions in which the
selected genes from the microarray data were located. For
the majority of regions, there was no overlap. For the other
regions with the same rough chromosomal location, the
genes selected by both data sets were different.

Discussion

The proposed integration approach has been applied to two
patient data sets, each with two high-throughput data
sources. Microarray and proteomics were gathered from 36
patients with rectal cancer at two time points during
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preoperative treatment, while microarray and genomics
were gathered from 55 patients with prostate cancer. To
verify the merit of our integration approach over the use of a
single omics data source, models were built for classifying
cancer patients according to therapy response, prognostic
factors, metastasis, or recurrence. In many studies, only
single data sources are explored for the development of such
profiles. However, in our opinion, a single layer of molecular
information is inadequate to explain the complete network
of molecules underlying a disease. In this study, LS-SVMs
were first built on all data sets individually (Figure 1). Next,
we manually integrated data measured at multiple time
points by building LS-SVMs using the change in expression
between two time points. Because the integration of data
may be more complex than the change in expression over
time, we subsequently applied an intermediate integration
approach in which data from multiple omics were combined
at the kernel level within the patient domain.

For the data on rectal cancer, all three outcomes - a tumor
regression grading system and two prognostic factors -
could be predicted most accurately and most cost-efficiently
with an AUC ranging from 0.9269 to 0.9870 when fusing
microarray and proteomics data gathered during therapy
(MPT,; Table 2). For WHEELER, for example, MPT,
performance is better than each of the models based on
data from an individual technology (MT, and PT,), as is the
case for MPT,, compared to MT,, and PT,,. This trend of
increased performance when combining data from two
different technologies was further confirmed by our second
data set for prostate cancer patients. Best results for the
prediction of grade, stage, metastasis, and recurrence were
obtained when integrating microarray and genomics data
(MG). The corresponding AUC values were 0.9006, 0.8528,
0.9868, and 0.7857, respectively (Table 4). For many of the
genes, proteins, and CNVs included in these models,
involvement in rectal or prostate cancer has been defined,
indicating the reliability of the selected features (Tables 3
and 5). These models were compared with models obtained
with an ensemble approach in which -classifiers are
combined instead of data sets at the kernel level. Globally,
our approach performed better, although not always
significantly (Table 6).

By looking at the correlation between two data sets gathered
from the same set of patients, we show that data from
different layers are mainly complementary. For rectal
cancer, there was a lack of correlation between the selected
genes and their corresponding proteins. Also, the selected
proteins did not significantly correlate with their transcript
level, suggesting alternative splicing and post-translational
modification. With newer technologies such as mass
spectrometry, the whole proteome will become measurable.
For prostate cancer, up to three genes included in the model
MG were significantly correlated with their corresponding
CNV.

Genome Medicine 2009,
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More specific for the study on rectal cancer, we can conclude
from Table 2 that data gathered after an initial dose of
cetuximab are more informative for prediction of therapy
response than data gathered before the start of the therapy.
Neither microarray nor proteomics data can predict the
outcomes more accurately at T, than T,, except for the
proteomics data at T, being more informative for the
prediction of CRM. Moreover, when combining both data
types at one time point (MPT, and MPT,), the models
applicable after the initial dose of cetuximab outperform
those at T,

We acknowledge that the models proposed in this
manuscript are quite expensive. Applying a model for rectal
cancer would require microarray and/or proteomics data,
gathered at one or two time points during therapy. However,
we have attempted to keep the cost to a minimum. The
performance difference between models combining two data
sets, only requiring a sample to be taken at one time point or
one technology to be applied at two time points, and models
requiring a sample to be taken at both time points and both
technologies to be performed was minimal and not
statistically significant. We therefore chose the best model
among the models based on two data sets. We admit that
there may exist other, less expensive data sources that can
contain complementary information as well. Firstly, clinical
information is routinely gathered during therapy, such as
tumor size, tumor location and number of positive lymph
nodes. However, we only had access to the clinical
parameter age, for which we performed an additional
analysis to verify whether this parameter could be of use. A
univariate analysis based on the Wilcoxon rank sum test
showed no significant difference in age between the two
classes of samples according to the considered outcomes. In
a multivariate logistic regression model, the parameter age
was not significant as well. Secondly, there is an increasing
need for multi-modal studies in which, among others,
clinical, genomic and genetic data are collected. Also,
imaging, such as computed tomography (CT) and magnetic
resonance imaging (MRI) can be a potential predictor to use
in combination with high-throughput data sources. Such
studies are required to determine which data sets are most
relevant for the problem at hand and which data sets should
be combined to become good performing, affordable models
that are clinically applicable.

Conclusions

The results suggest that the use of our integration approach
on experimental data from multiple levels in the genome can
improve the performance of decision support in cancer. For
both data sets studied in this manuscript, combining high-
throughput data sets (transcriptomics with proteomics, or
genomics with transcriptomics) outperformed the models
based on data from a single layer of biological information,
independent of the outcome considered for prediction.
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These results emphasize the need for comprehensive multi-
modal data gathered with high-throughput technologies as
well as imaging, because it is unknown which technologies,
and thus which levels of molecular biology, are the most
relevant for prognostic prediction. We acknowledge that this
will substantially increase costs in a first exploratory phase.
However, this is a necessary investment to ultimately obtain
cost-efficient models usable in patient tailored therapy.

In the near future, we will compare our kernel-based
integration method with a Bayesian network integration
framework. These frameworks are complementary. We also
plan to apply an ensemble approach for integrating these
two frameworks because more accurate classifiers are not
only obtained by combining different data types but also by
combining individual decisions of multiple classifiers. In this
way, the advantages of both methods can be exploited.

Abbreyviations

AUC, area under the ROC curve; CGH, comparative genomic
hybridization; CNV, copy number variation; CRM, circum-
ferential margin involvement; DEDS, differential expression
via distance synthesis; EGFR, epidermal growth factor
receptor; G, model based on genomics data; LOO, leave-one-
out; LS-SVM, least squares support vector machine; M,
model based on microarray data; MG, model based on both
microarray and genomics data; MPT,, model based on
microarray and proteomics data at T,; MPT,, model based
on microarray and proteomics data at T,; MPT,,, model
based on all data (microarray and proteomics data at both
timepoints); MT,, model based on microarray data at 7;
MT,, model based on microarray data at 7,; MT,,, model
based on microarray data at both time points; MT,-T,,
model based on change in gene expression between T, and
T,; PT,, model based on proteomics data at T,; PT,, model
based on proteomics data at T,; PT,,, model based on
proteomics data at both time points; PT,-T,, model based on
change in protein abundances between T, and T,; ROC,
receiver operating characteristicc SVM, support vector
machine; T,, time point before treatment; 7,, time point
after the first loading dose of cetuximab but before the start
of radiotherapy with capecitabine; T,, time point at moment

of surgery.
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Additional data files

The following additional data files are available with the
online version of this paper. Additional data file 1 shows the
ROC curves of the optimal LS-SVM models for all considered
combinations of data sets shown in Tables 2 and 4.
Additional data file 2 shows the results for the prediction of
WHEELER, pN-STAGE, and CRM in rectal cancer, using
step C models for which a sample is required at both time
points and for which both technologies need to be
performed. Additional data file 3 contains additional tables
1-3 showing all genes and proteins selected by the best
performing models MPT1 for the prediction of WHEELER,
PN-STAGE, and CRM in rectal cancer. Additional data file 3
also contains additional tables 4-7 showing, for prostate
cancer, the genes and CNVs selected by the best performing
models MG for the prediction of GRADE, STAGE,
METASTASIS, and RECURRENCE. All tables in additional
data file 3 show the number of LOO iterations in which each
gene, protein, or CNV was selected, their chromosomal
region, and whether it is up- or down-regulated.
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