
The emerging importance of mobile DNA elements in 
disease

It has been generally held that about half of the human 
genome is derived from mobile genomic elements, but 
according to a recent estimate over two-thirds of our 
genome may result from the presence or ancient activity of 
‘jumping genes’ [1]. �is massive amount of DNA includes 
domesticated elements with evolutionarily spectacular 
functions, such as the RAG (recombination activating) genes 
that form the basis of V(D)J recom bination in our immune 
system [2,3], and the ERVWE1 (endogenous retrovirus 

group W, member 1) gene that plays a role in placental 
development [4]. Contrary to their evolutionary gifts, mobile 
elements are most notor ious for being junk or for causing 
life-threatening human disorders by insertional mutagenesis 
and homologous recombination. As we usher in the era of 
genome-scale studies, it is clear that these elements have 
the potential to cause intra-individual and inter-individual 
variation and probably common disease through structural 
varia tion, deregulated transcriptional activity or epi genetic 
effects. Furthermore, large-scale studies have expanded the 
pool of human disorders resulting from retrotrans poson-
mediated insertional mutagenesis. Recent reviews have 
discussed the technical aspects of these new methods [5-8]. 
We focus here on the known, as well as inferred, potential 
health impact of their novel findings.

Types of mobile elements in the human genome and the 
main disease mechanisms
Human mobile elements can be categorized as DNA 
transposons or retrotransposons. DNA transposons move 
by a cut-and-paste mechanism, while retrotrans posons 
mobilize by a copy-and-paste mechanism via an RNA 
intermediate, a process called retrotransposition. 
Retrotransposons can be further subdivided into long 
terminal repeat (LTR) and non-LTR elements. LTR retro-
transposons are human endogenous retroviruses (HERVs) 
that have an intracellular existence as a result of a non-
functional envelope gene. Non-LTR elements are classi fied 
as long interspersed elements (LINEs; the prototype of 
which is the RNA polymerase II transcribed LINE-1 (L1)), 
and short interspersed elements (SINEs), the latter 
consisting essentially of RNA polymerase III transcribed 
Alus. SVAs (SINE-R/VNTR (variable number of tandem 
repeat)/Alu) are also active non-LTR retrotransposable 
elements that are intermediate in size relative to Alus and 
L1s, and are likely to be transcribed by RNA polymerase II. 
�us, they are best thought of as neither LINEs nor SINEs. 
L1s are the only known autonomously active human 
retrotransposons, as only they encode proteins (open 
reading frame 1 (ORF1) and ORF2) with which they can be 
mobilized. Retrotransposition occurs through a process 
called target primed reverse transcription (TPRT) [9]. L1s 
are also responsible for the mobilization of the non-
autonomous Alus [10], SVAs [10-13] and processed 
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pseudogenes, which are cellular mRNAs that are reverse 
transcribed and inserted into the genome [14].

DNA transposons are considered to be immobile in the 
human genome. Accordingly, no human disease is known to 
arise as a result of their activity. Also, HERVs are thought to 
be retrotransposition defective in humans, but some may 
have retained their ability to move. For example, HERV-
K113 has intact ORFs and has insertional polymorphisms in 
the human population, implying recent evolutionary 
activity [15]. Although no insertional mutagenesis by 
HERVs has been described, oncogenic ETV1 (ets variant 
1)-HERV-K fusions generated by chromosomal translocation 
have been observed in prostate cancer [16,17], and HERV 
expression has been suggested as a potential contributor to 
autoimmune diseases [18]. Furthermore, syncytin, an 
endogenous retroviral envelope protein playing a role in 
placental trophoblast cell fusion, is involved in breast 
cancer-endothelial cell and endometrial carcinoma cell 
fusions [19,20]. Also, a LTR of a MaLR human endogenous 
retrovirus has been shown to aberrantly activate a proto-
oncogene, thereby causing lymphoma [21].

The predominant mechanism by which L1s cause disease 
is insertional mutagenesis into or near genes [22,23]. L1 
insertions are often accompanied by 3’ transduction, the co-
mobilization of DNA sequences downstream of an L1 as a 
consequence of transcriptional read-through resulting from 
a weak L1 poly(A) signal [24-27]. Alu sequences 
predominantly cause disease by homologous recombination 
between two Alu sequences, but insertion into or near 
exons, and aberrant Alu splicing from introns, also 
frequently result in pathological conditions [28-30]. 
Furthermore, Alu RNA toxicity, a new disease-causing 
phenomenon, has been recently proposed to result in 
macular degeneration by DICER1 deficit [31]. Regarding 
the role of Alu elements in eye disorders, it is interesting 
that an Alu insertion polymorphism in the ACE 
(angiotensin I converting enzyme) gene has been associated 
with protection from the dry/atrophic form of age-related 
macular degeneration [32]. SVA elements also have the 
ability to interrupt genes through insertional mutagenesis 
that can be coupled with 3’ transduction, genomic deletion 
or aberrant splicing [11,33-35]. The wide spectrum of 
disease cases caused by retrotransposons ranges from 
hemophilia to muscular dystrophy and cancer, and has been 
thoroughly reviewed [36-38]. There have been 96 known 
retrotransposon insertions in disease cases, of which 25 are 
caused by L1s, while the other 71 are also L1-mediated. 
Among the latter, 60 cases are attributable to Alus, 7 to 
SVAs, and 4 to truncated inserts with only poly(A) sequence 
remaining [38]. Overall, retrotransposon insertions account 
for about 1 in 250 (0.4%) of disease-causing mutations [29]. 
Processed pseudogenes have not yet been found to cause 
human disease by de novo insertional mutagenesis, but 
facioscapulohumeral dystrophy has been demonstrated to 

arise as a result of the contraction of macrosatellite repeats 
leading to aberrant expression of an array of DUX4 
retrogenes residing within the repeats [39,40]. In addition, 
mutations in functional processed pseudogenes can cause 
disease. For instance, mutations in UTP14C have been 
associated with male infertility [41], mutations in 
TACSTD2/M1S1 result in gelatinous drop-like corneal 
dystrophy [42,43], and PTENP1 is selectively lost in human 
cancers [44,45]. The main characteristics of mobile 
elements capable of causing human disease are summarized 
in Figure 1.

In the next two sections, we discuss large-scale genome, 
transcriptome and methylation profiling studies of mobile 
elements in human diseases. We also discuss some non-
genome-scale studies that support or contradict the 
implications of these novel findings.

Genome-scale approaches to identify new 
retrotransposon insertions
High-throughput sequencing has increased our capacity to 
generate large datasets at an unprecedented resolution. It is 
now possible to characterize genome sequences of scarce 
samples or even single cells. A next-generation sequencing 
technique with a high coverage of germline polymorphic 
human-specific L1 (L1Hs) retrotransposition events has 
been developed by Ewing and Kazazian, comprising hemi-
specific PCR coupled to Illumina sequencing [46]. Using 
this approach, it has been demonstrated that many L1Hs 
elements are population-specific [46,47], and recapitulate 
genetic ancestry similar to Alu insertion polymorphisms 
[48]. Retrotransposons are not only excellent markers for 
exploring population history, but can also give rise to 
population-specific diseases. For example, a homozygous 
Alu insertion in an exon of the MAK (male germ-cell-
associated kinase) gene has been identified in 21 patients of 
Jewish ancestry who were diagnosed with retinitis 
pigmentosa [49]. Oddly, the discovery of this mutation 
using Agilent exome capture and subsequent Illumina and 
ABI sequencing was paradoxical, as attempts to remove 
repetitive sequences from the analysis led to the 
identification of the insertion [49]. Another population-
specific disease caused by retrotransposon mutagenesis is 
Fukuyama-type congenital muscular dystrophy. It is one of 
the most common autosomal recessive disorders in Japan 
and was the first human disease found to result from 
ancestral insertion of an SVA element [35,50,51]. A similar 
example of an apparently ethnic-specific retrotransposon 
allele-mediated disease is an L1-mediated orphan 3’ trans
duction into the dystrophin gene leading to Duchenne 
muscular dystrophy in a Japanese boy [52,53].

An unexpected finding of state-of-the-art, large-scale 
approaches to study retrotransposon insertions has been 
that highly active (or ‘hot’ [54]) L1s are much more abun
dant in humans than previously appreciated. The outcome 
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of a fosmid-based paired-end DNA sequencing strategy, 
coupled with a cell culture assay for retrotransposition, was 
that over half of newly identified L1s are hot, expanding the 
number of known hot L1s from 6 to 43 [55]. These L1s are 
not only expected to be a major source of inter-individual 
genetic variation [55], but hot L1s account for most 
examples of disease-causing insertions [54].

Another unusual finding of genome-scale approaches in 
retrotransposon biology has been that retrotransposition 
occurs at a very high frequency in somatic cells. Specifically, 
the brain was announced to be a bona fide territory for 
retrotransposition. Among three somatic tissues tested, this 
organ supported the highest level of endogenous L1 copy 
number, as assessed by quantitative PCR (qPCR) [56]. In 
another study that awaits further validation, over 7,700 L1s, 
13,600 Alus and 1,300 SVA putative somatic insertions were 
found in the hippocampus of three individuals using 
retrotransposon capture sequencing, which is based on 
transposon array capture followed by Illumina paired-end 
sequencing [57]. Surprisingly, in this study, L1 and Alu 
insertions were over-represented in protein-coding genes 
and targeted genes, such as HDAC1 (histone deacetylase 1) 

and RAI1 (retinoic acid induced 1), which are known to be 
mutated in neurological disorders [57]. These findings 
suggest that if a retrotransposon inserts into a gene that 
functions in neurological development or psychological 
functioning early in development, it might affect a large 
enough area of the brain to lead to disease. One might 
further speculate that retrotransposition in a single brain 
cell could have some physiological consequences or impact 
memory formation through altered extracellular signaling 
to neighboring neurons. If such neuronal plasticity exists, it 
could affect behavioral phenotypes, and could be modulated 
by environmental factors [58]. Conversely, knockdown of an 
L1 regulating cellular factor has demonstrated an effect on 
L1 retrotransposition in the neurodevelopmental disorder 
Rett syndrome [59]. MeCP2 (methyl CpG binding protein 2) 
has been shown to repress L1 expression and 
retrotransposition [60], and increased L1 retrotransposition 
has been observed in induced pluripotent stem cells of 
patients with Rett syndrome who carry MECP2 mutations 
[59].

Ten brain tumors were examined for somatic L1 
insertions by 454 pyrosequencing, but interestingly no 

Figure 1. Types of retroelements implicated in human disease. ENV, envelope; GAG, group specific antigen; HERV, human endogenous 
retrovirus; kb, kilobase; LTR, long terminal repeat; ORF, open reading frame; POL, polymerase; SINE, short interspersed element; SVA, SINE-R/VNTR/
Alu; TPRT, target primed reverse transcription; UTR, untranslated region; VNTR, variable number of tandem repeats. [99]. Black triangles indicate 
target site duplications.
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retrotransposon insertions were discovered [61]. However, 
nine somatic L1 insertions were found in 6 out of 20 lung 
tumors with the same technique [61]. It was not determined 
though whether the normal tissues also contained some 
number of L1 insertions relative to the tumor tissue, and 
thus whether insertions in the cancer represented an 
elevated level of retrotransposon mobilization. Further
more, it is not known if these insertions are transcribed or 
affect gene expression, and whether they were drivers or 
merely passengers of the tumorigenic process. The genome-
wide methylation status of the lung tumors and adjacent 
normal tissue was also examined using an Illumina 
platform. All 6 patient DNA samples exhibiting tumor-
specific L1 insertions were clustered together as 
hypomethylated, compared with 13 out of the remaining 14 
samples that lacked somatic insertions. These data imply 
that a methylation signature distinguishes L1-permissive 
tumors from non-permissive tumors [61].

Another genome-scale method to genotype common 
retrotransposon insertion polymorphisms (RIPs) to identify 
genotype-phenotype associations uses array-based 
technology. Commonly, single nucleotide polymorphisms 
(SNPs) and copy-number variants have been used as 
markers in genome-wide association studies (GWASs) to 
map loci involved in human disease. RIPs are a valuable 
resource to investigate the role of these elements in 
phenotypic variation and disease. Also, generally a RIP is 
much more likely to be the causal variant than a SNP, 
because a large insertion is more likely to be disruptive of 
gene function than a single nucleotide alteration, and 
retrotransposons have many features that can interfere with 
gene expression (reviewed by Goodier and Kazazian [62]). 
On the other hand, strong selection exists against 
retroelement insertions into coding regions, where they are 
under-represented compared with SNPs [63]. Currently, 
one array-based approach has been conducted to detect 
retrotransposon insertions in human disease. Using 
transposon insertion profiling by microarray (TIP-chip), 
several novel L1 insertions on the X chromosome were 
discovered in male probands with presumptively X-linked 
intellectual disability [64]. Interestingly, one of the 
insertions occurred in the NHS gene, which is mutated in 
Nance-Horan syndrome, a condition associated with 
intellectual disability. Another promising insertion occur
red in the DACH2 (dachshund homolog 2) gene that 
regulates neuronal differentiation [64]. However, 
confirmation studies are needed to demonstrate whether 
these insertions are the underlying cause of intellectual 
disability in these patients.

Except for the Baillie et al. study [57], which analyzed L1, 
Alu and SVA somatic insertions, the studies mentioned 
above concentrated on genome-wide detection of new L1 
insertions. A notable study by Witherspoon et al. [65] 
developed a robust technique, termed mobile element 

scanning, to find new insertions of young Alu elements 
using PCR methods coupled with high-throughput 
sequencing. The group found approximately 500 de novo 
Alu insertions [65]. Their technique is applicable to all 
mobile elements, and is amenable to significant 
multiplexing of a number of DNA samples in one 
sequencing run.

Genome-wide methylation studies and transcriptome 
analysis of retrotransposons
It is speculated that one of the main roles of DNA 
methylation, in addition to epigenetic reprogramming, is to 
silence transposable elements [66]. Most methylation 
studies of human transposons have investigated malig
nancies and showed consistent hypomethylation (for 
example, [67,68]), the extent of which, however, was varia
ble in different tissues [69]. As the malignant phenotype is 
inherently associated with global as well as tumor-type-
specific methylation changes [70], and transposable 
elements comprise the majority of the human genome, it is 
difficult to establish the role of transposon demethylation 
per se in tumorigenesis, especially without accompanying 
functional studies. It is possible that pathogenic cellular 
stress responses could result in local or global transposon 
deregulation - for example, via demethylation or chromatin 
modification. Once out of control, such an epigenetic 
deregulation might result in single or multiple 
retrotransposition events.

Retrotransposons located 5’ of protein coding loci 
frequently function as alternative promoters. They might 
also express non-coding RNAs, and retrotransposons in the 
3’ UTR (untranslated region) of genes show strong evidence 
of reducing the expression of the respective gene, as 
assessed by cap analysis gene expression and pyro
sequencing [71]. Thus, an altered retrotransposon methy
lation state is expected to affect either the transcription of 
the retrotransposon itself or that of nearby genes. 
Accordingly, it has been shown that hypomethylation of L1s 
can cause altered gene expression. Specifically, an L1 is 
located in the MET (hepatocyte growth factor receptor) 
oncogene, and hypomethylation of a promoter in this L1 
induced an alternative MET transcript within the 
urothelium of tumor-bearing bladders. At the same time, in 
the bladder epithelium of cancer-free donors the 
methylation level of this L1 promoter was high and 
expression of the alternative MET transcript was low [72].

There are few studies that correlate human retrotrans
poson methylation with their transcription level on a 
genome-wide scale. According to one study, expression of 
L1 5’ and 3’ UTR sequences in prostate cancer was rather 
decreased, despite significant hypomethylation of the L1 
promoter. Different HERV-K families showed opposite 
trends in expression levels, and the expression of 
evolutionarily young Alu families was restricted to 
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individual prostate tumors as assessed by RT-qPCR and 
pyrosequencing [73]. In agreement with that study, trans
criptional activation of L1s was not observed in globally 
hypomethylated hepatocellular carcinoma compared with 
matched normal tissue, as assessed by RT-qPCR [74]. Of 
note, the quantification of some types of expressed 
retroelements by using classical methods may prove 
ambiguous. Since Alu sequences are abundant in RNA 
polymerase II transcripts, quantification of the relatively 
rare RNA polymerase III transcribed Alu transcripts by RT-
qPCR is fraught with potential error [75]. Transcribed L1 
sequences embedded in genes may similarly confound the 
results of such quantitative measurements of L1 expression.

Using a custom GeneChip microarray for transcriptome 
analysis of several HERV families, it was shown that 
numerous HERV-W loci were overexpressed in testicular 
cancer [76]. Interestingly, one of these was an ERVWE1 
transcript whose expression is usually restricted to the 
placenta. Methylation was severely or completely dimin
ished at HERV-W sequences in the tumor DNA, suggesting 
that DNA methylation and HERV-W expression is 
interrelated in this tumor context [76]. With a genome-wide 
technique termed selective differential display of RNAs 
containing interspersed repeats and with its modified 
version, termed L1 chimera display, it has been also 
demonstrated that the levels of many HERV-K LTR 
transcripts differ between normal and testicular germ cell 
tumor tissues [77], and that the L1 antisense promoter gives 
rise to novel chimeric transcripts that are unique in tumor 
samples [78]. Furthermore, the cancer-specific chimeric L1 
transcripts could be induced in non-malignant cells by 
using the demethylating drug 5-azacytidine [78].

It will be interesting to learn if tumor-specific retro
transposon profiles reveal enhanced retroelement mobility. 
For example, L1 retrotransposition is associated with 
genetic instability [79], a hallmark of cancer [80]. Thus, 
local or global overactivation of L1s could have the potential 
to contribute to tumorigenesis. In particular, germ cell 
tumors are good candidates to examine cancer-specific 
retroelement activity, because the genome of germ cells 
goes through epigenetic reprogramming through 
methylation at CpG sites. Thus, deregulation of this process 
might easily lead to the derepression of transposable 
elements, and potentially to germ cell tumors. In support of 
this hypothesis, the L1 ORF1 protein was overexpressed in 
all 62 cases of investigated childhood malignant germ cell 
tumors relative to adjacent normal tissue and was 
associated with poor differentiation [81]. Testicular germ 
cell tumors should also be examined for L1-conferred 
hereditary disease, as no high penetrance susceptibility 
genes have been identified in this condition. With 
pyrosequencing of bisulfite-treated DNA using L1-specific 
primers, transgenerational L1 methylation inheritance was 
implicated to be associated with testicular cancer risk [82]. 

Thus, L1s are attractive candidates for both somatic drivers 
and hereditary predisposition factors in germ cell tumors 
and possibly in other cancer types. However, currently their 
functional impact in malignancy is poorly understood.

Concluding remarks and future directions
Genome-scale technologies now provide us with the 
opportunity to investigate retrotransposon biology in un
precedented detail. Ultimately, it will be important to test 
the functional consequences of these results, such as the 
effect of RIPs on gene function, and their role in cancer and 
neurological disorders. This outcome might be 
accomplished by classical functional studies, or by combin
ing the results of several genome-scale experiments. For 
instance, if comprehensive RIP profiles were coupled with 
next-generation RNA sequencing data, it would allow 
testing of hypotheses pertaining to retrotransposons and 
their effects upon gene expression. Such platforms would 
also be useful to explore whether there is a role for common 
RIPs in common disease and if these RIPs convey the 
disease phenotype through expression. In a similar manner, 
one could incorporate chromatin/methyl-seq/RNA/ChIP-
seq profiles for DNA-binding or RNA-binding proteins 
with the respective RIP profiles. It would also be 
advantageous to carry out studies to explore whether any 
overlap between a GWAS hit and a known RIP exists, as the 
RIP might indeed be the causal variant.

As an alternative genome-scale approach to understand 
the impact of human transposons on disease, functional 
genetic screening strategies could be developed in cell 
culture. For instance, haploid cell lines [83,84] and BLM 
(Bloom syndrome, RecQ helicase-like)-deficient cells that 
can be converted to generate a genome-wide library of 
homozygous mutant cells [85-87] are available to be 
mutagenized and screened for any desirable phenotype, 
such as altered retrotransposition activity, using suitable 
read-out systems. One such system could be a retrotrans
position assay, where an L1 reporter construct has been 
designed so that translation of the reporter (drug-resistance 
gene or enhanced green fluorescent protein) occurs only 
after L1 reverse transcription and insertion of its cDNA 
copy into the genome [88,89]. Also, genome-wide 
mutagenesis might be accomplished with mobile elements 
themselves, such as retroviruses or DNA transposons [85-
87]. Similarly, large-scale small interfering RNA (siRNA) 
and cDNA functional genetics screening strategies could be 
designed to identify host cell factors modulating L1 activity. 
One should also investigate whether some host factors elicit a 
disease phenotype through deregulated retrotransposon 
activity. For example, the remarkable finding of the role of 
Alu RNA toxicity due to DICER1 deficiency in macular 
degeneration [31] needs to be replicated by alternative 
methods. Those methods should exclude the possibility that 
what is really being detected is amplification of the closely 
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related 7SL RNA or Alu sequences contained in RNA 
polymerase II transcripts, which vastly outnumber the RNA 
polymerase III-transcribed Alu elements [75]. Also, 
functional genetic follow-up studies should circumvent - if 
at all feasible - non-specific toxicity arising as a result of 
ectopic Alu overexpression or antisense oligo-mediated 
downregulation of essential RNA polymerase II transcripts 
with embedded Alu sequences. DICER1 may also have a 
role in tumorigenesis through retrotransposon overexpres
sion, as germline mutations in this gene have been found in 
familial pleuropulmonary blastoma [90] and in familial 
multinodular goiter with ovarian Sertoli-Leydig cell tumors 
[91]. Sense and antisense transcripts derived from L1 
promoters could be processed to siRNAs that might 
suppress retrotransposition by RNA interference [92], and 
DICER1 has been implicated in this process [93]. These data 
raise the possibility that genomic instability in some 
malignancies could arise - at least partly - from 
retrotransposon overdose as a consequence of a mutated 
small non-coding RNA pathway. This could lead eventually 
to retrotransposon RNA toxicity [31], genotoxic stress 
through DNA nicking by ORF2 [94], or elevated insertional 
mutagenesis [61].

For the future of personalized medicine it will be vital not 
to exclude the transposon profile of patients, as exemplified 
by the case of an Alu insertion in a retinitis pigmentosa 
proband [49]. Another aspect of personalized medicine is 
gene therapy. In one form of gene therapy, antisense 
oligonucleotides that block aberrant splicing into an 
intronic SVA that causes Fukuyama muscular dystrophy has 
been suggested [35]. Another aspect of gene therapy is the 
use of DNA transposons that hold the promise of lower 
immunogenicity, enhanced safety profile and reduced 
manufacturing costs compared with viral vectors [95]. Two 
DNA transposons from non-mammalian species have 
emerged as gene therapy tools based on their efficient 
transposition in humans: the reconstructed Tc1/mariner 
element Sleeping Beauty from salmonid fish and piggyBac 
from the baculovirus genome [95,96]. The first ex vivo gene 
therapy clinical trial using Sleeping Beauty has been 
approved [97], and induced pluripotent stem cells are now 
being generated after targeted gene correction using 
piggyBac technology [98]. Once the potential side-effects of 
these therapies - such as secondary mutagenesis resulting 
from transposon hopping or activation of nearby genes - are 
overcome, the roles of mobile elements can be redefined 
from being just ‘junk’ or ‘enemy’ to ‘life-guards’ of our 
genomes.
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