
Background
�e development of an effective vaccine against all strains 
of Neisseria meningitidis (meningococcus), the major 
cause of life-threatening bacterial meningitis and 
septicemia, is a priority for infectious disease research. 
Meningococci can be classified into serogroups based on 
the structure of their extracellular capsular polysac cha-
ride, with serogroups B and C being traditionally res-
ponsible for the majority of invasive disease in most 
temperate countries, and serogroup A causing epidemic 
infections in sub-Saharan Africa.

�e first generation of vaccines contained purified 
polysaccharides from serogroups A and C that induced 
antibodies that promoted complement-mediated serum 
bactericidal activity (SBA), the correlate of protective 
immunity, against the respective serogroups. Tetravalent 
polysaccharide vaccines were later produced by the 
addition of serogroups Y and W135. However, such 
vaccines suffer from poor immunogenicity as a conse-
quence of the inability of polysaccharide antigens to 
induce an effective T-helper-cell response. In adults, they 
produce only a short-lived antibody response and fail to 
induce immunological memory. Furthermore, they are 
non-immunogenic in infants, the main potential target 
group for meningococcal vaccines. Second-generation 
vaccines were subsequently developed in which the 
capsular polysaccharides were covalently linked to carrier 
proteins in order to induce a T-helper-cell response. Such 
polysaccharide vaccines produce a long-lived IgG 
response and induce immunological memory even in 
infants. �e first such vaccine, a serogroup C conjugate, 
was introduced into the UK immunization program in 
1999 and has been extremely effective in reducing cases 
of serogroup C infections [1].

Unfortunately, none of the above strategies have been 
applicable to infection caused by serogroup B meningo-
cocci, which is the major serogroup associated with 
invasive disease in most western countries. �e sero-
group B capsular polysaccharide is non-immunogenic 
even in adults, due to molecular mimicry of neural cell 
adhesion molecules expressed on developing fetal brain 
tissue [2]. Alternative strategies have focused on the 
vaccine potential of subcapsular antigens. Experimental 
vaccines have been based on outer membrane (OM) 
‘blebs’ released from the surface of meningococci during 
growth and from which toxic lipopolysaccharide has 
been selectively removed by extraction with deoxycholate 
detergent. Such outer membrane vesicle (OMV) vaccines 
have been used in attempts to control outbreaks of 
serogroup B infection in countries such as Norway, Cuba 
and New Zealand when epidemics have been caused by 
one predominant serosubtype [3-5]. �e success of such 
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vaccines has been limited by problems, including: a short 
duration of protection, poor immunogenicity in children, 
and variable responses in individuals to the different 
proteins present in the vesicles [6,7]. Furthermore, the 
main protective component is believed to be the PorA 
outer membrane protein [8], which varies between 
strains and so generates a large number of serosubtype 
differences that are expressed independently of sero
group. The immunity induced is therefore largely serosub
type specific, and a vaccine based on such a strategy 
would necessarily have to be prepared from multiple 
strains and the composition tailored for geographical 
location and adjusted over time to match the changing 
incidence of serosubtypes [9].

An effective vaccine against serogroup B meningococci 
should induce immunity against strains of a wide range of 
serosubtypes. The contribution of the PorA protein to the 
protective effect of OMV vaccines is illustrated by the 
predominantly serosubtype specificity of the resulting 
SBA. However, analysis of the immune response to OMV 
vaccines [10,11] and studies of the development of 
natural immunity induced by colonization with meningo
cocci [12] have suggested that a minor component of the 
SBA is cross-reactive against heterologous serosubtypes. 
Unfortunately, at the time of these studies, the limitations 
of available technology meant that the identity of the 
antigen(s) responsible for potential cross-reactive immu
nity could not be determined.

Genomic approaches
The search for meningococcal antigens capable of 
inducing cross-reactive immunity has been revolution
ized by the availability of complete genome sequences, 
and the resulting predicted proteins, from meningococcal 
strains of serogroups A, B and C [13-15].

The first approach has been the use of in silico analysis 
of the predicted proteome of serogroup B strain MC58 to 
identify putative candidate vaccine antigens; this approach 
has been dubbed ‘reverse vaccinology’. Pizza and 
colleagues [16] identified 570 potential open reading 
frames that encode proteins predicted to be either 
surface exposed or exported from the bacteria, and they 
were able to express 350 of these as fusion proteins. 
Antisera raised against these proteins were tested for 
SBA and cross-reactivity, leading to the identification of 
seven proteins as potential vaccine antigens. Five of these 
were chosen for large-scale expression and incorporated 
into an experimental human vaccine. Immunization of 
mice with the pentavalent vaccine induced a bactericidal 
immune response against a range of strains tested [17]. 
Phase III clinical trials are underway with a similar 
vaccine that additionally incorporates OMV [18]. Subse
quently, genome sequences of other Neisseria species 
have become available, and Pajon and colleagues [19] 

have exploited these together with a more intensive 
bioinformatic approach to identify five additional 
antigens that are also able to induce a bactericidal 
immune response to meningococci.

Proteomic analysis
The availability of genome sequences and the corres
ponding translated protein databases have enabled 
studies on the meningococcal proteome, particularly the 
detailed composition of outer membrane fractions. In 
early studies, Frasch and colleagues [20] were able to 
distinguish only five major classes of proteins in outer 
membrane preparations from meningococci. Subse
quently, additional proteins were identified that were 
present in lower amounts or only expressed when the 
bacteria had been grown under nutrient limitation 
(reviewed in [21]). The total number of proteins identified 
in outer membrane preparations remained relatively few 
until the development of more sensitive proteomic 
methods. This combined with the availability of the 
translated genome sequences has enabled much more 
detailed study of outer membrane preparations and the 
vesicle/vaccine preparations derived from them by 
deoxycholate extraction. One-dimensional SDS-PAGE of 
an OMV vaccine preparation followed by tandem mass 
spectrometry (MS/MS) identified 40 proteins, including 
7 that had previously been identified as vaccine candi
dates [22]. Replacing SDS-PAGE with two-dimensional 
electrophoresis increased the number of proteins identi
fied to 74 [23].

Further sensitivity can be obtained using SDS-PAGE 
and nanocapillary liquid chromatography-tandem mass 
spectrometry (GeLC-MS/MS). Proteins are separated on 
a conventional one-dimensional SDS-PAGE gel, which is 
then cut into slices that are subjected to in situ proteolytic 
digestion. The resulting peptides are separated by 
reverse-phase liquid chromatography and then applied to 
a tandem mass spectrometer. Proteins are identified by 
comparison of the peptide fragments with the sixfold 
translated genome database. This technique overcomes 
the problems of two-dimensional gels associated with 
poor solubility of membrane proteins and has the addi
tional advantage of providing an indication of relative 
abundance based on the number of peptide fragments 
identified per protein. Using this technique, Vaughan et 
al. [24] identified 125 potential proteins in an OMV 
vaccine and noted significant differences in a similar 
preparation from the related non-pathogen Neisseria 
lactamica, which has been suggested as an alternative 
vaccine. Williams et al. [25] used GeLC-MS/MS to com
pare an OM preparation with the corresponding OMV 
vaccine preparation obtained by deoxycholate extraction. 
A total of 236 proteins were identified in the OM 
preparation, and the PSORTb algorithm [26] was used to 
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predict their expected location within the cell. Only 15 of 
the identified proteins were predicted to have an OM 
location but these included all of those well established as 
major components of the outer membrane. The proteins 
not predicted to have an OM location were predomi
nantly periplasmic, cytoplasmic, or of unknown location, 
while relatively few cytoplasmic membrane proteins were 
detected. The major proteins present were those that had 
previously been identified as the major components of 
the OM, including PorA, PorB, Opa, Opc, Rmp and PilQ. 
Interestingly, several proteins that had previously been 
suggested as potential vaccine candidates were not 
detected in either OM or OMV preparations; these 
included AspA, GNA2132, NadA, and GNA2001. It is 
not possible to determine whether the ‘non-OM proteins’ 
detected in the preparations occur in a natural 
association with the OM or whether they arise by 
‘contamination’ during the isolation process. However, 
proteomic analysis has shown that they are certainly 
present in the OMV vaccines that have been used for 
human immunization [22,25].

An alternative strategy to the use of deoxycholate to 
deplete toxic lipopolysaccharide from OM preparations is 
to produce OM from a lipopolysaccharide-deficient mutant. 
Proteomic analysis of such a preparation by GeLC-MS/MS 
revealed significant differences from OMV prepared 
conventionally with increased levels of several non-
membrane proteins, particularly those of the tricarboxylic 
acid cycle [25]. The possible effects of these differences in 
protein content between the two vaccines are unknown.

Immunoproteomics
The ability to combine the proteomic approach with the 
availability of animal or human sera with known 
bactericidal activity has facilitated an immunoproteomic 
approach to the identification of possible vaccine 
candidates.

Mendum et al. [27] used two-dimensional immuno
blotting to identify antigens recognized by sera from 
patients recovering from meningococcal infection. A 
total of 33 proteins were identified that reacted with 
acute and/or convalescent sera, although it was not 
possible to correlate protein reactivity with the bacteri
cidal activity of the sera. Twenty-seven of these proteins 
were produced in Escherichia coli and used for immuni
zation of mice with Freund’s adjuvant. Although none of 
the resulting sera showed bactericidal activity, this may 
be due to a failure to refold the recombinant proteins into 
a native conformation, since the antigen list contained 
PorA protein, which others have shown to induce high 
levels of bactericidal activity after refolding into liposomes.

In a similar two-dimensional immunoblotting study, 
Williams et al. [25] were able to utilize a panel of sera 
with known bactericidal activity and corresponding 

colonizing strains from a longitudinal study of meningo
coccal carriage in new students entering a university hall 
of residence. Individuals who became colonized with 
serogroup B meningococci developed bactericidal 
activity not only against the homologous colonizing 
strain but also against heterologous strains. Paired sera 
from colonized individuals were analyzed by immuno
proteomic analysis using both homologous and heterolo
gous OM preparations. Immunoblots were reacted with 
sera, at a standard dilution, taken from the individual 
pre-colonization and post-colonization. In each case the 
raised bactericidal antibody activity was always 
associated with increased reactivity, but the number and 
intensity of reactions to different meningococcal proteins 
varied between students and between strains. Proteins on 
the reference gel were matched to the immunoreactive 
spots, excised, digested with trypsin, subjected to MS/
MS, and identified by searching against a translation of 
the MC58 genome. This resulted in the identification of 
43 proteins, which included well-established antigens 
such as PorA and PorB, as well as novel proteins. Such 
proteins associated with the development of cross-
reactive immunity to serogroup B meningococcal infec
tion represent potential targets for the development of 
effective vaccines against serogroup B meningococcal 
infection [28]. Previous studies with both PorA and PorB 
produced as recombinant proteins and refolded into 
liposomes have demonstrated their ability to induce 
serum bactericidal activity against homologous strains 
[29,30]. Similar studies with the newly identified vaccine 
candidates will reveal their potential for inducing a 
potentially protective and cross-reacting immune response 
against serogroup B (and other serogroup) meningococci.

Conclusions
The sequencing of meningococcal genomes and the 
availability of the corresponding protein databases, com
bined with sensitive modern technology, have opened up 
exciting new avenues in meningococcal vaccine research. 
At least one vaccine based on information gleaned from 
proteomics and genomics is undergoing clinical trials 
[18] and others are currently being planned. It is likely 
that these technologies will continue to inform the field 
in the identification of proteins associated with the 
development of immunity and in the elucidation of their 
role in pathogenesis of meningococcal infection. 
Hopefully, these approaches will bear fruit in the search 
for an effective vaccine against a devastating infection.
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