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Abstract 

Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states—for exam-
ple, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition 
through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell 
states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour 
progression and therapeutic response. The advent of single-cell assays means these features can now be meas-
ured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships 
between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have 
opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell 
state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked 
by analysis of ‘bulk’ genomic data—constituted of the average signal from millions of cells. Single-cell technolo-
gies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying 
the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome 
Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid 
development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell 
plasticity.

Background
Our understanding of cancer biology will be advanced 
by resolving the heterogeneity of cancer cells and their 
relationship with the surrounding microenvironment. 
While a recent focus has been on the cells comprising 

the tumour microenvironment, evidence has been build-
ing on how cancer cell state plasticity impacts cancer 
evolution and clinical outcomes [1, 2]. Genetic factors 
contributing to cancer cell state plasticity are well estab-
lished, but evidence is emerging for the involvement of 
transcriptomic and epigenetic mechanisms. As such, 
cancer cell plasticity should be viewed as a consequence 
of genetic, transcriptional, and epigenetic mechanisms 
that promote the continuous switching of cell states [3]. 
Below, we explore the progress in artificial intelligence 
methods and how they can help us understand cancer 
cell state plasticity.
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Static models—creating a landscape of cell states
The data produced by single-cell technologies has sev-
eral unique features that present analytical challenges: its 
structure is highly dimensional, with information on thou-
sands of genes across thousands of cells, and it is typically 
sparse, with a gene-by-cell matrix containing ‘zeros’ for 
non-expressed genes. These features mean that traditional 
data visualisation and dimension reduction methods are 
unsuitable. Manifold learning has become a standard tool 
in analysing and visualising single-cell data, where a series 
of techniques use non-linear dimensionality reduction 
to project the high-dimension cellular landscape onto a 
low-dimensional “manifold” representation of each cell, 
retaining complex local relationships and the data’s global 
structure.

One of the most common manifold learning tech-
niques now applied to single-cell data is Uniform Manifold 
Approximation and Projection (UMAP). While UMAP is 
predominately used as a visualisation tool, it can improve 
secondary analyses, such as cell clustering and annota-
tions, which aid the investigation of possible unknown or 
uncharacterised cell states. Clustering has been a popular 
approach in identifying populations of cancer cell states 
as well as cell states of the tumour microenvironment [4]. 
However, applying clustering requires careful considera-
tion for downstream analyses, as different cell types can 
cluster together and, consequently, be annotated as a single 
cell type. The consequence is that biological information 
is masked, limiting secondary analyses on the phenotypic 
impact of cell state variation. A solution is annotating cells 
on a ‘per-cell’ basis, which solves many challenges but typi-
cally requires a reference map to align against.

Manifold learning techniques, conceptionally and practi-
cally, lend themselves well to the challenges of understand-
ing cancer cell state plasticity, as they can represent a cell 
landscape that is both nonlinear and continuous. Cancer 
plasticity models have used this information to investigate 
the landscape of cancer cell states by placing cells within 
an N-dimensional landscape. Based on the conceptualisa-
tion that cell states can transition, it is possible to analyse 
the genomic profiles of cells to predict their movement 
from one position in the landscape to another. This can be 
extended to consider spaces within this landscape where 
cells represent ‘stable states’ and the corridors between sta-
ble state positions represent transitional routes as cell states 
become plastic, transiting to another cell state [5].

Dynamic models—predicting the transitions of cell 
states
While static models present a snapshot of a cell’s genomic 
state at the time of capture, artificial intelligence mod-
els have been developed to infer the trajectories of cell 
states—i.e. estimate the future of a cell’s state. One of the 

first algorithms developed to infer trajectory, Monocle, 
utilises single-cell RNA-seq data to identify gene expres-
sion changes along a cell’s presumed transition between 
states, calculating a pseudotime trajectory for each cell. 
Since its release in 2014, new methods have been devel-
oped to improve the trajectory analysis of biological sys-
tems [6].

While trajectory inference allows us to predict the 
future state of cells, algorithms have been proposed to 
infer the probability or speed of cell state transition, 
often called cell velocity. Software such as Velocyto and 
scVelo, developed on top of the RNA velocity framework 
[7], model RNA maturation to predict the rate of cell-
state transitions. RNA velocity algorithms are frequently 
used to investigate cell-state trajectories of cancer cells, 
advancing our knowledge of tumour systems. One valu-
able contribution is lineage estimation, which is used to 
identify divergences in malignant cell lineages between 
cancer subtypes. Accurately identifying divergent lin-
eages can be a useful clinical tool to predict tumour-
specific features such as progression and treatment 
resistance [7]. Glioblastoma is a clear example of where 
cell state and dynamic lineage trajectories can be esti-
mated from single-cell data and used to infer cancer cell 
developmental processes arising from specific cell states 
[8].

Deep learning—opportunities to infer biological 
function
Implementing deep learning technologies, a subgroup of 
artificial intelligence, has improved the identification of 
cell states and estimation of state transitions [9]. An early 
challenge in applying deep learning algorithms was their 
ability to scale to the size and dimensionality of single-
cell data. With the improvement of software and hard-
ware and parallelisation of algorithms, this challenge has 
now largely been overcome, and the use of deep learning 
methods in profiling cancer cell state plasticity is a rap-
idly developing area.

It has been demonstrated that deep learning methods 
can be more accurate than static models for estimating 
the overall landscape of cells and, by extension, posi-
tioning each cell within that landscape. Autoencoder 
methods, originally used to perform quality control and 
clustering, have been extended to ‘deconvolute’ biologi-
cal signals from noise in single-cell data. Applied to prob-
lems of cancer cell state plasticity, autoencoder methods 
can construct manifold representations of the data and 
place cells within that space using a subset of the data 
representing specific biological features [9]. This is typi-
cally represented in the ‘bottleneck layer’, which captures 
the encoding pertinent to the biological feature, allowing 
these trained features to be projected onto independent 
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datasets [5, 9]. A related technique, archetypal analysis, 
is an alternative approach for identifying groups of cells 
that share the same ‘archetype’, which can be thought of 
as a cell state profile. In cancer, these methods can be 
trained to identify different cell archetypes representing 
a particular cell state or transition. As a result, we can 
avoid labelling cells and instead place them within a con-
tinuous landscape, enabling the investigation of cell state 
dynamics and identifying intermediate cell states. This is 
valuable, as we expect that, within a tumour, cancer cells 
may be transitioning between states, and by identify-
ing them, we can learn about the genomic programmes 
underlying cancer cell state plasticity.

With deep learning methods an evolving and promis-
ing field, one of the challenges is interpreting meaningful 
biological information from the analysis. Work address-
ing this issue is emerging, with knowledge-primed neu-
ral networks used to demonstrate the flow of genomic 
information in cell states and improve interpretability 
[10]. In knowledge-primed neural networks, each node 
within the model corresponds to a gene or protein, and 
each edge corresponds to a regulatory relationship pre-
viously observed in annotated data. Weightings can be 
applied based on biological priors, such as estimating 
the regulatory importance—for example, how important 
is a transcription factor or signalling protein to the bio-
logical problem? This approach has been used to investi-
gate tumour systems where cancer cell state plasticity is 
known to underly tumour heterogeneity [10].

Conclusions
Single-cell genomics provides high-resolution and high-
dimensional characterisation of heterogeneous cells in 
a tumour. Combined with artificial intelligence, we now 
have the potential to identify cancer cell states as well 
as infer their plasticity between states. Because of the 
depth of genomic data available, accurately identifying 
these states and state transitions and separating the rel-
evant biological signals from noise provides a powerful 
approach to determining the cause of cancer cell plas-
ticity and the consequence of state changes. Given the 
impact of cell plasticity on cancer cell phenotypes and 
behaviours, this knowledge will inform the development 
of treatment strategies tailored to the unique character-
istics of a patient’s cancer cell states, improving outcomes 
for cancer patients and contributing to an improved 
understanding of cancer heterogeneity.
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