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Abstract 

Background Type 2 diabetes (T2D) has reached epidemic proportions globally, including in Africa. However, 
molecular studies to understand the pathophysiology of T2D remain scarce outside Europe and North America. The 
aims of this study are to use an untargeted metabolomics approach to identify: (a) metabolites that are differentially 
expressed between individuals with and without T2D and (b) a metabolic signature associated with T2D in a popula‑
tion of Sub‑Saharan Africa (SSA).

Methods A total of 580 adult Nigerians from the Africa America Diabetes Mellitus (AADM) study were studied. The 
discovery study included 310 individuals (210 without T2D, 100 with T2D). Metabolites in plasma were assessed 
by reverse phase, ultra‑performance liquid chromatography and mass spectrometry (RP)/UPLC‑MS/MS methods 
on the Metabolon Platform. Welch’s two‑sample t‑test was used to identify differentially expressed metabolites 
(DEMs), followed by the construction of a biomarker panel using a random forest (RF) algorithm. The biomarker panel 
was evaluated in a replication sample of 270 individuals (110 without T2D and 160 with T2D) from the same study.

Results Untargeted metabolomic analyses revealed 280 DEMs between individuals with and without T2D. The DEMs 
predominantly belonged to the lipid (51%, 142/280), amino acid (21%, 59/280), xenobiotics (13%, 35/280), carbo‑
hydrate (4%, 10/280) and nucleotide (4%, 10/280) super pathways. At the sub‑pathway level, glycolysis, free fatty 
acid, bile metabolism, and branched chain amino acid catabolism were altered in T2D individuals. A 10‑metabolite 
biomarker panel including glucose, gluconate, mannose, mannonate, 1,5‑anhydroglucitol, fructose, fructosyl‑lysine, 
1‑carboxylethylleucine, metformin, and methyl‑glucopyranoside predicted T2D with an area under the curve (AUC) 
of 0.924 (95% CI: 0.845–0.966) and a predicted accuracy of 89.3%. The panel was validated with a similar AUC (0.935, 
95% CI 0.906–0.958) in the replication cohort. The 10 metabolites in the biomarker panel correlated significantly 
with several T2D‑related glycemic indices, including Hba1C, insulin resistance (HOMA‑IR), and diabetes duration.

Conclusions We demonstrate that metabolomic dysregulation associated with T2D in Nigerians affects multiple 
processes, including glycolysis, free fatty acid and bile metabolism, and branched chain amino acid catabolism. Our 
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study replicated previous findings in other populations and identified a metabolic signature that could be used 
as a biomarker panel of T2D risk and glycemic control thus enhancing our knowledge of molecular pathophysiologic 
changes in T2D. The metabolomics dataset generated in this study represents an invaluable addition to publicly avail‑
able multi‑omics data on understudied African ancestry populations.

Keywords Metabolomics, Type 2 diabetes, Africans, Biomarkers

Background
Type 2 diabetes (T2D) is a public health threat, affecting 
463 million people worldwide in 2019 and is projected to 
affect 700 million by 2045 [1]. Low- and middle-income 
countries are expected to see the largest increase in T2D 
incidence in the coming years [1, 2]. For example, Sub-
Saharan Africa (SSA) is predicted to have the highest 
increase of any geographic region at 129%, reaching 55 
million by 2045 [3]. The increase appears to be driven by 
the sustained increase in obesity prevalence [4]. The twin 
epidemiology of T2D and obesity termed “diabesity” has 
been associated with sedentary lifestyles, calorie-dense 
diets, and environmental factors in high-income coun-
tries [5–7]. Epidemiology studies in SSA have linked the 
increase in T2D with the growing adoption of a western-
ized lifestyle [8–10]. However, studies to understand the 
cellular and molecular basis of T2D in SSA are scarce. 
Molecular mechanisms such as oxidative stress, inflam-
mation, or shortening of telomeres have been associated 
with the pathophysiology of T2D, either contributing to 
or co-occurring with impairment in glucose metabolism 
pathways [11–17]. These findings emerged from stud-
ies that used a variety of omics technologies including 
genomics, transcriptomics, proteomics, epigenomics, 
and most recently metabolomics [18–22].

Metabolomics is the study of the metabolism and 
metabolites in an organism. It includes the detection of 
thousands of small endogenous and exogenous molecules 
(< 1000  Da) in biofluids and other biospecimens [23]. 
Metabolomics can connect genes and environmental fac-
tors by capturing the output of the genome but also the 
input from the environment including drugs and food 
[24]. The ability of metabolomics to systematically cap-
ture endogenous and exogenous metabolites makes it an 
attractive investigative tool to help understand the rela-
tive roles of multiple factors in disease states. As such, 
the metabolome is considered a better reflection of a 
given phenotype than data from other omics approaches 
[24, 25]. Additionally, it has been proposed that metab-
olomics can capture gene-environment interactions, 
a component of the missing heritability observed in 
genomic studies [26]. Against this background, metabo-
lomic studies have been conducted to better understand 
the pathophysiology of various disorders including can-
cer, infectious diseases, and cardiometabolic diseases 

[27–33]. These studies have been predominantly con-
ducted in model organisms (primarily murine models) or 
in human populations from Europe, North America, and 
Southeast Asia [34–39]. Studies of understudied popula-
tions (including populations from Africa) have the poten-
tial to provide insights into metabolic pathways that may 
be differentially involved in molecular mechanisms of 
various diseases, including T2D.

In African populations, metabolomic studies have been 
overwhelmingly used in infectious diseases such as tuber-
culosis for novel biomarker discovery, disease characteri-
zation or to understand mechanistic processes involved 
in disease development and progression [40–44]. Outside 
of infectious diseases, metabolomic studies in Africa have 
been performed in the context of pediatric malnutrition 
and newborn screening [45, 46]. Few studies in SSA have 
attempted to investigate metabolic signatures associated 
with metabolic diseases such as obesity and T2D [47–
49]. For example, Dugas and co-authors compared serum 
metabolic profiles of 69 African American women with 
97 South African and 82 Ghanaian women, and found a 
shared obesity-associated amino acid metabolite profile 
between African Americans and South Africans as well 
as site-specific obesity-associated metabolites, suggest-
ing the effect of the local environment on the phenotype 
[48]. A metabolomic study of glucose tolerance and T2D 
in a prospective cohort of 75 Black South African women 
showed that certain metabolite patterns in lysophospho-
lipid metabolism, bile acid pool, and amino acid catabo-
lism can be useful to identify and monitor T2D risk prior 
to disease onset [49]. These studies were limited by two 
main factors: small sample size and small metabolite 
panels.

To our knowledge, no metabolomics study has been 
conducted in Nigeria despite the high burden of predia-
betes and diabetes in the last decade [50, 51]. Addition-
ally, one of our previous studies in Nigerians has reported 
that patients with T2D have an atypical metabolic pres-
entation characterized by both insulin resistance and 
reduced insulin secretion [52], but the molecular char-
acteristics that may be involved in these changes are 
unknown. Thus, the implementation of metabolomics 
study in this population could help understand observed 
metabolic features. Also, studying Nigerians, a popula-
tion in nutritional transition like populations in many 
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other low-to-moderate income countries with similar 
environmental factors, will give us not only a comprehen-
sive snapshot of the metabolic changes associated with 
T2D but will also provide data for comparison with simi-
lar populations in SSA.

In the present study, we conducted an untargeted 
metabolomic study in a cohort of well-phenotyped adult 
Nigerians from the long-running Africa America Dia-
betes Mellitus (AADM) Study. Using data obtained on 
over 1000 plasma metabolites profiled on the Metabolon 
platform, we compared the metabolomic profiles in indi-
viduals with and without T2D. Our goals included the 
identification of key metabolites and metabolic pathways 
associated with T2D. Further, we searched for metabolic 
signature associated with T2D in independent discov-
ery and replication samples. Findings from this largest 
metabolomic study in Africa hold the potential to provid-
ing insights into the metabolic dysregulation associated 
with T2D.

Methods
Study participants
The parent study, the Africa America Diabetes Mellitus 
study (AADM), is a long-standing genetic epidemiology 
study of T2D and other cardiometabolic traits, enrolled 
participants from multiple medical centers in Nigeria, 
Ghana, and Kenya [53]. Participants in this metabo-
lomics study were selected from the AADM longitudinal 
sub-study of 650 participants enrolled from a single study 
site in Ibadan, Nigeria, for deep phenotyping in order 
to better characterize multiple cardiometabolic traits in 
an urban setting [54]. A sample of 310 participants was 
randomly selected for the discovery sample without 
conditioning on any specific phenotype. The remain-
ing 270 participants who had plasma samples that met 
the requirements of the metabolomics workflow were 
studied as the replication study. Most of the partici-
pants (96.5%) included in the present were members of 
the Yoruba ethnic group. Demographic information was 
collected using standardized questionnaires. Anthro-
pometric measurements, medical history and clinical 
biomarkers were obtained by trained study staff dur-
ing a clinic visit. Weight was measured in light clothes 
on an electronic scale to the nearest 0.1  kg and height 
was measured with a stadiometer to the nearest 0.1 cm. 
Body mass index (BMI) was computed as weight (kg) 
divided by the square of height in meters  (m2). T2D sta-
tus was determined using the American Diabetes Asso-
ciation (ADA) criteria of fasting plasma glucose cut-off 
of ≥ 7.0 mmol/L (126 mg/dL), combined with either a 2-h 
post load value of ≥ 11.1 mmol/L (200 mg/dL) on an oral 
glucose tolerance test (OGTT) or with taking glucose-
lowering medication as prescribed by a physician. Blood 

samples were drawn from each participant after at least 
an 8-h overnight fast. Clinical chemistry (including glu-
cose, insulin, and lipids) was assayed on fasting samples 
using COBAS® autoanalyzer systems (Roche Diagnos-
tics, Indianapolis, Indiana) following the manufacturer’s 
instructions. Homeostatic model assessment for insulin 
resistance (HOMA—IR) was calculated using the follow-
ing formula: fasting glucose (mmol/L) X fasting insulin 
(µU/L) / 22.5).

Untargeted plasma metabolomics
Sample preparation and Ultrahigh Performance Liquid 
Chromatography‑Tandem Mass Spectroscopy (UPLC‑MS/MS)
Untargeted metabolomic data were obtained using well 
established protocols at Metabolon Inc. (Metabolon, Inc., 
Morrisville, NC, USA) as previously described [55, 56]. 
Prior to sample extraction, several recovery standards 
were added to samples for quality control (QC) purposes. 
All plasma samples (both the discovery and replication 
samples) were treated with aqueous methanol to remove 
proteins; resulting extracts were divided into 5 fractions: 
two for analysis by two separate reverse phase (RP), Ultra 
Performance, Liquid Chromatography (UPLC), Mass 
Spectrometry (MS), (RP)/UPLC-MS/MS methods with 
positive ion mode electrospray ionization (ESI), one for 
analysis by RP/UPLC-MS/MS with negative ion mode 
ESI, one for analysis by hydrophilic interaction liquid 
chromatography (HILIC), HILIC/UPLC-MS/MS with 
negative ion mode ESI, and one fraction reserved for 
backup. All methods used a Waters ACQUITY ultra-per-
formance liquid chromatography (UPLC) and a Thermo 
Scientific Q-Exactive high resolution/accurate mass 
spectrometer interfaced with a heated electrospray ioni-
zation (HESI-II) source and Orbitrap mass analyzer oper-
ated at 35,000 mass resolution. The detailed description 
of the liquid chromatography-gas chromatography (LC-
GC) was previously published [55–57].

Data extraction, compound identification and curation
Raw data were extracted, peak-identified and QC pro-
cessed using Metabolon’s hardware and software. Com-
pounds were identified by comparison to library entries 
of purified standards or recurrent unknown entities. 
Metabolon maintains a library based on authenticated 
standards that contains the retention time/index (RI), 
mass to charge ratio (m/z), and chromatographic data 
(including MS/MS spectral data) on all molecules present 
in the library. Furthermore, biochemical identifications 
are based on three criteria: retention index within a nar-
row RI window of the proposed identification, accurate 
mass match to the library ± 10 ppm, and the MS/MS for-
ward and reverse scores between the experimental data 
and authentic standards. The MS/MS scores are based 
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on a comparison of the ions present in the experimen-
tal spectrum to the ions present in the library spectrum. 
While there may be similarities between these molecules 
based on one of these factors, the use of all three data 
points can be utilized to distinguish and differentiate 
biochemicals. More than 3300 commercially available 
purified standard compounds have been acquired and 
registered for analysis for determination of their analyti-
cal characteristics. Additional mass spectral entries have 
been created for structurally unnamed biochemicals, 
which have been identified by virtue of their recurrent 
nature (both chromatographic and mass spectral).

A variety of curation procedures were carried out to 
ensure that a high-quality dataset was available for sta-
tistical analysis and data interpretation. The QC and 
curation processes were designed to ensure accurate and 
consistent identification of true chemical entities, and to 
remove those representing system artifacts, mis-assign-
ments, and background noise. Metabolon data analysts 
use proprietary visualization and interpretation software 
to confirm the consistency of peak identification among 
the various samples. Library matches for each compound 
were checked for each sample and corrected if necessary.

Peaks were quantified using the area under the receiver 
operating characteristic (ROC) curve (AUC). For studies 
spanning multiple days, a data normalization step was 
performed to correct for variation resulting from instru-
ment inter-day tuning differences. Essentially, each com-
pound was corrected in run-day blocks by registering the 
medians to equal one (1.00) and normalizing each data 
point proportionately. After batch-normalization of the 
data, missing values were imputed using the minimum 
observed method i.e., for each metabolite, the missing 
values were replaced with its observed minimum. This 
imputation method was chosen based on simulation 
studies comparing it to other methods based on type 
I error and power for the two-sample t-test. The batch-
normalized imputed data was then transformed using the 
natural log and used for downstream analyses [58]

Statistical analysis
Anthropometric and clinical variables were analyzed 
using SAS/STAT  software (version 9.4). Most anthro-
pometric and clinical variables in this study are not 
normally distributed and are therefore summarized by 
medians and interquartile ranges (IQR). To compare 
medians between individuals with T2D and those with-
out T2D, we performed a non-parametric test (the two-
sample median test) using the NPAR1WAY procedure 
in SAS.

To identify differentially expressed metabolites (DEMs) 
between individuals with T2D and those without T2D, 
we conducted Welch’s two-sample t-test with nominal 

significance defined as p < 0.05 and adjusted significance 
for multiple comparisons as a false discovery rate (FDR) 
q < 0.10. We also conducted a classification test using a 
random forest (RF) algorithm to identify a set of metabo-
lites/biomarkers that can accurately classify individuals 
with and without T2D. RF is an unbiased and super-
vised machine learning method based on decision trees 
[59]. The multivariable biomarker discovery analysis was 
performed in MetaboAnalyst 5.0 [60]. All other statisti-
cal analyses and data visualizations were performed in 
ArrayStudio, JMP or the R statistical environment, R 
package (version 4.0.5) (http:// cran.r- proje ct. org/) [61]

For the multivariable biomarker discovery analysis, the 
filtered, batch-normalized, imputed and log transformed 
peak intensity data table was uploaded into Metabo-
Analyst 5.0. [58]. T2D status (Yes/No) was used as the 
binomial outcome and individuals without T2D as the 
reference category. Receiver operating characteristics 
(ROC) curves were generated by Monte Carlo cross-
validation using balanced subsampling. In each itera-
tion, 2/3 of the samples were used to evaluate feature 
importance and the remaining 1/3 were used to validate 
the models generated. The top-ranking features based 
on importance were used to construct the classification 
models. The process is repeated several times to calcu-
late the performance and confidence intervals of each 
model. Using the predictive accuracy of the biomarker 
models generated, we retained the biomarker model 
with the highest predictive accuracy for downstream 
analyses. For the evaluation of the biomarker model 
retained in the discovery phase, we used the ROC curve-
based model creation and evaluation option of Metabo-
Analyst 5.0 which permits the manual selection of any 
combination of features to create a biomarker model. 
We manually selected the metabolites included in the 
biomarker model retained in the discovery phase and 
similarly used the RF algorithm to evaluate the ability 
of these biomarkers to predict T2D cases and controls 
among the 270 samples of the replication cohort. To 
assess the relationships between metabolites in the iden-
tified biomarker panel and key clinical indexes of T2D, 
we conducted a correlation analysis (Spearman correla-
tion) using SAS/STAT  (version 9.4).

Results
Characteristics of the participants in the discovery study
Individuals with T2D were significantly older and had 
a larger waist circumference than those without T2D 
(Table  1). Markers of glycemic status, including plasma 
glucose, insulin, HOMA-IR, and HbA1c, were sig-
nificantly higher in individuals with T2D compared to 
those without T2D, despite 97% of individuals with T2D 
being on treatment with oral hypoglycemic agents. This 

http://cran.r-project.org/


Page 5 of 18Doumatey et al. Genome Medicine           (2024) 16:38  

finding indicates poor glycemic control in these individ-
uals (Table  1, Additional file  1 (Table  S1A)). Metformin 
(Met) and sulfonylureas (SU) were the commonly used 
treatments either as monotherapy (Met only or SU only) 
or bitherapy (Met + SU) (Additional file  1 (Table  S1A)). 
Of the lipids examined, triglycerides levels were signifi-
cantly higher in T2D cases than controls (Table 1).

Overall profiling of differently expressed metabolites 
(DEM) in individuals with T2D
A total of 1116 metabolites or compounds of known 
identity were identified in the 310 plasma samples of the 
discovery phase samples (Additional file 2 (Table S2A)). 
At a nominal point-wise significance level of 0.05, 301 
metabolites were significantly different between individu-
als with and without T2D (Additional file 2 (Table S2B)). 
After adjusting for multiple testing (FDR < 0.1), 280 out 
of the 301 metabolites remained differentially expressed 
in T2D individuals compared with those without T2D, 
including 156 metabolites that were increased and 124 
that were decreased in T2D (Fig.  1A, Additional file  2 
(Table  S2C)). Overall, these metabolites predominantly 
belong to the super pathway lipids (51%), amino acids 
(21%), xenobiotics (13%), carbohydrates (4%) and nucleo-
tides (4%) (Fig. 1B).

The top metabolites differentially expressed in indi-
viduals with T2D sorted based on fold change (FC) and 
FDR < 0.10 are shown in Table  2 (DEMs upregulated 

with respect to T2D) and Table 3 (DEMs downregulated 
with respect to T2D). Glucose was increased (FC = 1.56) 
while key components of glucose utilization, especially 
glycolysis, gluconeogenesis, and pyruvate metabolism 
including 1,5-anhydroglucitol (1,5 AG), were decreased 
(FC = 0.52) in individuals with T2D (Table 3, Fig. 2). As 
expected, anti-diabetic drugs (classified as xenobiot-
ics) used by most treated participants with T2D (met-
formin, FC = 20.27; pioglitazone, FC = 6.12; gliclazide, 
FC = 2.58) (Table  2, Additional file  1 (Table  S1B)) were 
among the DEMs. There was a marginally higher lactate 
level (a marker of glucose utilization) in individuals with 
T2D (Fig. 2). Additionally, mannose (FC = 1.98) and fruc-
tose (FC = 1.62) were both increased in individuals with 
T2D. Fructose can be derived from the diet or be pro-
duced in  vivo from glucose through the polyol pathway 
(Fig.  2). 2-hydroxybutyrate, a known insulin resistance 
marker, was also significantly higher in individuals with 
T2D compared with those without T2D (Fig. 2). Several 
of the top DEMs were associated with different lipids 
sub-pathways including fatty acid metabolism (medium 
chain fatty acid [5-dodecenoate] and long chain monoun-
saturated fatty acid [myristoleate, palmitoleate]), as well 
as progestin and pregnenolone steroids, which were all 
decreased in T2D (Tables 2 and 3).

In the replication study, we evaluated DEMs in T2D 
in an additional 270 participants from the AADM study. 
Like in the discovery cohort, the participants with T2D 

Table 1 Anthropometric and clinical characteristics of the discovery cohort

Data is displayed as median (interquartile range)

Ratio compared by chi-square test

BMI Body mass index, PFM Percentage fat mass, WHR Waist-to-hip ratio, HbA1c Hemoglobin A1c, TG Triglycerides, HDL High density lipoproteins, LDL Low density 
lipoproteins, T2D Individuals with T2D, Non-T2D Individuals without T2D
* Medians were compared using the two-sample median test
¥ denotes statistically different medians

Variable Overall (n = 310) T2D (n = 100) Non-T2D (n = 210) P-value*

Age (Years) 56.2 (17.7) 60.2 (11.9) 54.4(18.6) 0.0007¥

% Male 22.6 18 24.8 0.18

BMI (kg/m2) 30.5 (8.77) 32.6 (9.02) 30.2 (8.8) 0.15

PFM 38.9 (12.9) 40.5 (12.9) 38.1 (13.0) 0.1

Waist circumference (cm) 99.0 (16.0) 101.5 (16.00) 98.0 (16.50) 0.02¥

WHR 0.96 (0.07) 0.96 (0.10) 0.95 (0.08) 0.23

Glucose (mg/dl) 87.0 (21.0) 118.5 (62.00) 82.5 (13.00) < 0.0001¥

Insulin (μU/mL) 7.8 (6.8) 9.2 (7.5) 7.2 (5.90) 0.008¥

HOMA‑IR 1. 7 (1.9) 2.7 (3.00) 1.5 (1.3) < 0.0001¥

Hba1c (%) 5.6 (1.1) 7.4 (2.6) 5.4 (0.50) < 0.0001¥

Total cholesterol (mg/dl) 193.0 (73) 200.0 (75.5) 191.5 (71.5) 0.17

HDL‑Cholesterol (mg/dl) 49.8 (20.4) 50.6 (23.9) 48.1 (19.8) 0.22

LDL‑Cholesterol (mg/dl) 120.0 (64.0) 119.0 (60.5) 120.5 (66.0) 0.87

Triglycerides (mg/dl) 91.0 (47.0) 105.5 (65.5) 86.0 (45.5) < 0.0001¥
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in the replication cohort were older and had significantly 
higher glucose, HOMA-IR, HbA1c, and insulin than 
those without T2D (Additional file  1 (Table  S3)). The 
total number of metabolites identified in the replication 
cohort was slightly lower compared to the total number 
of metabolites identified in the discovery phase cohort 
(1071 vs. 1116 metabolites) while DEMs is higher (343 
vs. 280) (Additional file  3 (Table  S4A/B)). The majority 
of DEMs belong to the super pathways of lipids (51%), 
amino acids (20%), xenobiotics (11.1%) and carbohy-
drates (4.6%). The super pathways represented by the 
DEMs were similar in both discovery and replication 
cohorts (Additional file  3 (Table  S4C), Additional file  4 
(Fig S1)). One hundred-forty-one (141) of the 280 DEMs 
identified in the discovery cohort were also DEMs in the 
replication cohort (Additional file 3 (Table S4D)).

Fatty acid and bile acid metabolisms are among altered 
pathways in T2D
Overall, metabolites in the lipids super pathway were 
among the most statistically significant DEMs between 
individuals with T2D and those without T2D. These 
metabolites include plasma free fatty acids (FFA) such 
as stearate (FC = 1.13), margarate (FC = 1.20), adrenate 
(FC = 1.22), and palmitate (nominally higher in T2D, 
FC = 1.05, p = 0.05) that were higher in individuals with 
T2D compared with those without T2D (Fig. 3A, Addi-
tional file  2 (Table  S2D)). Additionally, both diacylglyc-
erols and monoacylglycerols, downstream products of 
triglyceride degradation, were significantly higher in indi-
viduals with T2D (Fig. 3B, Additional file 2 (Table S2D)). 
To further investigate the source of the high levels of 
FFA, we analyzed by-products of fatty acid oxidation, 

especially carnitine derivatives that have been reported 
to be high in T2D cases in other populations. We found 
no statistical differences in short-chain acyl carnitines 
between the two groups in this study (Additional file  4 
(Fig S2)). Additionally, monounsaturated and polyun-
saturated acyl carnitines were generally lower in indi-
viduals with T2D compared to those without T2D 
(5-dodecenoylcarnitine, FC = 0.62; arachidonoylcarni-
tine, FC = 0.77) (Table  2, Additional file  2 (Table  S2D)). 
Interestingly, ω-oxidation, an alternative to β-oxidation, 
appeared to be increased. In fact, ω-oxidation end prod-
ucts such as 3-hydroxyadipate (FC = 1.36) and 3-hydroxy-
dodecanedioate (FC = 1.29) were higher in T2D cases 
compared to controls (Additional file  2 (Table  S2D)). 
The largely diet-derived eicosapentaenoate (EPA) and 
docosahexaenoate (DHA) were not significantly higher in 
T2D individuals (Fig. 3A).

Bile acids, also members of the lipid super pathway and 
known for their associations with insulin resistance and 
the development of T2D, were significantly increased in 
individuals with T2D compared to those without T2D. 
These bile acids include the primary bile acids glycocho-
late and taurocholate as well as the secondary bile acids 
deoxycholate, glycodeoxycholate, and taurodeoxycholate 
(Fig. 4).

Branched chain amino acids (BCAA) are significantly 
increased in T2D
Aliphatic amino acid derivatives such as N-methyl pro-
line and N–N-dimethylalanine were decreased in T2D 
(Table  3) while branched-chain amino acids (BCAA) 
leucine, isoleucine, and valine were significantly 
higher in individuals with T2D than in those without 

Fig. 1 Classification of differentially expressed metabolites in T2D by super pathways. A Pie chart of super pathways associated with differentially 
expressed metabolites. B Number of differentially expressed metabolites in T2D by super pathways. Y‑axis represents the number of metabolites
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T2D (Fig. 5). High plasma levels of BCAA could reflect 
dietary intake or muscle protein catabolism. Along-
side these BCAA changes, we observed higher levels 
in T2D cases compared to controls of metabolites, 
mainly keto-acids, found downstream of the BCAA 
in their catabolism pathways: 4-methyl-2-oxopen-
tanoate, 3-methyl-2-oxovalerate, and 3-methyl-2-ox-
obutyrate. Other catabolic BCAA products including 
the C2/3 and C5 acylcarnitines (e.g., propionylcarni-
tine, 2-methylbutyrylcarnitine and isovalerylcarnitine) 
were not increased in T2D (Additional file  4 (Fig S2) 
and Additional file 2 (Table 2D)), indicating that only a 
subset of products of BCAA catabolism are increased 
in T2D.

Identification of a T2D metabolic signature
To identify biomarkers that can classify T2D cases and 
controls, we used random forest analysis followed by a 
multivariable exploratory ROC curve analysis with auto-
mated feature selection (Additional file  4 (Fig S3)). We 
found that a biomarker model consisting of 10 metabo-
lites outperformed all other models with AUC = 0.924 
(95% CI: [0.845–0.966]) (Fig. 6A) and an overall predicted 
average accuracy of 89.3% (Fig. 6B, Additional file 4 (Fig 
S4). In addition to expected classifying metabolites (such 
as glucose and metformin), the metabolites in the impor-
tance plot (Table  4, Fig.  6C) included several carbohy-
drates (mannose, 1,5- anhydroglucitol, and fructose) that 
were among the most differentially expressed metabolites 

Table 2 The most significantly upregulated metabolites in T2D based on fold change

Super Pathway Sub Pathway Biochemical Name KEGG HMDB FC (T2D 
vs non-
T2D)

p-value q-value

Xenobiotics Drug—Metabolic glyburide C07022 HMDB0015151 1.55 0.0127 0.0482

Carbohydrate Glycolysis, Gluconeogenesis, 
and Pyruvate Metabolism

glucose C00031 HMDB0000122 1.56 0.0000 0.0000

Lipid Fatty Acid Metabolism (Acyl Carni‑
tine, Hydroxy)

(R)‑3‑hydroxybutyrylcarnitine HMDB0013127 1.56 0.0005 0.0057

Amino Acid Lysine Metabolism Fructosyl‑lysine HMDB0034879 1.59 0.0000 0.0000

Xenobiotics Food Component/Plant gluconate C00257 HMDB0000625 1.60 0.0000 0.0000

Xenobiotics Food Component/Plant ferulic acid 4‑sulfate HMDB0029200 1.60 0.0107 0.0446

Lipid Fatty Acid, Monohydroxy 5‑hydroxyhexanoate HMDB0000525 1.61 0.0002 0.0034

Carbohydrate Fructose, Mannose and Galactose 
Metabolism

fructose C00095 HMDB0000660 1.62 0.0000 0.0000

Amino Acid Leucine, Isoleucine and Valine 
Metabolism

1‑carboxyethylisoleucine 1.64 0.0000 0.0000

Amino Acid Tyrosine Metabolism m‑tyramine sulfate 1.66 0.0286 0.0777

Cofactors and Vitamins Hemoglobin and Porphyrin 
Metabolism

L‑urobilin C05793 HMDB0004159 1.81 0.0011 0.0093

Xenobiotics Food Component/Plant mannonate 1.88 0.0000 0.0000

Lipid Secondary Bile Acid Metabolism glycodeoxycholate C05464 HMDB00631 1.90 0.0112 0.0453

Carbohydrate Fructose, Mannose and Galactose 
Metabolism

mannose C00159 HMDB0000169 1.98 0.0000 0.0000

Xenobiotics Xanthine Metabolism 1,7‑dimethylurate C16356 HMDB0011103 2.00 0.0081 0.0379

Lipid Primary Bile Acid Metabolism glycocholate C01921 HMDB0000138 2.01 0.0168 0.0563

Xenobiotics Xanthine Metabolism 1,3,7‑trimethylurate C16361 HMDB0002123 2.02 0.0246 0.0725

Lipid Secondary Bile Acid Metabolism deoxycholic acid 12‑sulfate 2.05 0.0003 0.0039

Lipid Secondary Bile Acid Metabolism taurodeoxycholate C05463 HMDB0000896 2.54 0.0027 0.0180

Xenobiotics Drug—Metabolic Gliclazide 2.58 0.0026 0.0173

Xenobiotics Chemical 1,2,3‑benzenetriol sulfate (2) HMDB0060018 2.66 0.0318 0.0817

Xenobiotics Food Component/Plant saccharin C12283 HMDB0029723 3.34 0.0350 0.0890

Lipid Primary Bile Acid Metabolism taurocholate C05122 HMDB0000036 4.51 0.0172 0.0571

Xenobiotics Drug—Metabolic pioglitazone C07675 HMDB0015264 6.12 0.0049 0.0270

Xenobiotics Drug—Metabolic metformin C07151 HMDB0001921 20.27 0.0000 0.0000
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Table 3 The most significantly downregulated metabolites in T2D based on fold change

Super Pathway Sub Pathway Biochemical Name KEGG HMDB FC (T2D 
vs non-
T2D)

p-value q-value

Xenobiotics Food Component/Plant ethyl alpha‑glucopyranoside HMDB0029968 0.30 0.0008 0.0070

Xenobiotics Food Component/Plant (2,4 or 2,5)‑dimethylphenol 
sulfate

0.39 0.0338 0.0862

Partially Characterized 
Molecules

Partially Characterized 
Molecules

branched‑chain, straight‑
chain, or cyclopropyl 10:1 
fatty acid (1)

0.51 0.0000 0.0000

Carbohydrate Glycolysis, Gluconeogenesis, 
and Pyruvate Metabolism

1,5‑anhydroglucitol (1,5‑AG) C07326 HMDB0002712 0.52 0.0000 0.0000

Lipid Progestin Steroids 5alpha‑pregnan‑
3beta,20alpha‑diol mono‑
sulfate (2)

0.55 0.0085 0.0389

Lipid Progestin Steroids 5alpha‑pregnan‑3beta‑ol,20‑
one sulfate

0.58 0.0255 0.0743

Lipid Progestin Steroids 5alpha‑pregnan‑
3beta,20beta‑diol monosul‑
fate (1)

HMDB0240580 0.60 0.0159 0.0548

Amino Acid Urea cycle; Arginine and Pro‑
line Metabolism

N‑methylproline HMDB0094696 0.61 0.0170 0.0568

Lipid Fatty Acid Metabolism (Acyl 
Carnitine, Monounsaturated)

5‑dodecenoylcarnitine 
(C12:1)

HMDB13326 0.62 0.0000 0.0005

Lipid Progestin Steroids pregnanediol‑3‑glucuronide HMDB0010318 0.62 0.0066 0.0332

Lipid Progestin Steroids pregnanolone/allopregna‑
nolone sulfate

C05480 HMDB0240591 0.62 0.0209 0.0665

Lipid Pregnenolone Steroids 17alpha‑hydroxypregna‑
nolone glucuronide

0.69 0.0024 0.0170

Nucleotide Pyrimidine Metabolism, 
Orotate containing

dihydroorotate C00337 HMDB03349 0.69 0.0035 0.0220

Lipid Androgenic Steroids 5alpha‑androstan‑
3alpha,17alpha‑diol mono‑
sulfate

HMDB0000412 0.69 0.0090 0.0399

Partially Characterized 
Molecules

Partially Characterized 
Molecules

glutamine_degradant 0.70 0.0000 0.0008

Lipid Medium Chain Fatty Acid 5‑dodecenoate (12:1n7) HMDB0000529 0.71 0.0003 0.0039

Lipid Fatty Acid, Dicarboxylate decadienedioic acid (C10:2‑
DC)

0.71 0.0399 0.0971

Lipid Long Chain Monounsatu‑
rated Fatty Acid

myristoleate (14:1n5) C08322 HMDB0002000 0.72 0.0004 0.0047

Amino Acid Alanine and Aspartate 
Metabolism

N, N‑dimethylalanine 0.73 0.0000 0.0007

Peptide Gamma‑glutamyl Amino 
Acid

gamma‑glutamylglutamine C05283 HMDB0011738 0.73 0.0143 0.0510

Lipid Long Chain Monounsatu‑
rated Fatty Acid

palmitoleate (16:1n7) C08362 HMDB0003229 0.73 0.0218 0.0680

Partially Characterized 
Molecules

Partially Characterized 
Molecules

bilirubin degradation prod‑
uct, C17H20N2O5 (2)

0.74 0.0129 0.0485

Lipid Fatty Acid Metabolism (Acyl 
Carnitine, Dicarboxylate)

pimeloylcarnitine/3‑methyl‑
adipoylcarnitine (C7‑DC)

0.74 0.0178 0.0582

Nucleotide Purine Metabolism, Adenine 
containing

adenosine 5’‑diphosphate 
(ADP)

C00008 HMDB0001341 0.74 0.0222 0.0688

Amino Acid Glutamate Metabolism glutamine C00064 HMDB0000641 0.75 0.0047 0.0270
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Fig. 2 Box Plots of differentially expressed metabolites in the carbohydrate super pathway (glucose utilization) and associated metabolism 
pathways

Fig. 3 Examples of differentially expressed lipids in T2D and associated metabolism pathways. A. DEMs in fatty acid metabolism pathways (free 
fatty acids: from upper left to lower left, palmitate, eicosapentaenoate (EPA;20:5n3), stearate, docohexaenoate (DHA;22:6n3), 3‑hydroxybutyrate 
(BHBA); far right: fatty acid metabolism implicating FFA differentially expressed in this study. B. Examples of differentially expressed 
monoacylglycerols and diacylglycerols (products of lipolysis) in T2D. Monoacylglycerols: Left to right, 1‑linoleoylglycerol (18:2); 2‑linoleoylglycerol 
(18:2); 1‑linoleoyglycerol (18:3). Diacylglycerols: Left to right, linoleoyl‑ linoleoyl‑glycerol (18:2/18:2); oleoyl‑ oleoyl‑glycerol (18:1/18:1); 
oleoyl‑linoleoyl‑glycerol (18:1/18:2)
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between T2D cases and controls. Amino acids and xeno-
biotics were also among the biomarkers identified in this 
study (Table 4, Fig. 6C). Eight out of the 10 metabolites in 
the biomarker panel were higher in individuals with T2D 
compared with those without T2D (Fig. 6C). Two of the 
biomarkers, glucose and 1,5-anhydroglucitol, are estab-
lished T2D biomarkers. In a sub-analysis, we removed 
from the panel of 10 metabolites metformin (because this 
drug/xenobiotic will not always be the treatment for all 
T2D cases), glucose (a diagnostic marker of T2D) and 
1,5- anhydroglucitol (an established biomarker of T2D) 
and reassessed the discriminatory power of the restricted 
7-metabolite panel (Table 4). The restricted panel had an 
AUC of 0.876 (95% CI: [0.815–0.942]) and a predictive 
average accuracy of 85.4% (Fig.  6D), showing that this 
panel of novel biomarkers of T2D that omits glucose (a 
diagnostic biomarker of T2D) can be a sufficiently useful 
classification tool.

In the replication study, we evaluated the perfor-
mances of the 10-metabolite and 7-metabolite panels 
in an additional 270 participants from the AADM study 
using the same methods that we used in the discovery 
phase. Of the 10 metabolites present in the identified bio-
marker panel, 9 were available for evaluation while one 

(carboxylethylleucine) was not detected in the replication 
cohort (Table 4). Therefore, we evaluated panels of 9 and 
6 metabolites in this analysis. The 9- and 6-metabolite 
panels effectively classified T2D cases and controls with 
an AUC of 0.935 (95% CI: [0.906–0.958]) and 0.873 (95% 
CI: [0.837–0.909]), respectively, (Table 4, Fig. 6 E, F) with 
average predictive accuracies of 88.8% and 79.5% (Addi-
tional file 4 (Fig S5). Similar to the findings in the discov-
ery phase, most metabolites were increased in T2D cases 
compared to controls (Additional file 3 (Table S4B)).

Correlation of the biomarker panel with clinical indices 
of glycemic status
Given that the identified biomarker panels classified T2D 
cases and controls with comparable performance in both 
the discovery and replication cohorts, we merged the 
two cohorts (N = 580) to assess the correlation between 
the metabolites in the panel and several indices of glyce-
mic status, including HbA1c, insulin resistance (HOMA-
IR), and duration of T2D. As expected, glucose was 
positively correlated with clinical indices (0.57 < r ≤ 0.70) 
while 1,5 anhydroglucitol was negatively correlated 
(-0.64 < r < -0.42). Like glucose, mannose was positively 
associated with the glycemic indices (0.48 < r ≤ 0.69) 

Fig. 4 Box plots of examples of differentially expressed metabolites in the primary and secondary bile acid synthesis metabolisms. Left 
panel: primary bile acids: glycocholate and taurocholate are increased in individuals with T2D compared to those without T2D. Middle panel: 
top diagram represents the primary and secondary bile acid synthesis pathway in the liver and the digestive lumen; the bottom represents 
the box plot of deoxycholate concentrations in individuals with T2D and without T2D. Right panel: Secondary bile acids, taurodeoxycholate 
and glycodeoxycholate are increased in individuals with T2D compared to those without T2D
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(Fig.  7). The metabolites in the biomarker panel were 
moderately correlated with the markers of glycemic sta-
tus but showed moderate to high correlations with each 
other. The strengths of the associations were more pro-
nounced between blood sugars and their derivatives 
 (r(glucose/mannose) = 0.80, p < 0.0001;  r(mannose/mannonate) = 0.69, 
p < 0.0001; r (glucose/ fructose) = 0.52, p < 0.0001; r (glucose/ gluco-

nate) = 0.56, p < 0.0001) (Fig.  7). Eight of the ten metabo-
lites in the panel were positively correlated with T2D 
duration (Fig. 7).

Effect of treatment on metabolomic profile among T2D 
cases
To evaluate the effect of treatment in normalizing the 
observed metabolic dysregulation in T2D patients, we 
divided individuals with T2D  in this study (N = 260) 
into two groups based on HbA1C per the ADA guide-
lines (< 7%is controlled T2D (N = 102) and ≥ 7% 

is uncontrolled T2D (N = 158)) (Additional file  1, 
Table  S5). Using ANOVA, we compared metabolites 
concentrations between controlled T2D cases, uncon-
trolled T2D cases, and individuals without T2D and 
used hierarchical clustering to visualize the changes 
between groups (heatmaps). The underlying hypothe-
sis in this analysis is that if the metabolic profile of the 
controlled T2D group is similar to the profile of indi-
viduals without T2D rather than the uncontrolled T2D 
group, treatment has an effect in normalizing meta-
bolic dysregulation. As shown in the heatmap figures 
(Additional file  4, Fig S6), across the 30 top ranking 
DEMs, T2D cases in the controlled group had an inter-
mediate metabolic profile between the uncontrolled 
group and that of individuals without T2D. This pro-
file suggests that treatment normalizes but does not 
fully correct the metabolomic dysregulation observed 
in T2D in our study.

Fig. 5 Box plots of differentially expressed branched chain amino acids (BCAA) and associated changes in key metabolites of BCAA catabolism. Top 
panel represents the most significantly increased BCAA in individuals with T2D vs. without T2D (left to right: leucine, valine, and isoleucine). Lower 
panel represents changes in intermediates and downstream metabolites in BCAA catabolism and the diagram of BCAA catabolism
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Discussion
Plasma metabolomics have been studied in many popu-
lations to understand the pathophysiology of metabolic 
disorders, including T2D [36, 39, 62–64]. Motivated by 
the need to better understand the molecular dysregula-
tion associated with T2D in Africans, we conducted an 
untargeted metabolomics study using state-of-the-art 
high-throughput methods. To our knowledge, this is the 
first study to use an untargeted metabolomic approach 
to evaluate metabolomic profiles and analyze metabolic 
signatures of T2D in a large population of Africans. A 
key finding was the identification of 280 DEMs for T2D, 

implying widespread metabolic dysregulation associ-
ated with T2D. The DEMs overwhelmingly belong to the 
super pathways of lipids, amino acids, carbohydrates, and 
xenobiotics while sub-pathway analysis showed that gly-
colysis, free fatty acid and bile metabolism, and branched 
chain amino acid catabolism were dysregulated in T2D. 
These observations further reinforce the concept of T2D 
as a multisystemic disorder with a complex pathophysiol-
ogy, not just a disorder of glucose metabolism. Another 
important component of our study was a biomarker anal-
ysis that successfully identified and validated a panel of 
metabolites that was able to distinguish T2D cases from 

Fig. 6 Analysis of biomarker panels for T2D based on ROC curve analyses. A ROC curve for the 10‑metabolite biomarker panel in the discovery 
cohort. B Box plot of the predictive accuracy of the 10‑metabolite biomarker panel in the discovery cohort. C Plot of the most important features 
of the 10‑metabolite biomarker panel; 0 = non‑T2D (individuals without T2D), 1 = T2D (individuals with T2D). D ROC curve for the 7‑metabolite 
biomarker panel in the discovery cohort (panel restricted to non‑established biomarkers). E ROC curve representing the replication of the identified 
biomarker panel in a different set of participants (replication cohort). F ROC curve representing the evaluation of the panel restricted 
to the non‑established biomarkers in a different set of participants (replication cohort)

Table 4 Metabolites in the T2D biomarker panels

a Metabolite not detected in replication cohort samples

Original (10-metabolite) panel Restricted (7-metabolite) panel

Discovery Replication Discovery Replication

1,5-anhydroglucitol (1,5-AG) 
Methyl glucopyranoside (α + β) 
Fructosyl-lysine 
Gluconate 
Fructose 
1-carboxyethylisoleucinea 
Mannonate 
Glucose 
Mannose
Metformin

1,5-anhydroglucitol (1,5-AG) 
Methyl glucopyranoside (α + β) 
Fructosyl-lysine 
Gluconate 
Fructose 
Mannonate 
Glucose 
Mannose
Metformin

Methyl glucopyranoside (α + β) 
Fructosyl-lysine 
Gluconate 
Fructose 
1-carboxyethylisoleucinea 
Mannonate
Mannose

Methyl glucopyranoside 
(α + β) 
Fructosyl-lysine 
Gluconate 
Fructose 
Mannonate
Mannose

AUC 0.924 0.935 0.876 0.873

Predictive accuracy (%) 89.3 88.8 85.4 79.5



Page 13 of 18Doumatey et al. Genome Medicine           (2024) 16:38  

controls with a high predictive accuracy of ~ 89% and 
AUC greater than 90%.

Consistent with other metabolomic studies, we con-
firmed that metabolism of free fatty acids (FFA) may 
be implicated in the pathogenesis of T2D [38, 63, 65]. 
Like others, we found that FFA (such as palmitate and 
stearate) were elevated in T2D individuals compared 
to those without T2D, but we also found that upstream 
products of FFA in the lipolysis pathway including 
mono- and di-acylglycerols were significantly increased 
in individuals with T2D, suggesting increased lipolysis in 
T2D [38, 63, 65]. Interestingly, the serum stearate/palmi-
tate ratio is a potential predictor of diabetes remission in 
Chinese individuals after bariatric surgery [66]. FFA that 
are classified as medium chain fatty acids and saturated 

(i.e., consisting of 16 C or greater) have been shown to 
be cytotoxic to pancreatic beta cells and to affect insulin 
secretion [67]. High circulating FFA (especially saturated 
FFA), as seen in this study, are believed to inhibit insu-
lin signaling in the muscle, possibly by reducing GLUT4 
expression [68]. In contrast, polyunsaturated FFA are 
less toxic to and do not induce apoptosis of beta cells 
and were overall lower in T2D cases in our study [67].

In healthy states, the major sources of circulating FFA, 
adipocyte lipolysis and de novo FFA synthesis, are tightly 
regulated and controlled by glucose metabolism [69]. For 
example, FFA are increased in the fasted state but can also 
increase due to insufficient peripheral insulin action to 
suppress adipocyte lipolysis [70] as seen in insulin resist-
ance. In our study, given that all participants were in fasted 

Fig. 7 Spearman correlation matrix between metabolites in the biomarker panel and clinical indexes of type 2 diabetes in the merged cohorts 
(discovery + replication). *Glucose measured as part of the biochemical panel. **Glucose measured as part of the untargeted metabolomics
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state, we can infer that the differences seen in circulating 
FFA between individuals with and without T2D are more 
likely due to the ineffectiveness of insulin to suppress lipol-
ysis due to insulin resistance as shown by the observed 
high HOMA-IR and 2-hydroxybutyrate in T2D partici-
pants. 2-hydroxybutyrate, or its conjugate base α- hydroxy-
butyrate, is an early marker of impaired glucose regulation 
and insulin resistance, with a mechanism that possibly 
involves increased lipid oxidation and oxidative stress [71].

For cells to use fatty acids for energy, fatty acids must be 
transported across the cell membrane. The enzyme carni-
tine palmitoyl transferase (CPT1) exchanges carnitine for 
CoA on fatty acids to generate acylcarnitines and thus per-
mit the movement of acyl-chains across the mitochondrial 
membrane to facilitate fatty acid β-oxidation [72]. When 
cellular free fatty acids are in excess of the cells ability to uti-
lize them in β-oxidation or complex lipid assembly, acylcar-
nitines can cross the cellular membrane to be exported to 
the bloodstream [72]. Previous studies in African American 
women with T2D reported higher levels of short chain acyl 
carnitines, suggesting that these changes reflect incomplete 
fatty acid β-oxidation [73, 74]. In this study, we found no 
evidence of decreased or incomplete β-oxidation as shown 
by the lack of significant difference in short chain acyl car-
nitines. However, a marker of ketoacidosis, 3-hydroxy-
butyrate or β- hydroxybutyrate (BHBA), trended higher 
in T2D cases, suggesting inability of the cells to produce 
enough oxaloacetate (which is derived from pyruvate during 
glycolysis) to pair with the available acetyl-CoA generated 
from FFA β-oxidation to enter the tricarboxylic cycle [75]. 
An oxaloacetate deficiency, combined with excess acetyl-
CoA, shifts the metabolism of acetyl-CoA towards ketone 
body formation [75]. We observed a nominally higher level 
of lactate in T2D cases compared to controls, suggesting 
increased non-oxidative glycolysis (conversion of pyruvate 
into lactate) associated with insulin resistance and diabe-
tes [76]. Increased non-oxidative glycolysis could partially 
explain the unavailability of pyruvate to form oxaloacetate 
molecules needed for the TCA cycle. Other ketogenic mol-
ecules, including branched-chain amino acid BCAAs (leu-
cine, isoleucine, and valine) and their catabolic by-products, 
were also higher in T2D cases compared to controls, con-
sistent with findings from previous studies including those 
conducted in African Americans [74, 77–80]. Increased 
levels of ketone bodies, especially β-hydroxybutyrate and 
its intracellular derivatives, have been reported in ketosis-
prone T2D (KPT2D), a form of T2D that has been often 
reported in African, African American, and Hispanic pop-
ulations as well as in individuals on low carbohydrate diets 
[81]. While our findings may point to a molecular signature 
of KPT2D within this study, a more systematic clinical and 
cellular characterization of this subtype of T2D is war-
ranted. In addition to an apparent increase of β-oxidation, 

ω-oxidation appears to be increased in our study. 
ω-oxidation is upregulated when there is increased FFA 
outside the mitochondria due to either increased lipolysis 
and/or increased dietary consumption of medium and long 
chain fats found in omega rich oil.

We also observed differences in bile acids composition, 
with both primary and secondary bile acids increased in 
T2D cases compared to controls. Similar observations 
have been made in both clinical trials and animal models 
[82]. Bile acids in the gut are subject to modification by 
the gut microbiota, which creates the secondary bile acids. 
Increased levels of secondary bile acids may be a reflec-
tion of higher primary bile acids, but may also reflect dif-
ferences in the gut microbiota [82]. However, other amino 
acid-derived metabolites that are bacterial co-metabolites 
(e.g., cresol sulfate, phenol sulfate, phenyl lactate (PLA), 
and indoxyl sulfate) were not different between the groups 
in our study; investigating the correlation between the fecal 
microbiome and these markers may provide useful insights. 
Bile acids also play an important role in glucose metabo-
lism through the nuclear receptor farnesoid X receptor 
(FXR) and transmembrane G protein-coupled receptor 5 
(TGR5) [82]. Bile acid sequestrants were shown to improve 
glycemia in T2D patients and were approved in the United 
States of America for T2D treatment in 2008 [83].

Like FFA, BCAAs are associated with insulin resist-
ance, and recent studies provide experimental evidence 
of interaction between BCAAs and lipid metabolism [77]. 
BCAA restriction in Zucker rats improves not only insu-
lin sensitivity in skeletal muscle but also favors fatty acid 
oxidation [84]. Paradoxically, increased levels of BCAAs 
and derivative keto-acids (C3 and C5 acylcarnitines) were 
not increased in our study. In human studies, increased 
C3 and C5 acyl carnitines in plasma and muscle were 
associated with insulin resistance [85]. Data from the 
Insulin Resistance Atherosclerosis Study (IRAS) suggests 
that there are associations of elevated BCAAs and insulin 
resistance in Caucasians and Hispanics, but not in Afri-
can Americans [86]. The current data lends support for 
ancestral differences in BCAA catabolism in individuals 
with T2D. Taken together, the pathophysiology of T2D 
at the metabolomic level appears to involve complex and 
tightly regulated interactions between glucose metabo-
lism, amino acid catabolism, and lipid metabolism.

One of our goals in this study was to take advantage of 
the systems biology information represented by metabo-
lomics to identify a panel of metabolites that can classify 
T2D individuals but also to assess the physiologic or path-
ologic effects of these metabolites. The metabolic signature 
identified in this study emphasizes impaired glucose utili-
zation characterized by hyperglycemia and increased flux 
of excess glucose toward secondary conversion pathways, 
i.e., high mannose, fructose, mannonate, and gluconate, 



Page 15 of 18Doumatey et al. Genome Medicine           (2024) 16:38  

fructosyl-lysine, and low 1,5- anhydroglucitol. Both fruc-
tosyl-lysine (fructosamine) and 1,5-anhydroglucitol are 
generally a reflection of short-term glucose status, unlike 
hemoglobin A1c (HBA1c), which is a marker of longer-
term glycemic control [87]. As previously reported, we 
observed an inverse relationship between glucose and 1,5- 
anhydroglucitol. Lower 1,5- anhydroglucitol with higher 
glucose is often observed in hyperglycemic subjects, due 
to competition between 1,5-anhydroglucitol and glu-
cose for reabsorption in the kidney [87]. Fructosyl-lysine 
and its degradation by-products (advanced glycation end 
products (AGEs)) have been associated with vascular 
complications of diabetes and proposed as biomarker of 
diabetes complications [88, 89]. Blood sugars (1,5-anhy-
droglucitol, mannose, fructose, mannonate) identified in 
our panel were also reported in the metabolic signature of 
a T2D subtype known as Severe Insulin Deficient Diabe-
tes (SIDD) in an Arab population [90]. SIDD appears to be 
characterized by young age of onset, low BMI, low insulin 
secretion, and poor glycemic control. This T2D subtype 
was first identified in Europeans and replicated in many 
other populations but not in African populations [90]. 
Most participants in our two cohorts are phenotypically 
closer to another subtype of T2D known as Severe Insulin 
Resistance Diabetes (SIRD) characterized by high BMI and 
a high level of IR [90]. The observed correlations between 
metabolites and clinical indices of T2D support that the 
pathways associated with these metabolites could be inter-
connected under T2D pathology. For example, high corre-
lations between blood sugars and derivatives could be the 
reflection of hyperglycemia activating alternative glucose 
utilization pathways such as the polyol pathway, which has 
been associated with diabetes complications [91].

Our study has several strengths, including the use of an 
untargeted metabolomics approach, a relatively large sam-
ple size, inclusion of both discovery and replication cohorts, 
as well as the focus on an understudied population. None-
theless, it is not without limitations. This is a cross-sec-
tional study; therefore, we cannot infer causality. The design 
of the study does not allow us to categorically attribute the 
changes observed to T2D, its consequences, or to the use 
of anti-diabetic drugs. Although the sub-analysis to assess 
the effect of treatment on the metabolomic profile suggests 
that anti-diabetic drugs may partially normalize the con-
centrations of dysregulated metabolites, more studies are 
needed to understand the molecular mechanisms involved. 
Several identified DEMs have both endogenous and exoge-
nous origins, i.e., diet or by-products of the gut microbiota. 
However, the method we used to capture metabolomics 
does not distinguish between endogenous and exogenous 
metabolites. Analyzing dietary and other omics data would 
help better decipher some of our findings, as would meth-
ods to infer causality (such as Mendelian randomization).

Conclusions
In summary, this study identified profound differences 
in the plasma metabolic profiles of Nigerian indi-
viduals with T2D compared with those without T2D. 
Many of these differences, such as those in glucose, 
lipid, and BCAA metabolism, have been established as 
being involved in the pathogenesis of or secondary to 
insulin resistance and diabetes predominantly in pop-
ulations of European ancestry. We not only success-
fully identified DEMs for T2D, but we also developed 
and validated a biomarker panel which, in addition to 
marking T2D status, could also be potentially useful in 
evaluating glycemic control, T2D duration, and T2D 
complications. This first study to systematically use 
an untargeted metabolomics approach to character-
ize T2D in an African population provides significant 
insights into the pathophysiology and heterogeneity 
of T2D including ketosis-prone sub-phenotype and 
generated global access to a critical omics dataset of 
Africans.
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in the 310 participants included in the discovery phase of the study 
sorted by significance level, fold change, and/or by super pathway and 
includes Table S2A, Heat map of all 1116 metabolites identified in the 
discovery cohort (statistically different metabolites are sorted by FC and 
found on the top tier of the table whereas non statistically significant 
metabolites are at the bottom tiers of the table);Table S2B, Heat map of 
the 301 differentially expressed metabolites between individuals with 
T2D and withoutT2D (p < 0.05);Table S2C, Heat map of the 280 differen‑
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Light red cells and light green cells shaded cells indicate 0.05 < p < 0.10 
(light red indicates that the mean values trend higher in T2D; light green 
values trend lower).

Additional file 3. Plasma metabolites identified in the replication 
samples. It depicts comprehensive lists of all named plasma metabo‑
lites identified in the 270 participants included in the replication phase 
of the study sorted by significance level, fold change, and/or by super 
pathway and includes Table S4A, Heat map of all 1071 metabolites 
identified in the evaluation cohort (sorted from the lowest FC to the 
highest FC);Table S4B,Heat map of the 343 differentially expressed 
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