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Abstract 

Background The Lentivirus human immunodeficiency virus (HIV) causes chronic inflammation and AIDS in humans, 
with variable rates of disease progression between individuals driven by both host and viral factors. Similarly, sim‑
ian lentiviruses vary in their pathogenicity based on characteristics of both the host species and the virus strain, 
yet the immune underpinnings that drive differential Lentivirus pathogenicity remain incompletely understood.

Methods We profile immune responses in a unique model of differential lentiviral pathogenicity where pig‑tailed 
macaques are infected with highly genetically similar variants of SIV that differ in virulence. We apply longitudinal 
single‑cell transcriptomics to this cohort, along with single‑cell resolution cell‑cell communication techniques, 
to understand the immune mechanisms underlying lentiviral pathogenicity.

Results Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results 
in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global inter‑
feron signature. Conversely, individual cells infected with highly pathogenic Lentivirus upregulated fewer interferon‑
stimulated genes at a lower magnitude, indicating that highly pathogenic Lentivirus has evolved to partially escape 
from interferon responses. Further, we identify CXCL10 and CXCL16 as important molecular drivers of inflammatory 
pathways specifically in response to highly pathogenic Lentivirus infection. Immune responses to highly pathogenic 
Lentivirus infection are characterized by amplifying regulatory circuits of pro‑inflammatory cytokines with dense longi‑
tudinal connectivity.

Conclusions Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms 
lead to delayed, sustained, and amplifying pro‑inflammatory circuits, which in turn drives disease progression.
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Background
Since the beginning of the HIV/AIDS pandemic, HIV 
has caused over 36 million deaths worldwide and 
remains a significant cause of morbidity and mortal-
ity globally (www. who. int). Chronic inflammation and 
 CD4+ T-cell loss are central to the pathogenesis of HIV 
[1–5]. In contrast, HIV’s simian counterparts, collec-
tively referred to as simian immunodeficiency viruses 
(SIV), are highly variable in pathogenicity depend-
ing on both host genetic and virus strain factors, with 
many SIV strains being non-pathogenic in their natural 
hosts [3–5]. One of the most long-standing questions 
in lentiviral biology concerns the mechanistic basis for 
these starkly variable outcomes.

Differential immune responses are thought to be a 
primary driver of divergent outcomes in lentiviral infec-
tion. For example, higher levels of C-reactive protein and 
IL-6 independently predict development of opportunistic 
infections in chronic HIV [6, 7]. Additionally, increased 
soluble CD14 levels, which reflect LPS-induced mono-
cyte activation, predict increased mortality in HIV-
infected individuals [8, 9]. Analysis of immune responses 
to HIV-2, which is associated with a longer asympto-
matic phase and slower progression to AIDS than HIV-
1, has also shown less persistent T-cell activation [10] 
and reduced type I IFN responses [11] in HIV-2-infected 
individuals relative to HIV-1. Further clues to differen-
tial lentiviral pathogenicity can be found in the features 
of simian precursors to HIV-1 that are thought to have 
conferred enhanced pathogenicity relative to SIV. For 
example, in simian precursors of HIV-1, the viral protein 
Nef has decreased activity in downregulating expression 
of CD3 [12]. By promoting a greater degree of T-cell acti-
vation upon infection, this modulation in Nef activity is 
thought to be a mechanism by which HIV-1 can cause 
chronic immune activation [13, 14].

One useful model for differential lentiviral pathogenic-
ity comes from the study of emerging pathogenic vari-
ants of SIV where specific highly related variants were 
tested and shown to drive different clinical outcomes. It 
has long been known that genetic variants arise over the 
course of Lentivirus infection that are antigenically and 
phenotypically distinct from the founder viruses pre-
sent early in infection [15]. For example, in pig-tailed 
macaques (M. nemestrina), genetic variants that evolve 
in the late stages of infection are highly cytopathic and 
rapidly replicating, unlike their precursors. By infecting 
immunocompetent pig-tailed macaques with a SIV clone 
that has properties similar to transmitted forms of HIV, 
SIVMneCL8 (hereafter CL8), or a late-stage genetic vari-
ant that evolved from CL8 (SIVMne170, hereafter 170), 
Kimata et  al. showed that 170 was significantly more 
highly pathogenic than CL8 in pig-tailed macaques, 

thereby demonstrating that late-stage genetic variants 
were capable of directly driving disease progression [16].

These SIV variants that are closely related but show 
variable virulence thus represent a useful model to 
explore differential lentiviral pathogenicity within a host 
to define host virus-host interactions that drive patho-
genesis. While the role of viral genetic determinants as 
the proximal cause of this differential pathogenicity has 
been described, the distal immune mechanisms result-
ing in these distinct outcomes remain undefined. Here, 
we performed longitudinal single-cell transcriptomics 
on peripheral blood mononuclear cells (PBMCs) from 
macaques infected either with CL8 or 170. We reveal 
broad and sustained pro-inflammatory responses as a 
defining feature of pathogenic lentiviral infection with 
the highly virulent variant, nominate potential molecu-
lar drivers of these pathways, and describe longitudinal 
cell-cell communication (CCC) networks distinguishing 
responses between non-pathogenic vs. pathogenic lenti-
viral infection. Collectively, our work provides a model 
for understanding beneficial vs. deleterious immune 
responses to Lentivirus infection.

Methods
Sample collection and storage
All PBMC samples profiled in this study were processed 
and collected as a part of a study by Kimata et  al. [16]. 
All animal work was performed as part of the Kimata 
et  al. study [16], where all animals were maintained 
and cared for in accordance with the guidelines of the 
AAALAC and the Animal Care and Use Committee of 
the University of Washington [16]. No additional animal 
work was performed for this study. Briefly, juvenile pig-
tailed macaques (Macaca nemestrina) were inoculated 
intravenously with equal amounts of SIVMneCL8 or 
SIVMne170. Serial samples of peripheral blood, serum, 
and plasma were collected prior to and weekly after inoc-
ulation to assess animal health,  CD4+ T-cell count, and 
viral load. Viral load measurements reported in this study 
were determined by Kimata et al. [16] by Chiron branch 
DNA (bDNA) assay. PBMCs were isolated by density 
centrifugation and cryopreserved. Samples from two ani-
mals infected with SIVMneCL8 and two animals infected 
with SIVMne170 were analyzed. From each animal, a 
pre-infection sample along with eight post-infection sam-
ples (from weeks 1, 2, 3, 4, 6, 8, 12, and 20 post-infection) 
were analyzed.

Sample thawing and processing for transcriptomic analysis
PBMCs were thawed at 37 °C in complete RPMI-1640 
media (supplemented with 10% FBS, L-glutamine, and 
penicillin-streptomycin-amphotericin; RP10) containing 
benzonase (EMD Millipore). Cells were then counted and 
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diluted in RP10 to a concentration of 75,000 live cells/mL. 
Cell viability was determined by trypan blue staining and 
is reported in Additional file 1: Fig. S1. Unless otherwise 
noted, all centrifugations were performed at 300 x g for 3 
min. We observed that samples from both 170-infected 
animals at 1 week post-infection had extremely low via-
bility post-thaw (18% and 8%, respectively). To attempt to 
rescue cell viability in these, we applied two strategies for 
live cell enrichment. First, we performed soft centrifuga-
tion on these samples, at 100 x g for 1 min, and discarded 
the supernatant. Next, we applied the Dead Cell Removal 
Kit (catalog no. 130-090-101; Miltenyi Biotec) to the 
remaining cell pellet. This process improved viability to 
88% and 80%, respectively, and we proceeded with down-
stream transcriptomic profiling. A table listing sample 
thawing and processing batches is shown as Additional 
file 1: Table S1.

scRNA‑seq by Seq‑Well
The Seq-Well platform for scRNA-seq was utilized as 
described previously [17–19]. A total of 200 μL of the 
cell suspension of thawed PBMCs at 75,000 live cells/
mL (15,000 cells) was loaded onto Seq-Well arrays pre-
loaded with mRNA capture beads (ChemGenes). Follow-
ing four washes with serum-free RPMI-1640 to remove 
serum, the arrays were sealed with a polycarbonate mem-
brane (pore size of 0.01 µm) for 30 min at 37 °C. Next, 
arrays were placed in lysis buffer, transcripts hybrid-
ized to the mRNA capture beads, and beads recovered 
from the arrays and pooled for downstream processing. 
Immediately after bead recovery, mRNA transcripts 
were reverse transcribed using Maxima H-RT (Thermo 
Fisher EPO0753) in a template-switching-based RACE 
reaction, excess unhybridized bead-conjugated oligonu-
cleotides removed with exonuclease I (NEB M0293L), 
and second-strand synthesis performed with Klenow 
fragment (NEB M0212L) to enhance transcript recov-
ery in the event of failed template switching [19]. Whole 
transcriptome amplification (WTA) was performed with 
KAPA HiFi PCR Mastermix (Kapa Biosystems KK2602) 
using approximately 6000 beads per 50-μL reaction vol-
ume. Resulting libraries were then pooled in sets of 6 
(approximately 36,000 beads per pool) and products 
purified by Agencourt AMPure XP beads (Beckman 
Coulter, A63881) with a 0.6× volume wash followed 
by a 0.8× volume wash. Quality and concentration of 
WTA products were determined using an Agilent Frag-
ment Analyzer (Stanford Functional Genomics Facility), 
with a mean product size of > 800 bp and a nonexistent 
primer peak indicating successful preparation. Library 
preparation was performed with a Nextera XT DNA 
library preparation kit (Illumina FC-131-1096) with 1 ng 
of pooled library using dual-index primers. Tagmented 

and amplified libraries were again purified by Agencourt 
AMPure XP beads with a 0.6× volume wash followed by 
a 1.0× volume wash and quality and concentration deter-
mined by fragment analysis. Libraries between 400 and 
1000 bp with no primer peaks were considered successful 
and pooled for sequencing. Sequencing was performed 
on a NovaSeq 6000 instrument (Illumina; Chan Zuck-
erberg Biohub). The read structure was paired end with 
read 1 beginning from a custom read 1 primer [17] con-
taining a 12-bp cell barcode and an 8-bp unique molecu-
lar identifier (UMI) and with read 2 containing 50 bp of 
mRNA sequence.

Bulk RNA‑sequencing
PBMCs were removed from liquid nitrogen and thawed 
on ice. A subset of cells were counted and removed for 
Seq-Well analysis, while the remaining cells were pel-
leted and immediately disrupted with Buffer RLT (Qia-
gen). Extraction and purification of total RNA from 
bulk PBMCs were conducted using Qiagen RNeasy plus 
kit (no. 74034). All extractions included genomic DNA 
removal using Qiagen gDNA Eliminator Spin Columns. 
The concentration of RNA was quantified using a Nan-
oDrop 2000 Spectrophotometer (ThermoFisher). RNA 
quality was assessed using RIN values obtained from 
Agilent 4200 Tapestation analysis. Reverse transcription 
and tagmentation were conducted using the SMART-Seq 
v4 (Takara) and Nextera XT library prep kit (Illumina) 
with an input of 10 ng of RNA per sample. After cDNA 
synthesis and library preparation, the samples were 
sequenced using Illumina NovaSeq SP with paired-end 
50-bp read length, yielding approximately 30-M reads per 
sample.

Processing and analysis of bulk RNA‑sequencing data
To support RNA-seq analysis, a Macaca nemestrina 
genome reference was prepared by downloading ref-
erence sequence and gene annotations from Ensembl 
Mnem_1.0 release 98 in October 2019. For each RNA-
seq sample, sequences that failed default Illumina RTA 
quality checks were removed. The remaining “PF pass-
ing” reads were aligned to the Mnem_1_0_98 reference 
using the STAR 2.7.1a splice-aware aligner in single-
sample two-pass mode [20]. For each sample, per-gene 
expression was calculated using featureCounts from the 
Subread 1.6.5 package [21].

Gene-level counts from all samples were merged, and 
differential expression was assessed with the edgeR Bio-
conductor package [22]. Briefly, genes with low expres-
sion across all sample groups were excluded using 
filterByExpr, TMM normalization was applied to account 
for composition biases among samples, and differential 
expression was assessed using the quasi-likelihood F-test 



Page 4 of 22Wilk et al. Genome Medicine           (2024) 16:24 

methods. Differentially expressed genes between CL8- 
and 170-infected animals were considered significant 
when FDR < 0.05 and |log2FC|> 1. Volcano plots were 
generated in the R Programming Environment using the 
edgeR differential expression summaries.

Alignment and quality control of single‑cell RNA 
sequencing data
Sequencing reads were aligned and count matrices 
assembled using STAR [20] and dropEst [23], respec-
tively. Briefly, the mRNA reads in read 2 demultiplexed 
FASTQ files were tagged with the cell barcode and 
UMI for the corresponding read in the read 1 FASTQ 
file using the dropTag function of dropEst. Next, reads 
were aligned with STAR using the M. nemestrina refer-
ence genome Mnem_1.0 that included the sequences 
of the SIVMneCL8 and SIVMne170 genomes for align-
ment. Given the similarity between the SIVMneCL8 and 
SIVMne170 genomes, any read aligning to either SIV 
genome sequence was annotated as an SIV viral read. To 
identify SIV-infected cells, we first used Cellbender [24, 
25] to estimate the ambient RNA composition for each 
sample and generate an ambient-corrected count matrix. 
Any cell with > 0 UMIs aligned to the SIV genome in the 
ambient-corrected matrix was then considered  SIV+. 
Count matrices were built from resulting BAM files using 
dropEst [23]. We noted that several Ensembl gene IDs 
had annotations available that were not present in the 
GTF from the latest Mnem_1.0 release (Additional file 1: 
Fig. S1). We transferred these additional annotations to 
the count matrices using the R package biomaRt [26]. 
Additional transferred annotations are listed in Addi-
tional file  1: Table  S2. Cells that had fewer than 1000 
UMIs or greater than 15,000 UMIs, as well as cells that 
contained greater than 20% of reads from rRNA genes 
(RNA18S5 or RNA28S5) or greater than 0.1% of reads 
from one of the 6 annotated mitochondrial genes in the 
M. nemestrina genome, were considered low quality and 
removed from further analysis. To remove putative mul-
tiplets (where more than one cell may have loaded into 
a given well on an array), cells that expressed more than 
75 genes per 100 UMIs were also filtered out. Genes that 
were expressed in fewer than 10 cells were removed from 
the final count matrix.

Pre‑processing of single‑cell RNA sequencing data
The R package Seurat [27–29] was used for data scaling, 
transformation, clustering, dimensionality reduction, 
differential expression analysis, and most visualizations. 
Data were scaled and transformed and variable genes 
identified using the SCTransform() function and linear 
regression performed to remove unwanted variation due 
to cell quality (% mitochondrial reads, % rRNA reads). 

PCA was performed using the 3000 most highly variable 
genes. The first 50 principal components (PCs) were used 
to perform dimensionality reduction by UMAP [30, 31] 
and to construct a shared nearest neighbor graph (SNN; 
FindNeighbors()), which was used to cluster the dataset 
(FindClusters()).

Automated annotation of granular cell types by Seurat v4
We used the multimodal (whole transcriptome plus 228 
cell surface proteins) PBMC dataset published by Hao 
et al. [29] as a reference for cell type annotation. We first 
scaled both the transcriptome and protein assays and ran 
PCA on both modalities. Next, we found multimodal 
neighbors between the modalities via weighted nearest 
neighbor (WNN) analysis, which learns the relative util-
ity of each data modality in each cell. Supervised PCA 
(SPCA) was then run on the WNN SNN graph, which 
seeks to capture a linear transformation that maximizes 
its dependency to the WNN SNN graph. These SPCA-
reduced dimensions were then used for identification of 
anchors between the reference and query datasets as pre-
viously described [27]. Finally, these anchors were used 
to transfer reference cell type annotations to the query 
dataset. As the Hao et al. reference dataset used for anno-
tation is a human dataset, we confirmed the validity of 
the transferred annotations by calculating differentially 
expressed genes for each cell type annotation using Seur-
at’s implementation of the Wilcoxon rank-sum test (Find-
Markers()) and comparing those markers to known cell 
type-specific genes from previous datasets [32–37]. Cell 
type annotations transferred with this strategy matched 
biological expectations and overlapped with results from 
graph-based clustering (Additional file 1: Fig. S1).

Calculation of transcriptomic perturbation score
To prioritize analysis of cell types of interest, we calcu-
lated a perturbation score for each cell type of each sam-
ple as previously described  [29, 38]. This perturbation 
score is motivated by the observation that the statistical 
significance of per-gene differential expression tests is 
strongly influenced by the number of cells in each cluster 
or cell type. To overcome this, we first identified a set of 
genes for each cell type that showed evidence of differ-
ential expression (p-value < 0.1) between a post-infection 
and pre-infection time point. Next, we defined the global 
perturbation vector as the average log-fold change of 
each DEG relative to pre-infection samples normalized 
to length 1. Finally, we projected the transcriptome of 
each sample onto this vector and defined the perturba-
tion score as the absolute value of the magnitude of this 
projection. This approach enables prioritization of cell 
type perturbations when comparing cell types of different 
abundances.
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Gene module scoring analysis
The Seurat function AddModuleScore() was used 
to score single cells by expression of a list of genes 
of interest. This function calculates a module score 
by comparing the expression level of an individual 
query gene to other randomly selected control genes 
expressed at similar levels to the query genes and is 
therefore robust to scoring modules containing both 
lowly and highly expressed genes, as well as to scor-
ing cells with different sequencing depth. Gene lists for 
module scoring were generated through gene module 
discovery. A previously published list of ISGs was used 
to define the interferon signature score (Additional 
file 1: Table S3) [39].

Differential expression testing
We used Seurat’s implementation of differential expres-
sion testing in FindMarkers() to identify DE genes and DE 
ligand-receptor pairs. Unless otherwise specified, testing 
for DE genes was performed via Seurat’s implementa-
tion of the Wilcoxon rank-sum test, which reports two-
sided p-values corrected for multiple hypothesis testing 
by Bonferroni’s correction. For single-cell resolution 
CCC analysis with Scriabin, ligand-receptor pair activ-
ity values are not independent observations, and there-
fore, a receiver operating characteristic curve (ROC) test 
was used for differential expression testing. In this test, 
a classifier is built on each gene which is used to classify 
two groups of cells being compared. An AUC value of 1 
indicates that the expression values for that gene can per-
fectly classify the two cell groups.

Differential expression testing of ISGs was performed 
on a per animal per cell type basis: for each sample, DE 
genes were calculated between each post-infection time 
point relative to the respective pre-infection time point. 
Cumulative log(fold-changes) represent the sum of the 
fold-changes for each post-infection time point at which 
the gene was significantly (p-value < 0.05) upregulated.

Gene module discovery with WGCNA
Unless otherwise noted, gene module analysis was per-
formed as previously described [18]. This process was 
performed separately for each major cell type from each 
animal. Briefly, principal components (PCs) of biological 
interest were first identified by examining the variance 
structure described by each PC and the genes contribut-
ing to each PC. PCs used for each WGCNA analysis are 
shown in Additional file  1: Table  S4. Variable genes of 
biological interest were defined as the top and bottom 50 
genes for each PC, and the input to WGCNA was subset 
to these genes.

Next, a signed genes covariance matrix is calculated for 
each sample:

Where gi, gj are individual genes. ssignedij  is next con-
verted into an adjacency matrix via soft thresholding:

Where β is the soft power. Soft power is a user-defined 
parameter that is recommended to be the lowest value 
that results in a scale-free topology model fit of > 0.8 [40]. 
Soft power parameters used for analysis are shown in 
Additional file 1: Table S4. Next, this adjacency matrix is 
converted into a TOM as described [41]. Next, this TOM 
was hierarchically clustered and cutreeDynamic used to 
generate modules of highly correlated genes with a mini-
mum module size of 10. Similar modules were merged 
using a dissimilarity threshold of 0.5. Subsequently, the 
correlation structure of each module was tested using a 
permutation test, comparing the correlation of randomly 
generated modules to the true module. A module was 
considered significantly correlated if < 500 of 10,000 one-
sided Mann-Whitney U-tests were significant at the p < 
0.05 level.

Single cells were then scored for expression of each 
module as described above. Finally, we tested for modules 
with significant variation in expression over time. Since 
testing for differences in distribution is highly sensitive to 
sample size, we performed iterations of a Kruskal-Wallis 
test for expression of each module relative to time point 
on 10,000 equally sized cell subsets. Modules were con-
sidered significantly temporally variable if < 500 of 10,000 
Kruskal-Wallis tests were significant at the p < 0.05 level.

Analysis of CCC with Scriabin
Scriabin [42] was used for analysis of CCC at single-cell 
resolution as previously described. In brief, the center of 
Scriabin’s workflow is the generation of a cell-cell inter-
action matrix (CCIM) that captures the full structure of 
CCC phenotypes in the dataset. For a dataset of n cells 
and k possible ligand-receptor pairs that can be used 
for CCC, the CCIM is a matrix of n × n columns of sin-
gle cell-cell pairs by k ligand-receptor pairs where each 
matrix element represents the predicted activity of a 
given ligand-receptor pair between a cell-cell pair.

Generation of summarized interaction graphs
Because the CCIM scales exponentially with dataset size, 
it was impractical to calculate a CCIM for all cell-cell 

s
signed
ij = 0.5+ 0.5cor(gi, gj),

aij = (s
signed
ij )

β
,
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pairs ni,nj. To address this problem, a summarized cell-
cell interaction graph S was built in lieu of the CCIM 
where an element of S is the sum of all potential ligand-
receptor activities between a cell-cell pair. A matrix S was 
built for each time point.

Dataset binning for comparative CCC analyses
Conceptually, comparing S from multiple samples 
requires that cells from different samples share a set of 
labels or annotations denoting what cells represent the 
same identity. Each identity class to be compared then 
requires representation from each of the samples to be 
compared. This inter-dataset alignment was accom-
plished through Scriabin’s binning workflow. The goal of 
binning is to assign each cell a bin identity so that S from 
multiple samples can be summarized into equidimen-
sional matrices based on shared bin identities.

First, a shared nearest neighbor (SNN) graph was 
constructed via FindNeighbors() to define connectiv-
ity between all cells to be compared. Next, mutual near-
est neighbors (MNNs) were identified between all time 
points to be compared via Seurat’s integration workflow 
(FindIntegrationAnchors()) [27]. Next, bin identities 
were assigned based on these inter-dataset MNN pair-
ings and iteratively optimized for the SNN connectivity 
of cells within the same bin and for the number of time 
points represented within each bin. Finally, incompletely 
represented bins were merged together based on SNN 
connectivity. At the end of this process, each cell has a 
single assigned bin identity, where each bin contains cells 
from all samples to be compared.

Bins were then tested for statistical significance of con-
nectivity structure using a permutation test. For each 

bin, random bins of the same size and number of cells 
per sample were generated iteratively (by default 10,000 
times). The connectivity vector of the real bins was tested 
against each of the random bins by a one-sided Mann-
Whitney U-test. If the bin failed 500 or more of these 
tests (p-value 0.05), it was considered non-significant, 
discarded, and merged with its most similar counterpart.

Finally, bin-bin pairs that were variable in their CCC 
magnitude over time were identified. For each bin-bin 
pair, a Kruskal-Wallis test was used to assess differences 
in the magnitude of CCC between cell-cell pairs from dif-
ferent time points. Cells from bin-bin pairs with a two-
sided Kruskal-Wallis p-value < 0.05 and within the top 
75 percentile of Kruskal-Wallis test statistic were consid-
ered highly perturbed. Dunn’s post hoc test was used to 

identify the most frequently perturbed time point among 
highly variable bin-bin pairs. Cells from highly variable 
bins in cell type combinations of interest were then used 
to construct CCIMs.

Identification of biologically active ligand‑receptor edges
To identify what ligands were predicted to be active 
in each receiver cell, we first calculated a per-cell gene 
signature of temporally variable genes using the pack-
age CelliD [43]. Next, potential ligands were defined 
as those ligands that were expressed by at least 2.5% of 
sender cells being analyzed. The ligand activity for each 
receiver cell was defined as the Pearson correlation coef-
ficient between each cell’s gene signature and the vector 
of ligand-to-target gene links for that ligand, as provided 
by the package NicheNet [44]. For each active ligand, tar-
get gene weights for each cell were defined as the ligand-
target matrix regulatory score for the top 250 targets for 
each ligand that appear in a given cell’s gene signature. 
We selected a Pearson coefficient threshold (by default 
0.075) to define active ligands in each cell.

To identify statistically significant changes in ligand 
activity over time, we performed iterations of a Kruskal-
Wallis test for expression of each ligand activity score 
relative to time point on 10,000 equally sized cell subsets. 
Ligand activities were considered significantly temporally 
variable if < 500 of 10,000 Kruskal-Wallis tests were sig-
nificant at the p < 0.05 level.

CCIM construction
We defined the interaction vector V between sender cell 
Ni and receiver cell Nj as follows:

Where ln, rn represent a cognate ligand-receptor pair 
and aln represents the predicted activity of an active 
ligand ln in Nj. The CCIM was assembled by concatenat-
ing interaction vectors VNiNj for all cell-cell pairs. Indi-
vidual CCIMs were generated for each sample, so that 
cell-cell pairs were only generated between cells that 
could be biologically interacting.

Downstream analysis of CCIM
The CCIM can be treated analogously to the gene 
expression matrix and used for downstream analy-
sis tasks like dimensionality reduction. To focus our 
downstream analysis on ligand-receptor pairs of bio-
logical interest, we subset the CCIM to ligand-recep-
tor pairs where either the ligand or receptor appeared 

VNiNj = N
l1
i × (N

r1
j + N

al1
j ), N

l2
i × (N

r2
j + N

al2
j ), ..., N

ln
i × (N

rn
j + N

aln
j ) ,
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within the top 1000 genes of the parent object. To 
remove additional sources of noise in downstream 
visualization, we also discarded cell-cell pairs where 
fewer than five ligand-receptor pairs were non-zero 
in activity. Next, we scaled this object by ScaleData(), 
found latent axes by RunPCA(), and used the top 15 
PCs to embed the dataset in two dimensions using 
UMAP [31]. Neighbor graphs were constructed by 
FindNeighbors(), which were then clustered via mod-
ularity optimization graph-based clustering [45] as 
implemented by Seurat’s FindClusters() [29].

Identification of longitudinal CCC circuits
Longitudinal communication circuits were identified as 
previously described [42]. Briefly, a longitudinal CCC 
circuit is composed of  S1-L1-R1-S2-L2-R2, where S are 
sender cells and R are receiver cells at time points 1 and 
2, and where  L1 is expressed by/sensed by  S1/R1 and  L2 is 
expressed by/sensed by  S2/R2. Ligand activities and target 
gene linkages used for circuit generation were calculated 
as described above. Genes defined as pro-inflammatory 
cytokine-encoding genes are shown in Additional file 1: 
Table S5.

Visualization
Wrappers provided by Seurat were used to generate 
UMAP projection and dot plots. ComplexHeatmap was 
used to generate all heatmaps. Visualization functions 
available from Scriabin were used to visualize most cell-
cell communication pathways. For all boxplots, features 
include the following: minimum whisker, 25th percen-
tile — 1.5 × inter-quartile range (IQR) or the lowest value 
within; minimum box, 25th percentile; center, median; 
maximum box, 75th percentile; and maximum whisker, 
75th percentile + 1.5 × IQR or greatest value within. 
Feature line plots are boxplots where consecutive time 
points from the same animal are connected via a straight 
line. Unless otherwise noted, all feature line plots contain 
a 95% confidence interval around each point.

Results
Single‑cell transcriptomics of immune responses 
to lentiviral pathogenic variants
To investigate the immune mechanisms that distinguish 
animals infected with variants of SIV that differ in their 
pathogenic properties, we performed Seq-Well-based 
[17, 19] massively parallel single-cell transcriptomic pro-
filing on longitudinally sampled PBMCs from pig-tailed 
macaques infected with either CL8 (n = 2; shades of 
blue) or 170 (n = 2; shades of red). As it is known that 
features of initial pathology in the days and weeks imme-
diately after infection can predict overall disease out-
come and tissue damage [46, 47], we profiled PBMCs 

from pre-infection and eight post-infection time points, 
focusing on the hyperacute and acute stages of infection 
(Fig.  1A). CL8 is a non-syncytium-inducing SIV with 
slow replication kinetics and minimal cytopathic effect; 
170, conversely, is derived from an animal with late-stage 
infection with CL8 and is rapidly replicating, syncytium 
inducing, and induces high cytopathic effects (Fig.  1B). 
The cytopathicity and replication kinetics of 170 have 
previously been shown to be determined by mutations in 
Gag and Env [48], with canonical Env mutations typical 
of very-late-stage SIV [49]. Both viruses are macrophage 
tropic on infection of macaque monocyte/macrophage 
cultures in vitro (Fig. 1B). Compared to CL8-infected ani-
mals, animals infected with 170 have a peak viremia that 
is on average 6-fold higher (~0.8 log) and 1 week delayed 
and have a viral set point that is three orders of magni-
tude higher in subacute and chronic infection (Fig.  1C) 
[16]. One animal, 170 B, died from simian AIDS-related 
complications at 31-week post-infection.

In total, we sequenced 56,554 cells with an average of 
1570 cells per animal per time point (Additional file  1: 
Fig. S1) [50], which we aligned to a M. nemestrina refer-
ence genome that contained the viral genome sequences 
of CL8 and 170 in order to detect cells infected with SIV. 
Samples from 170-infected animals at 1-week post-infec-
tion had low viability, and few high-quality cells were 
sequenced from these samples (Additional file  1: Fig. 
S1; see “Methods”). Next, we created a merged feature 
matrix of all profiled samples that we subjected to dimen-
sionality reduction by uniform manifold approximation 
and projection (UMAP), graph-based clustering, and 
cell type annotation (see “Methods”). UMAP projections 
of the full dataset indicated regions of the gene expres-
sion manifold that were strongly separated between time 
points and between 170- and CL8-infected animals, par-
ticularly within the myeloid compartment (Fig. 1D). For 
example, we note a transcriptionally unique population 
of monocytes that is composed almost entirely of cells 
from both 170-infected animals at 4-week post-infection, 
as well as distinct populations of monocytes from both 
CL8-infected animals at 1-week post-infection (Fig.  1D, 
Additional file  1: Fig. S2; see Fig.  3). It is unlikely that 
this unique population of monocytes is related to a batch 
effect because other cell subsets from that time point, 
including T and B cells, appear well integrated in dimen-
sionality reduction embeddings.

To formally quantify the degree of this transcriptional 
perturbation, we calculated a genome-wide perturba-
tion score for each cell type relative to each animal’s 
pre-infection sample (see “Methods”). This perturbation 
score is calculated by first identifying genes that display 
evidence of differential expression between pre- and 
post-infection time points, calculating the difference of 
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pseudobulk expression vectors of these genes between 
pre- and postinfection time points, and finally projecting 
the whole transcriptome of each animal onto this vec-
tor  [38]. This score thereby represents the magnitude of 
longitudinal whole-transcriptome shifts in gene expres-
sion and reveals a strong longitudinal perturbation of 
CD14 monocytes in both 170-infected animals, as well as 

perturbation of CD16 monocytes and  CD8+ T-cell sub-
sets (Fig. 1E).

We next examined our ability to detect peripheral 
immune cells that were infected with SIV. The propor-
tion of  SIV+ cells ranged from 0 to 2.5% per sample and 
were predominantly found in memory  CD4+ T cells and 
monocytes, matching biological expectations (Fig.  1F). 

Fig. 1 Single‑cell transcriptomics of immune responses to SIV pathogenic variants. A Schematic of sample collection strategy. Pig‑tailed macaques 
were infected with CL8 (shades of blue) or 170 (red/orange) and PBMCs sampled at the indicated time points. B Virological and pathological 
characteristics of SIV pathogenic variants. C Plasma viral loads of CL8‑ and 170‑infected animals at the profiled time points. Animal 170 B died at 31 
weeks post‑infection from simian AIDS‑related complications. D UMAP projections of full scRNA‑seq dataset colored by animal (left), time point 
(middle), and coarse cell type annotation (right). E Heatmap of whole transcriptome perturbation score per cell type per animal, as described 
by [38]. F Bar plot depicting cell type proportions of cells with SIV‑aligned reads. G Scatter plot depicting association between plasma viral load 
and the percentage of  SIV+ cells in the scRNA‑seq dataset.



Page 9 of 22Wilk et al. Genome Medicine           (2024) 16:24  

 SIV+ cells in CL8-infected animals were detected mainly 
at weeks 1–2 post-infection, while 170-infected cells were 
also present at later time points (Additional file  1: Fig. 
S1). The distribution of SIV UMIs in each infected cell 
was similar for CL8- and 170-infected cells (Additional 
file  1: Fig. S1). The proportion of  SIV+ cells correlated 
strongly with plasma viral load measurements (Pearson’s 
r = 0.88), suggesting the accurate identification of  SIV+ 
cells (Fig. 1G; discussed further in Fig. 2).

To provide complementary validation to our single-
cell transcriptional data, we also performed bulk RNA 
sequencing of all animals from pre-infection through 
4  weeks post-infection (Additional file  1: Fig. S3). This 
analysis revealed strong transcriptional perturbation 
in 170-infected animals that was most pronounced at 
4  weeks post-infection, whereas transcriptional pertur-
bation was largely resolved by 4 weeks post-infection in 
CL8-infected animals (Additional file  1: Fig. S3). Addi-
tionally, these transcriptional responses were largely con-
gruent between animals infected with the same virus. 
While we had very poor recovery of viable cells at 1 week 
post-infection in 170-infected animals, we were able 
to generate high-quality bulk transcriptomic data from 
one 170-infected animal at 1 week post-infection. Com-
pared to pre-infection, the 1 week post-infection sample 
showed strong upregulation of interferon (IFN)-stim-
ulated genes (ISGs; including GBP3, MX2, DDX58, and 
APOBEC3B) and pro-inflammatory chemokines CCL8 
and CXCL10, as well as platelet markers PPBP, ALAS2, 
CAVIN2, and PRR35. This sample also showed down-
regulation of cell type-specific marker genes including 
CCR7, CD8B, GZMK, and CD14, suggestive of a compo-
sition shift with decreased monocytes and lymphocytes 
and increased platelets (Additional file 1: Fig. S3). Nota-
bly, statistical power to detect DEGs at 1 week post-infec-
tion in 170 infection is limited by having bulk RNA-seq 
data from a single animal at this time point. Future work 
will be necessary to validate these findings.

Differential responses to interferon in minimally 
pathogenic vs. highly pathogenic SIV infection
As ISGs act as important restriction factors in acute 
infection [51–53], we first analyzed how the longitudinal 
IFN response differed between CL8- and 170-infected 
animals. We established an IFN signature score com-
posed of known ISGs (see “Methods”) and scored all 
cells in the dataset by expression of this signature. This 
revealed a kinetically dynamic IFN response that peaked 
in all animals at 1 week post-infection but stayed persis-
tently elevated in 170-infected animals relative to CL8-
infected animals (Fig.  2A). Additionally, in 170 B, the 
global IFN signature increased monotonically from 8 

weeks post-infection preceding death at 31 weeks post-
infection (Fig.  2A). Generally, the IFN signature was 
most concordant with viral load in both CL8 animals 
and highly discordant in 170 B, where the late increase 
in IFN signature is not paralleled by an increase in viral 
load (Fig. 2B). This may either be the reflection of robust 
infection in another tissue, such as the intestine, or be the 
result of non-lentiviral opportunistic infections or ongo-
ing noninfectious inflammatory stimuli.

To examine potential sources of type I IFN, we ana-
lyzed the expression of the upstream regulator of IFN, 
IRF7, as type I IFN-encoding genes themselves fre-
quently are not detectable at the RNA level [18, 54]. We 
found that global expression of IRF7 generally corre-
lated well with the global IFN signature, and that plas-
macytoid dendritic cells (pDCs) were the most prolific 
source of IRF7 expression, even when accounting for 
their relative scarcity (Additional file 1: Fig. S4). Addi-
tionally, in animal 170 B, we found that the late increase 
in IFN signature was accompanied by a shift of IRF7 
expression from pDCs to conventional DCs and mono-
cytes (Additional file 1: Fig. S4), implicating these cells 
in sustaining IFN responses preceding death in this 
animal.

Next, we analyzed the breadth and duration of the IFN 
response. Both 170-infected animals upregulated sub-
stantially more ISGs than both CL8-infected animals, and 
these ISGs were upregulated at greater magnitude and 
at more time points in 170-infected animals (Fig.  2C). 
Monocytes were the cell type that upregulated the great-
est magnitude of ISGs in 170-infected animals, but cell 
type distribution of ISG upregulation was more evenly 
distributed in CL8-infected animals (Fig.  2C). We also 
observed stark differences in which ISGs were expressed 
by 170- vs. CL8-infected animals. In 170-infected ani-
mals, the most upregulated ISGs were IFI27, IFI6, MX1, 
and ISG15, while in CL8-infected animals, TXNIP and 
IFI30 were the most upregulated (Fig. 2D). Several ISGs, 
including MX1, MX2, and OAS1, were upregulated in 
170-infected animals at many different time points but 
were generally only significantly upregulated in CL8 
animals at weeks 1 and 2 post-infection (Fig. 2D). There 
were no cell type-specific patterns in ISG upregulation 
(Additional file  1: Fig. S5). The ISG response in animal 
170 B diversified in the later time points profiled, with 
ISGs including IFI44L, RSAD2, and DDX60 comprising a 
larger proportion of the IFN response relative to previous 
time points (Additional file 1: Fig. S5).

As ISGs can act as restriction factors during infec-
tion, we next examined how gene expression profiles 
differed between infected vs. bystander cells in 170- vs. 
CL8-infected animals. In each animal, we calculated dif-
ferentially expressed (DE) genes between  SIV− and  SIV+ 
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Fig. 2 Broad and sustained interferon signatures in pathogenic SIV infection. A Boxplot depicting mean expression of all ISGs over time across all 
profiled cells. B Correlation between global IFN signature and viral load in each animal. C–D For each animal, within each cell type, and at each 
non‑baseline time point, differentially expressed ISGs were calculated relative to pre‑infection cells. C For each ISG, we calculated the mean 
number of time points at which that ISG was significantly upregulated (color of points). For each cell type, we calculated the number of ISGs 
significantly upregulated at any time point (size of points) and the cumulative log(fold‑change) in expression of all significantly upregulated ISGs 
(y‑axis). D For each ISG, animal class (170 or CL8), and cell type, we calculated the cumulative log(fold‑change) of significantly upregulated ISGs 
across all cell types. Only ISGs with a cumulative log(fold‑change) of > 0.75 in at least one animal group are shown. E In the two SIV‑infected cell 
types (monocytes and  CD4+ T cells), we calculated DEGs between  SIV+ cells relative to  SIV− cells in CL8 animals (x‑axis) and 170 animals (y‑axis). 
F In monocytes (left) and  CD4+ T cells (right), we calculated DEGs between  SIV+ cells relative to  SIV− cells (y‑axis). Then, among the  SIV+ cells, we 
calculated DEGs between cells from 170‑infected animals and cells from CL8‑infected animals (x‑axis). For C–F, all genes shown are significantly 
differentially expressed along at least one axis by Seurat’s implementation of the Wilcoxon rank‑sum test
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cells in the two cell types that were the targets of infec-
tion,  CD4+ T cells, and monocytes. In  SIV+ cells from 
all animals, we found upregulation of several ISGs in 
both cell types, consistent with autocrine IFN signaling 
(Fig. 2E). Generally, ISGs were more broadly upregulated 
in infected  CD4+ T cells compared to monocytes. For 
example,  CD4+ T cells, but not monocytes, upregulated 
OAS1, OAS2, and DDX58 upon infection in all animals 
(Fig.  2E). We also observed broader ISG upregulation 
in infected cells from CL8-infected animals: in infected 
monocytes, IFI6 and ISG15 were only upregulated in 
CL8-infected animals, and DDX60 was significantly 
downregulated in infected monocytes from 170-infected 
animals (Fig. 2E).

While this analysis indicates which genes are upregu-
lated in infected vs. bystander cells, we next sought to 
analyze how the magnitude of this upregulation dif-
fers between 170- vs. CL8-infected cells. To address 
this question, we calculated DE genes between  SIV+ 
cells from CL8-infected animals and  SIV+ cells from 
170-infected animals. In both monocytes and  CD4+ T 
cells, CL8-infected cells upregulated ISGs to a greater 
extent than 170-infected cells (Fig.  2F), suggesting defi-
cient expression of ISGs upon infection with SIVMne170. 
Since 170-infected animals have more SIV-infected cells 
at later time points relative to CL8-infected animals, 
we also assessed if the DEG results between CL8- and 
170-infected animals were driven by infection kinetics. 
However, we found that 170-infected cells from 4 weeks 
post-infection and later expressed slightly higher magni-
tudes of some ISGs relative to their hyperacute infection 
counterparts (Additional file  1: Fig. S5). This indicates 
that the lower expression of ISGs in 170-infected cells 
vs. CL8-infected cells (Fig.  2F) is not confounded by 
infection kinetics. Collectively, this analysis reveals that 
global IFN signatures are broader and more sustained in 
highly pathogenic lentiviral infection (Figs.  2A–D), but 
that minimally pathogenic Lentivirus induces broader 
and greater expression of ISGs within infected cells 
(Figs. 2E–F).

Gene module discovery reveals structured longitudinal 
immune responses to infection with lentiviral pathogenic 
variants
To understand how cell transcriptional phenotype var-
ies across time, we analyzed coordinated shifts in gene 
expression within each cell type that varied in time. We 
adapted a weighted gene correlation network analysis 
(WGCNA)-based [40] approach to identify temporally 
variable modules of co-expressed genes that was origi-
nally described by Kazer et  al. [18]. For each major cell 
type within each animal, we identified variable genes and 
used the single-cell gene expression matrices to generate 

topological overlap matrices (TOM) that capture gene 
co-expression structure. Modules of co-expressed genes 
were identified in these TOMs, and the correlation struc-
ture of each module was tested for statistical significance. 
Single cells were then scored for expression of each mod-
ule and module expression tested for significant vari-
ability across time (Fig. 3A; see “Methods”). We perform 
this analysis (a) for each cell type individually, so that 
temporally variant gene modules are more likely to rep-
resent shifts in cell state rather than changes in cell type 
proportion, and (b) for each animal individually, in order 
to be robust to inter-individual heterogeneity. These gene 
modules thus represent coordinated programs of cellular 
phenotype and can be used to nominate cell type-specific 
drivers of synchronized responses to infection.

This process returned 26 distinct, temporally variant 
gene modules in B cells, monocytes, CD4 T cells, and 
DCs (Fig.  3B). No significantly correlated, temporally 
variant gene modules were discovered in CD8 T cells or 
NK cells. This may indicate a lack of temporally coordi-
nated gene programs in these cell types but may also be 
due to inadequate sampling times relative to biological 
shifts or due to sparser RNA content in these cells lim-
iting our ability to detect strong gene-gene correlations. 
To visualize relationships between the identified gene 
modules, we calculated the Jaccard index between each 
set of modules, which revealed groups of partially over-
lapping modules discovered between distinct animals or 
cell types (Fig.  3B). For example, gene module discov-
ery revealed a set of six highly overlapping modules that 
were composed primarily of ISGs (Fig. 3B); expression of 
two of these modules were highly significantly enriched 
in  SIV+ cells (Additional file 1: Fig. S6). We next scored 
the cells of each animal and cell type for expression of the 
corresponding gene modules to examine how expression 
of each module varied across time. This revealed shifts 
in module expression that paralleled global patterns in 
whole-transcriptome perturbation (Fig.  1D–E), where 
170-infected animals display concordant shifts in mono-
cyte phenotype at 4 weeks post-infection (Fig. 3C).

Next, we analyzed a group of seven partially overlap-
ping modules that were discovered within monocytes 
of all four animals (Fig.  3B; red box, hereafter “group 
1”). Expression of the corresponding modules peaked 
at 1–2 weeks post-infection in CL8-infected animals 
but at 4 weeks post-infection in both 170-infected ani-
mals (Fig.  3D). Genes that were common to all group 
1 modules included pro-inflammatory cytokines and 
chemokines IL-1B, TNF, CCL3, CCL4, IL6, CXCL8, and 
CXCL10, as well as inflammasome component NLRP3. 
Group 1 modules from CL8-infected animals contained 
the neutrophil-chemoattractants CXCL1 and CXCL2, 
while modules from 170-infected animals contained 
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the chemokine CXCL16 (Fig.  3D). Additionally, mod-
ules from 170-infected animals contained three sepa-
rate members of the kynurenine pathway of tryptophan 
metabolism (IDO, KYNU, and KMO; Fig. 3D); activity of 
this pathway is known to inhibit T-cell proliferation and 
IL-17 production and strongly predict HIV mortality 

[55, 56]. We performed ingenuity pathway analysis (IPA) 
to identify predicted upstream regulators of these mod-
ules, as well as transcription factor (TF) activity analysis 
[57] to identify potential regulatory mechanisms under-
lying module expression. These analyses implicated a 
similar set of upstream drivers in module expression, 

Fig. 3 Gene module discovery reveals shared and distinct temporal features between immune responses to pathogenic and nonpathogenic 
lentiviral infection. A Overview of gene module discovery by WGCNA, adapted from Kazer et al. [18]. HVG, highly variable gene. B Jaccard index 
heatmap depicting the degree of overlap in gene membership between all discovered modules. C Expression of modules over time by the cell 
type and in the animal in which the modules were discovered. For D–G, heatmaps depict average expression of gene modules by the cell type 
and animal in which the modules were discovered. Scatter plots depict either the module membership of module genes in CL8 and 170 animals 
(right D, F, and G) or upstream regulators (left E) and transcription factor activities (right E) predicted to result in expression of the observed gene 
modules. D–E monocyte modules boxed in red in panel (B). F Modules downregulated by monocytes in at least one time point. G DC modules 
boxed in blue in B 
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including IL1B and IFNG, but only partially overlapping 
TF activities, where TFs from the noncanonical pathway 
of NF-κB activation (NFKB2 and RELB) were predicted 
to drive expression of modules from CL8-infected 
animals but not 170-infected animals (Fig.  3E). This 
paralleled higher expression of receptors that induce 
noncanonical NF-κB signaling TNFRSF13C (encoding 
BAFFR) and TNFRSF11A (encoding RANK) in CL8-
infected animals (Additional file 1: Fig. S6).

We noted there were monocyte-based modules that 
showed the opposite expression pattern and were pre-
dominantly repressed relative to baseline, often concomi-
tant with upregulation of Group 1 modules (Fig. 3C, F). 
In 170-infected animals, these predominantly repressed 
modules contain several HLA class II encoding genes as 
well as the immunoregulatory hemoglobin scavenger 
CD163 and antimicrobial agent-encoding genes LYZ 
and CAMP (Fig. 3F). Collectively, these results suggest a 
synchronized and coordinated shift from antigen presen-
tation and antimicrobial function towards pro-inflamma-
tory cytokine and chemokine production in monocytes 
during highly pathogenic Lentivirus infection.

We also identified two overlapping modules discovered 
in both 170-infected animals in DCs. These modules were 
expressed in both 170-infected animals at predominantly 
4 weeks post-infection and contained genes implicated 
in DC trafficking to secondary lymphoid tissues, includ-
ing CCR7 and IL7R [58], pro-inflammatory chemokine 
CXCL16, and molecules involved in communication with 
T cells, including CD101 and CCL22 [59, 60] (Fig.  1G). 
As CCR7 and IL7R are highly expressed on most T cells, 
we confirmed that CCR7+IL7R+ DCs expressed canoni-
cal DC markers without co-expression of any canonical 
T-cell-defining genes (Additional file  1: Fig. S6). Collec-
tively, gene module discovery analysis reveals coordinated 
pathways that distinguish immune responses between cell 
types, states, and lentiviral pathogenic variants.

Single‑cell resolution communication analysis reveals 
inflammatory networks differentiating immune responses 
between lentiviral pathogenic variants
While our gene module discovery analysis nominates 
potential drivers of shifts in cell state over time, we 
wished to formally analyze how communication path-
ways between cells or cell-cell communication (CCC) 
influenced downstream transcriptional phenotypes. To 
address this question, we applied Scriabin, a method for 
comparative CCC analysis at single-cell resolution that 
does not require any degree of subsampling or aggrega-
tion (Fig. 4A; see “Methods”) [42].

To focus our CCC analysis on the cell types with the 
highest degree of CCC perturbation over time, we applied 
Scriabin’s summarized interaction graph workflow: for 
each sample, we generated a summarized interaction 
graph representing the total magnitude of potential inter-
actions between every pair of cells. Then, we aligned data-
sets from all the time points from a given animal using 
Scriabin’s binning workflow, which assigns each cell a bin 
identity that maximizes the similarity of cells within each 
bin while simultaneously maximizing representation of all 
time points within each bin. These bin identities thus rep-
resent high-resolution intra-time point correspondences. 
We used our reference-based cell type annotations, which 
were transferred via neighbor graphs that are not used 
for binning, as orthogonal validation that binning recov-
ered phenotypically similar cells (Additional file  1: Fig. 
S7). We next assessed variability in total communicative 
potential across time within each bin, which is summa-
rized in Fig.  4B. This process revealed that monocyte-
to-monocyte communication is the most longitudinally 
perturbed across all four animals and additionally indi-
cated that monocyte communication with memory T cells 
and NK cells was also significantly perturbed (Fig. 4B). In 
170-infected animals, the most highly perturbed mono-
cyte-to-monocyte bins displayed the largest shift in CCC 

Fig. 4 CCC pathways distinguishing immune responses to pathogenic and nonpathogenic lentiviral infection. A Overview of application 
of Scriabin [42] to analyze single‑cell resolution CCC profiles. Briefly, Scriabin’s summarized interaction graph workflow was used to align the time 
points within an animal and identify cell type combinations with perturbed CCC to prioritize for downstream analysis. Then, Scriabin’s ligand 
activity ranking process was used to identify biologically active CCC edges. Finally, Scriabin’s CCIM workflow was used to visualize the full structure 
of CCC phenotypes (see “Methods”). B Scatter plots depicting the degree of CCC perturbation predicted by Scriabin’s summarized interaction 
graph workflow (y‑axis). The most highly perturbed cell type combinations for each animal are labeled (sender cell type — receiver cell type). 
Points are sized by the variability in perturbation score between bins of the same cell type combination. C Plot depicting the distribution of time 
points at which CCC in each monocyte‑to‑monocyte bin‑bin pair is maximally perturbed. D UMAP projections of the most highly perturbed 
monocyte‑monocyte cell‑cell pairs from all samples, colored by animal (left) and time point (right). E Stacked bar plot depicting DE ligand‑receptor 
pairs in the monocytes of each animal at the time point of maximal perturbation. A ligand‑receptor pair is considered to be more differentially 
expressed in an animal class if > 1 standard deviation of that ligand‑receptor pair’s log(fold‑change) is contributed by a particular animal class. F 
Predicted ligand activities of monocytes over time in each animal. G Alluvial plots depicting ligand‑target gene connections within monocytes 
of each animal at the time point of maximal perturbation. H UMAP projections of the most highly perturbed CD14 monocyte‑CD8  TEM 
sender‑receiver cell‑cell pairs colored by animal (left) and clusters enriched in 170‑infected animals (right). I Bar plots depicting DE ligand‑receptor 
pairs in the clusters highlighted in H 

(See figure on next page.)
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magnitude at 4 weeks post-infection, while CL8 animals 
had the greatest perturbation at 1–2 weeks post-infection 
(Fig. 4C). For downstream analyses, we defined the time 
point of maximal perturbation as 4 weeks post-infection 
for 170-infected animals, 2 weeks post-infection for CL8 
A, and 1 week post-infection for CL8 B.

To comprehensively visualize the CCC structure of 
our dataset, we next applied Scriabin’s cell-cell interac-
tion matrix (CCIM) workflow. This workflow generates a 

matrix of cell-cell pairs by ligand-receptor pairs that can 
be treated analogously to a gene expression matrix for 
downstream analytical tasks like dimensionality reduc-
tion and differential expression testing (Fig. 4A). We also 
used Scriabin’s implementation of NicheNet [44] to pre-
dict which ligand-receptor pairs were biologically active 
by leveraging information about gene expression changes 
downstream of specific ligands and incorporated this 
information into the CCIM (see the “Methods”).

Fig. 4 (See legend on previous page.)
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We first used Scriabin’s CCIM workflow to analyze the 
most highly perturbed CCC between cell-cell pairs of 
monocytes. This analysis revealed groups of monocyte-
monocyte pairs that appeared to have distinct commu-
nication profiles (Fig. 4D). Differential expression testing 
indicated that CCC between monocytes at the time point 
of maximal perturbation was characterized by increased 
signaling through IL1B and CCL4 (Fig.  4E; Addi-
tional file  2: Table  S6). 170-infected animals alone had 
increased signaling with CXCL16 and CCL2 while losing 
communication through the adhesion molecule SELPLG. 
Conversely, monocytes from CL8-infected animals had 
increased communication via TGFB2 (Fig.  4E). These 
shifts in CCC pathways were also reflected in single-cell 
level ligand activities, which showed increased predicted 
activity of IL1B at the time point of maximal perturba-
tion in all animals but only an increase in CCL2 activity 
at 4 weeks post-infection in both 170-infected animals 
(Fig. 4F).

Next, we examined what downstream gene expres-
sion changes were predicted to result from the 
observed ligand activities. While IL1B and TNF were 
the primary predicted drivers of target gene profiles in 
all animals, in 170-infected animals, these ligands were 
predicted to result in upregulation of TLR4, NFKB2, 
and the aryl hydrocarbon receptor repressor AHRR but 
in CL8-infected animals were predicted to result in the 
upregulation of neutrophil chemoattractant CXCL2 
and checkpoint molecule CD83 (Fig. 4G) [61]. Intrigu-
ingly, in 170-infected animals alone, we observed 
upregulation of additional pro-inflammatory cytokines 
and chemokines like CXCL16 that had not been pre-
dicted to be active as ligands (Fig.  4G), suggesting a 
broadening of pro-inflammatory signaling in infection 
with highly pathogenic Lentivirus. Collectively, these 
results demonstrate overlapping yet distinct monocyte-
to-monocyte communication mechanisms in response 
to lentiviral variants of different pathogenicity, with 
highly pathogenic Lentivirus generally inducing a 
delayed and broader pro-inflammatory communication 
profile.

We next analyzed communication from CD14 mono-
cytes to CD8  TEM cells, as CCC for this sender-receiver 
cell type combination was highly perturbed only in 
170-infected animals (Fig.  4B). Using Scriabin’s CCIM 
workflow on highly perturbed CD14 monocyte-CD8  TEM 
cell-cell pairs, we found several clusters that appeared 
highly enriched for cell-cell pairs from 170-infected ani-
mals (Fig.  4H). We found that three of these clusters 
showed increased communication through inhibitory 
pathways, including the CD274-PDCD1 (PDL1-PD1) 
pathway, while the other three clusters showed increased 
communication through chemokines CCL2, CCL3, and 
CCL4 through their cognate receptor CCR5 (Fig. 4I). 
Interestingly, we found that the frequency of both groups 
of clusters was highest in the 170-infected animals at 4 
weeks post-infection (Additional file  1: Fig. S8). Thus, 
Scriabin revealed the concomitant use of opposing sign-
aling modalities between CD14 monocytes and CD8  TEM 
cells in response to highly pathogenic Lentivirus infec-
tion, underscoring the utility of using single-cell resolu-
tion CCC methods to capture the full structure of CCC 
phenotypes.

Broad longitudinal inflammatory networks in pathogenic 
lentiviral infection
While our single-cell resolution analysis of CCC path-
ways enabled us to compare what communication edges 
were differentially active between different animals and 
time points, we were next interested in formally analyz-
ing how these communication pathways operate across 
time points in order to understand the dynamic evolu-
tion of CCC during infection. To address this question, 
we applied Scriabin’s longitudinal circuitry discovery 
workflow [42]. A longitudinal communicative circuit is 
a set of communication edges at two consecutive time 
points, where communication at the second time point 
is predicted to be the consequence of communication 
at the first time point (Fig. 5A). Consider an interacting 
sender-receiver cell pair  S1-R1 at time point 1 and inter-
acting sender-receiver cell pair  S2-R2 at time point 2. If 
communication between  S1-R1 results in the expression 

(See figure on next page.)
Fig. 5 Longitudinal CCC circuits during immune response to lentiviral pathogenic variants. A Diagram illustrating the definition of a longitudinal 
communicative circuit. B Stacked bar plot depicting the proportion of cell type annotations for cells from animal 170 A participating in longitudinal 
circuits. Proportions are separated by cells participating at the beginning or the end of the circuit, as well as the total distribution of all cells 
participating in circuits. C—D Scatter plots depicting ligand‑target pairs participating in longitudinal communication circuits that differentiate 
170‑infected animals (y‑axis) and CL8‑infected animals (x‑axis). For C, each point represents a ligand‑target pair participating in a circuit 
at a particular time point. For D, each point represents the total number of mentions for each ligand‑target pair in all circuits, regardless of time 
point. E Longitudinal circuits of pro‑inflammatory cytokines in each animal. Circuits were restricted to pro‑inflammatory cytokines (see Additional 
file 1: Table S5) and networks of connected pro‑inflammatory cytokine ligand‑target pairs plotted for each animal across time. Points are sized 
by the expression of the respective cytokine at each time point. Edges are colored by the product of the ligand activity score and the target weight 
for the sequential cytokine (see “Methods”)
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of ligand  LA by  R1,  S1-R1-S2-R2 represents a communica-
tive circuit if  R1 and  S2 occupy the same bin (i.e.,  S2 rep-
resents the phenotypic counterpart of  R1 at time point 
2) and if  LA is predicted to be an active ligand in the 

 S2-R2 interaction (Fig.  5A). Thus, longitudinal circuits 
represent the single-cell resolution stitching together of 
two neighboring time points by succeeding communi-
cation pathways.

Fig. 5 (See legend on previous page.)
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We applied Scriabin’s circuitry discovery workflow to 
identify all temporally consecutive communication cir-
cuits across time in each animal. We first noted that the 
vast majority of cells participating in circuits were mono-
cytes; however, non-monocyte cell types were more 
highly represented in cells at the beginnings and ends of 
circuits (Fig. 5B). This indicates that monocytes serve as 
the hubs and authorities of longitudinal communication 
networks, integrating and sending signals to other cell 
types to coordinate downstream responses.

We next examined which longitudinal circuits differed 
between 170- vs. CL8-infected animals. When analyzing 
ligand-target pairs participating in circuits at each time 
point, we observed strong differences between 170- and 
CL8-infected animals; most 170-infected animal circuits 
overlapped at the 4  weeks post-infection time point, 
compared to the 2  weeks post-infection time point for 
CL8-infected animals (Fig. 5C). However, when summa-
rizing the frequency of ligand-target pairs participating 
in circuits irrespective of time point, we found more con-
cordant patterns between 170- and CL8-infected animals 
(Fig. 5D). This indicates that longitudinal communication 
pathways in response to nonpathogenic vs. pathogenic 
lentiviral infection differ primarily by the time at which 
they operate rather than the specific ligands that com-
pose these pathways. Nonetheless, we noted several 
ligand-target pairs that were more enriched in circuits 
from 170-infected animals, including CXCL10 and 
CXCL16 acting as ligands for the upregulation of extra-
cellular matrix protein FN1 (Fig. 5D).

Our single-cell resolution analysis of CCC nomi-
nated putative signaling mechanisms for the expansion 
of the breadth of pro-inflammatory cytokine expres-
sion in 170-infected animals (see Fig.  4G), and our 
analysis of longitudinal communication circuits iden-
tified two chemokines that were enriched in circuits 
from 170-infected animals. We hypothesized that this 
broader signature of pro-inflammatory cytokine activ-
ity in response to pathogenic Lentivirus infection may 
reflect distinct network structures of cytokine regulation. 
To comprehensively visualize the longitudinal evolution 
of pro-inflammatory cytokine expression and regula-
tion, we identified all communicative circuits involving 
sets of pro-inflammatory cytokines that were consecu-
tive in time and regulation. This analysis revealed broad, 
sustained, and densely connected longitudinal networks 
of pro-inflammatory cytokine expression exclusively 
in 170-infected animals (Fig.  5E). Networks from CL8-
infected animals, conversely, were limited and sparsely 
connected across all time points. While circuits from 
both 170- and CL8-infected animals included IL1B, TNF, 
TNFSF13, and CCL5, only networks from 170-infected 
animals included the chemokine CXCL16 (Fig.  5E). 

Collectively, these results are suggestive of inflammatory 
feedback loops that are specific to immune responses to 
highly pathogenic Lentivirus infection.

Discussion
In this work, we have applied single-cell transcriptomics 
and novel frameworks for CCC analysis to examine fea-
tures of the immune response that distinguish infection 
with minimally vs. highly pathogenic Lentivirus infec-
tion. A substantial body of work has compared differen-
tial lentiviral pathogenicity from the perspective of host 
genetics by infecting different nonhuman primate (NHP) 
species with SIVs from different natural hosts [4, 62–66]. 
However, the role of virus-specific factors remains rela-
tively underexplored. We leveraged unique samples that 
allowed us to compare responses at weekly intervals after 
infection to the gene profile at the time of exposure by 
leveraging a model of differential lentiviral pathogenicity 
where all hosts were from the same genetic background 
[16]. Here, we provide the first description of virus-spe-
cific immune profiles that distinguish minimally patho-
genic vs. highly pathogenic Lentivirus infection.

Compared to infection with minimally pathogenic CL8, 
we find that infection with highly pathogenic 170 induces 
delayed and sustained signatures of immune activation. 
This finding is in line with evidence that chronic inflam-
mation and immune activation are a distinguishing fea-
ture of pathogenic SIV infection as well as HIV infection 
relative to SIV infection in natural hosts [18, 51, 67, 68]. 
Prior work indicates that persistent type I IFN signaling 
in pathogenic SIV leads to broad dysfunction in both 
innate and adaptive immunity during chronic infec-
tion [67, 69–73]. In line with these observations, here 
we show that 170-infected animals display a broad and 
sustained response to type I IFN and demonstrate for 
the first time that distinct sets of ISGs are upregulated 
in response to IFN in chronic and pathogenic infection. 
Similarly, preliminary evidence suggests blockade of type 
I IFN signaling during chronic infection may suppress 
other inflammatory pathways and pathology and rescue 
counts of HIV-specific T cells [69, 72, 74]. The associa-
tion between delayed/sustained IFN signaling and dis-
ease outcome has also been postulated in the setting of 
acute viral infections like MERS-CoV and SARS-CoV-2 
[75–77], indicating this may be a conserved feature of 
imbalanced or ineffective antiviral immunity.

Although we identified broad and sustained IFN 
responses in 170-infected animals, we found the oppo-
site pattern when examining individual SIV-infected 
cells:  CD4+ T cells and monocytes infected with mildly 
pathogenic CL8 upregulated a broader range of ISGs 
and expressed a higher magnitude of these ISGs than 
individual 170-infected cells. This finding suggests an 
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evolved immune evasion mechanism of 170, where 170 
may escape detection via decreased PRR sensitivity, IFN 
production, or autocrine IFN signaling. This hypoth-
esis is also consistent with our observation that peak 
viremia in 170-infected animals occurs 1 week after the 
peak of IFN responses, suggesting that IFN responses 
in these animals may be insufficient to control viral rep-
lication. In 170-infected animals, peak viremia occurs 
at 2 weeks post-infection, 1 week after the peak in ISG 
signature, further supporting that IFN responses are 
unable to sufficiently control viral replication of 170. In 
demonstrating reduced ISG induction in 170-infected 
cells, we did not rely on the 1  week post-infection time 
point in 170-infected animals when sample quality was 
low. Rather, a plurality of 170-infected cells came from 2 
weeks post-infection, and a plurality of CL8-infected cells 
came from 1-week post-infection, matching the time of 
peak viremia for both viruses

As ISGs can act as critical antiviral restriction factors 
in infected cells [18, 52], we hypothesize that decreased 
ISG induction in 170-infected cells represents an evolved 
immune evasion strategy of 170 and may be an explana-
tory mechanism for the higher peak viremia and set point 
in 170-infected animals. Thus, while 170-infected ani-
mals have a broad global IFN signature, individual cells 
infected with 170 fail to upregulate the same set of ISGs 
to the same extent. These findings are specifically made 
possible by our single-cell approach and ability to accu-
rately distinguish infected from bystander cells (Fig. 1G). 
Some ISGs that are more highly upregulated by CL8-
infected cells, including MX2 and IFITM1, have known 
roles as HIV-1 restriction factors in cell lines [78–82].

Several of the main immune mediators that are 
expressed within co-regulated gene modules overlap 
with those known to be important in the acute phase of 
SIV and HIV infection, including CCL2, TNF, and IL1B 
[83–85]. However, we also identify unique chemokine 
signatures that distinguish responses to lentiviral patho-
genic variants. For example, we observe expression of 
neutrophil chemoattractants CXCL1 and CXCL2 primar-
ily by CL8-infected animals. We hypothesize that these 
chemokines, which are not expressed by 170-infected 
animals, may play important roles in downstream 
immune signaling cascades. Such cascades would be 
expected to exert downstream effects on neutrophils, 
which have been implicated in modulating HIV-1 disease 
course [86], but unfortunately, we are unable to analyze 
neutrophils as we were limited to profiling of cryopre-
served mononuclear cells. Additionally, we found that 
170-infected animals were the predominant producers of 
CXCL10 and CXCL16, which both operated in dense lon-
gitudinal networks of pro-inflammatory cytokine regula-
tion. These findings implicate CXCL10 and CXCL16 in 

immune responses to highly pathogenic lentiviral infec-
tion and provide an avenue for future study.

Additionally, we used novel longitudinal frameworks 
for single-cell resolution CCC analysis to reveal that 
broad, sustained, and densely connected regulatory net-
works of pro-inflammatory cytokines are a defining 
feature of responses to highly pathogenic lentiviral infec-
tion. While longitudinal cytokine regulatory networks 
were largely disconnected in both CL8-infected animals, 
in 170-infected animals, pro-inflammatory cytokines 
were predicted to upregulate additional cytokines 
that were active at future time points. This is sugges-
tive of amplifying positive feedback loops that result in 
the observed breadth of inflammatory activity in highly 
pathogenic Lentivirus infection. While the distinct struc-
ture of these regulatory networks may be due to unique 
immune phenotypes induced by 170-infected cells, it is 
also possible that this observation is driven primarily by 
sustained viral loads in these animals or by distinct pro-
cesses of infection and inflammation occurring in the 
lymphatics or other tissues. While therapeutic blockade 
of numerous chemokine and cytokine pathways has been 
proposed and tested for applications in autoimmunity, 
these approaches have remained generally unexplored in 
HIV and other infectious diseases. For example, biolog-
ics targeting CXCL10 are currently being evaluated for 
treatment of inflammatory bowel disease and multiple 
sclerosis [87]. By implicating chemokines like CXCL10 as 
hubs of putatively pathogenic inflammatory networks in 
Lentivirus infection, we hypothesize that pharmacologi-
cal targeting of these pathways could represent a novel 
strategy to modulate lentiviral virulence in HIV. Similar 
to preliminary work on blockade of type I IFN signal-
ing [69, 72, 74], targeting inflammatory pathways such 
as CXCL10 and CXCL16 may also yield benefits of sup-
pressing inflammatory pathology but with less risk of 
promoting viral replication. Such therapeutic interven-
tions could also have utility outside of the acute phase 
of HIV infection, given that even patients with chronic 
HIV on antiretroviral therapy are known to have residual 
chronic inflammation that has been linked to comorbidi-
ties including cardiovascular disease and neurocognitive 
impairment [88–91].

There are several potential limitations to our work. 
First, sample availability limits our sample size, as well as 
the possible analysis modalities we can apply to under-
standing longitudinal immune profiles in this cohort. 
For example, our analyses are limited to transcriptomic 
readouts; unfortunately, we were unable to perform 
serum proteomics to validate protein-level changes 
that we identify at the transcriptional level. Addition-
ally, this work profiled exclusively circulating immune 
cells; although understanding the peripheral immune 
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system is critical to understanding aberrant and pro-
tective immune responses to SIV infection, it does not 
capture the immune response at other important sites 
of infection, including lymph nodes. Further functional 
experimentation is necessary to validate or refute many 
of the hypotheses presented here.

Conclusions
Collectively, we perform the first single-cell resolution 
dissection of the distal immune mechanisms that dis-
tinguish infection with highly related lentiviral vari-
ants of different virulence. Our work indicates a model 
of pathogenic Lentivirus infection where cells infected 
with highly pathogenic Lentivirus fail to upregulate a 
sufficient breadth and magnitude of ISGs, in turn lead-
ing to poorly controlled viremia that drives broad and 
sustained positive feedback loops of inflammatory net-
works. We nominate key drivers of these inflammatory 
pathways, including CXCL10 and CXCL16, by using a 
combination of gene module discovery and novel lon-
gitudinal CCC analysis frameworks and reveal distinct 
regulatory programs of pro-inflammatory chemokines 
delineating responses to highly pathogenic lentiviral 
infection. Together, our work provides several mecha-
nistic targets for further investigation that may repre-
sent targets for modulating lentiviral pathogenicity.
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