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Abstract 

Background Spatial resolved transcriptomics (SRT) encompasses a rapidly developing set of technologies that ena-
ble the measurement of gene expression in tissue while retaining spatial localization information. SRT technologies 
and the enabled SRT studies have provided unprecedent insights into the structural and functional underpinnings 
of complex tissues. As SRT technologies have advanced and an increasing number of SRT studies have emerged, 
numerous sophisticated statistical and computational methods have been developed to facilitate the analysis 
and interpretation of SRT data. However, despite the growing popularity of SRT studies and the widespread avail-
ability of SRT analysis methods, analysis of large-scale and complex SRT datasets remains challenging and not easily 
accessible to researchers with limited statistical and computational backgrounds.

Results Here, we present SRT-Server, the first webserver designed to carry out comprehensive SRT analyses 
for a wide variety of SRT technologies while requiring minimal prior computational knowledge. Implemented 
with cutting-edge web development technologies, SRT-Server is user-friendly and features multiple analytic modules 
that can perform a range of SRT analyses. With a flowchart-style interface, these different analytic modules on the SRT-
Server can be dragged into the main panel and connected to each other to create custom analytic pipelines. SRT-
Server then automatically executes the desired analyses, generates corresponding figures, and outputs results—all 
without requiring prior programming knowledge. We demonstrate the advantages of SRT-Server through three case 
studies utilizing SRT data collected from two common platforms, highlighting its versatility and values to researchers 
with varying analytic expertise.

Conclusions Overall, SRT-Server presents a user-friendly, efficient, effective, secure, and expandable solution for SRT 
data analysis, opening new doors for researchers in the field. SRT-Server is freely available at https:// spati altra nscri 
ptomi csana lysis. com/.
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Background
Spatially resolved transcriptomics (SRT) encompasses a 
suite of innovative technologies that enable gene expres-
sion profiling of complex tissues with spatial localization 
information [1–4]. Some of these technologies, such as 
10 × Visium [5], Slide-seqV2 [6], and Stereo-seq [7], are 
based on high-throughput sequencing, while others like 
MERFISH [8], seqFISH [9], and CosMx [10] rely on sin-
gle-molecule fluorescent in  situ hybridization. As these 
technologies advance rapidly, numerous computational 
methods and software tools have been developed to 
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facilitate various analyses in SRT studies [11–18]. These 
tools are designed for tasks such as detecting spatially 
variable genes (SVGs) [19–21], conducting cell typing 
and cell type clustering for single-cell resolution SRT 
studies [22–25], performing cell type deconvolution for 
spot resolution SRT [26], characterizing spatial domains 
within tissues [22, 27], inferring cell–cell communica-
tion [13, 28, 29], identifying differentially expressed 
genes (DEGs) in specific cell types or spatial domains [30, 
31], carrying out pathway enrichment analysis [32], and 
reconstructing pseudo-time trajectories across cells or 
spatial locations [33]. Collectively, these SRT experimen-
tal and computational technologies have revolutionized 
numerous fields of biology, allowing for comprehensive 
characterization of the transcriptomic and functional 
landscape of complex tissues, and providing new biologi-
cal insights.

Despite the growing popularity of SRT studies and the 
widespread availability of SRT analysis software, analysis 
of large-scale and complex SRT datasets remains chal-
lenging and not easily accessible to researchers with 
limited statistical and computational backgrounds. Spe-
cifically, SRT computational methods and software tools 
can often be difficult to use, requiring considerable sta-
tistical knowledge and computational skills for effec-
tive application. Challenges include choosing the proper 
methods for analysis, installing new software, building 
the corresponding computational environment, resolv-
ing package dependency conflicts, determining the 

appropriate command line for the intended analysis, and 
debugging code whenever error arises. This task can be 
daunting even for experienced bioinformaticians, espe-
cially when faced with administrative restrictions on the 
local computing cluster.

To make SRT data analysis fully accessible to main-
stream biologists, we have developed SRT-Server, the 
first webserver designed to carry out a comprehensive set 
of SRT analyses for a wide variety of SRT technologies, 
while requiring minimal prior computational knowledge. 
SRT-Server is user-friendly, features ten analytic modules 
that can perform all the SRT analyses mentioned earlier 
in the introduction, and differs substantially from exist-
ing analytic platforms (Table 1, Additional file 1: Table S1 
and S2; more details in the Discussion and Additional 
file  2). We demonstrate the benefits of SRT-Server 
through the analysis of three example SRT datasets col-
lected from different technologies, tissues, and species. 
Overall, we believe SRT-Server will prove invaluable to 
the SRT research community, facilitating effective, and 
comprehensive analysis of the ever-growing collection of 
SRT datasets.

Implementation
Design of SRT‑Server
SRT-Server (https:// spati altra nscri ptomi csana lysis. com/) 
is a cutting-edge webserver that utilizes state-of-the-art 
web technologies and analytical methods to provide com-
prehensive and user-friendly analysis for SRT datasets. It 

Table 1 Summary of the analytic tools for SRT data  analysisa

a : All URLs for the existing methods: Giotto: https:// rubd. github. io/ Giotto_ site/; Squidpy: https:// squid py. readt hedocs. io/ en/ latest/; Seurat: https:// satij alab. org/ 
seurat/; SPATA2: https:// themi lolab. github. io/ SPATA2/; 10 × Platform: https:// suppo rt. 10xge nomics. com/ spati al- gene- expre ssion/ softw are/ pipel ines/ latest/ algor ithms/ 
overv iew; spatialGE: https:// github. com/ Fridl eyLab/ spati alGE; Spaniel: https:// github. com/ Rache lQuee n1/ Spani el; STellaris: https:// spati al. rhesu sbase. com/

SRT‑Server Giotto Squidpy Seurat SPATA2 10 × Platform spatialGE Spaniel STellaris

Implemented language R + python R python R R R R R + python

Generic SRT format Yes Yes Yes Yes Yes No Yes Yes Yes

Specific SRT format Yes Yes Yes Yes Yes Yes No No No

Interactive operation Yes No No No Yes Yes No No No

Platform specificity Yes No No No No Yes No No No

Visualization Yes Yes Yes Yes Yes Yes Yes Yes Yes

Analytic modules Yes

QC Yes Yes Yes Yes Yes Yes Yes Yes Yes

SVG Yes Yes Yes No Yes Yes No No No

DECON Yes Yes No No Yes Yes Yes No Yes

Clustering Yes Yes Yes Yes Yes Yes Yes Yes No

CCC Yes Yes Yes No No No No No No

DE Yes Yes No Yes Yes Yes No No No

TRAJ Yes No No No Yes No No No No

ORA Yes No No No No No No No No

Reference N/A  [13]  [11]  [30]  [14] N/A  [15]  [16]  [17]

https://spatialtranscriptomicsanalysis.com/
https://rubd.github.io/Giotto_site/
https://squidpy.readthedocs.io/en/latest/
https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://themilolab.github.io/SPATA2/
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/algorithms/overview
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/algorithms/overview
https://github.com/FridleyLab/spatialGE
https://github.com/RachelQueen1/Spaniel
https://spatial.rhesusbase.com/
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allows users to input their SRT data in either a generic 
SRT data format or a platform-specific SRT data format 
obtained from commonly used SRT platforms (Fig.  1). 
The generic SRT data format comprises two files: a gene 
expression file containing gene expression measurements 
across spatial locations measured on the tissue, and a 
location file containing the x and y coordinates of the 

measured locations. Platform-specific data formats are 
available in the form of raw data produced by four com-
monly used SRT platforms, including 10 × Visium [5], 
VIZGEN MERFISH [8], seqFISH [34], and Slide-SeqV2 
[6]. In addition to SRT data, single-cell RNA sequencing 
(scRNA-seq) data may be necessary for certain analytic 
tasks such as reference-based cell type deconvolution. 

Differentially Expressed Genes
(DEG)

Seurat-Wilcox

Cell Cell Communication
(CCC)

SpaTalk, cellchat

Spatially Variable
Genes

(SVG)
SPARK, SPARKX

Pseudo-time 
Trajectory

(TRAJ)
slingshot

Deconvolution
(DECON, DECON_PY)
CARD, cell2location, tangram

Quality Control
(QC)

Seurat, hdf5r

Data Input
SRT data in generic format: gene expression and location information

SRT data from four specific platforms: 10x Visium, MERFISH, seqFISH and Slide-SeqV2. 

Cell Typing
(CT)

CT_PCA (Seurat), CL_jo (BASS), 
CT_Annot (Garnett, scSorter) 

Spatial Domain Detection
(SDD)

SDD_sPCA (SpatialPCA), CL_jo (BASS) 

Clustering

Over 
Representation 

Analysis
(ORA)

clusterProfiler

Fig. 1 Ten analytic modules and their hierarchical relationship in SRT-Server. SRT-Server features ten interconnected analytic modules (boxes), 
each containing one or more analytic methods (small font letters). Users can connect these modules in a hierarchical manner to form a customized 
analytic pipeline. The pipeline always begins with user-uploaded data in a generic or platform-specific format. Next, the QC module performs 
quality control and saves the processed data in h5 format. From the QC module, the pipeline branches into five analytic modules: the DECON 
module, which uses CARD to estimate cell type compositions on each measured spot through deconvolution; the DECON_PY module, which uses 
cell2location and tangram to perform deconvolution; the SVG module, which identifies spatial variable genes (SVGs) with SPARK or SPARK-X; the CT 
module, which clusters cells for single-cell resolution SRT using Seurat or BASS, or annotates them using scSorter or Garnett; and the SDD module, 
which clusters spatial domains using SpatialPCA or BASS. From the clustering modules (CT or SDD), the pipeline moves to three additional analytic 
modules: the TRAJ module for pseudo-time inference of cell types or spatial domains; the CCC module for detecting cell–cell or domain-domain 
interactions using a ligand-receptor database provided on the SRT-Server; and the DEG module for identifying differentially expressed genes (DEGs) 
based on the detected cell types or spatial domains. For genes output from the SVG or DEG modules, the ORA module estimates enrichment 
of biological pathways using five pathway databases provided on the SRT-Server. Note that regular rectangular boxes represent upstream analysis 
(procedures before CT), while rounded rectangular boxes represent downstream analysis based on clustering results
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The input for scRNA-seq data includes an expression 
count matrix that contains gene expression measure-
ments across single cells and a meta matrix containing 
cell type annotations for each cell.

SRT-Server provides a user-friendly interface, allowing 
users to design their desirable analytic pipelines on the 
input data by selecting and combining distinct SRT ana-
lytic modules. Currently, SRT-Server comprises ten SRT 
analytic modules, each of which can perform a specific 
analytic task such as quality control, detecting SVGs, cell 
typing/cell type clustering in single-cell resolution SRT, 
cell type deconvolution in spot resolution SRT, detect-
ing spatial domains, identifying genes that are DEGs in a 
specific cell type or spatial domain, pathway enrichment 
analysis with the identified DEGs or SVGs, detecting 
cell–cell communications in both single-cell resolution 
and spot resolution SRT, and estimating pseudo-time 
trajectories across cells or spatial locations. Each ana-
lytic module in SRT-Server contains multiple SRT com-
putational methods previously developed for the analytic 
task, providing users with the flexibility to select the best 
computational method to suit their needs.

To ensure code compatibility and transportability, each 
analytic module in SRT-Server follows the same coding 
standard and consists of three main functions: check, call, 
and post. These functions are called sequentially by the 
application programming interfaces (APIs). In the check 
function, SRT-Server verifies the inputs for the module, 
saves all specified model parameters and transfers to the 
data format for call function. The call function carries 
out analysis by fitting the model, saves temporary files to 
the disk, and reports the path of the output results. In the 
post function, SRT-Server loads the temporary files and 
processes them to make them available to the user. The 
three main functions are carried out in a sequential fash-
ion to minimize computational resource requirements. 
The three main functions in different modules are also 
relatively independent of each other, allowing for effi-
cient concurrent computation. In addition to the three 
main functions, some analytic modules may include a 
plot function that generates figures and saves R plotting 
objects. The details of each analytic module are described 
in the module section below.

The analytic modules in SRT-Server provide the foun-
dation for building user-defined analytic pipelines. 
These modules are represented as icons on the sidebar 
in the graphical interface of the SRT-Server. Users can 
drag these modules onto a canvas on the interface and 
use arrows to connect them to form their desired ana-
lytic pipeline. Therefore, the entire process of building 
the pipeline is user-friendly and interactive. In addition, 
users can select a particular method inside each module 
for analysis. For each selected method, users can choose 

to use pre-specified default parameters in the method 
or specify the modeling parameters as desired. With the 
user-defined pipeline, SRT-Server automatically carries 
out the desired analyses, generates corresponding figures, 
and outputs results for users to download. In addition, 
SRT-Server builds upon a high-performance concurrent 
programming framework, allowing each analytic task 
to be assigned to a different node and interconnected 
with each other using disk path. Such coding framework 
ensures efficient and effective computation.

Overall, the module framework and user-friendly inter-
face of SRT-Server allows users to build analytic pipelines 
in an intuitive manner and carry out comprehensive anal-
yses of SRT data without prior programming skills. Fur-
thermore, the framework of SRT-Server is expandable, 
allowing for easy incorporation of future software tools 
as new modules for SRT analysis. To incorporate a new 
module into SRT-Server, developers only need to provide 
the code for the module in SRT-Server standard code for-
matting, along with any additional information for the 
dependency structure of the software and package. The 
developers can send email inquiry or create an issue on 
GitHub page to initiate the new method or new module 
implementation process. Upon verifying the code of the 
new method/module, it will be implemented in SRT-
Server in a timely manner. With this expandable frame-
work, SRT-Server can incorporate any future software 
tools to enhance the capabilities of its analytic modules, 
providing users with even more options for comprehen-
sive analytics.

Technical implementation of SRT‑Server
SRT-Server is designed as a client–server website to pro-
vide a secure, efficient, stable, and user-friendly server 
environment (Fig.  2). It has been thoroughly tested 
on multiple web browsers including Chrome, Firefox, 
Microsoft Edge, and Safari, as well as on three distinct 
operating systems including Windows, MacOS, and 
Linux. SRT-Server comprises four major technical com-
ponents: the user management system, the frontend web 
application, the backend web server, and the proxy client. 
These components work together seamlessly to provide a 
user-friendly and computationally efficient experience for 
users analyzing SRT data.

The user management system in SRT-Server is respon-
sible for managing user registration and login, record-
ing user-built analysis pipelines, and outputting results 
from different projects. It employs three web frame-
works: Spring Security, Druid, and MySQL. Spring 
Security is a robust and customizable authentication 
and access-control framework that SRT-Server uses to 
provide comprehensive support for both authentica-
tion and authorization. It ensures the security of user 
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data and restricts access to unauthorized users. Druid 
is a high-performance real-time analytics database that 
SRT-Server uses to reduce the time to load, manage, and 
query data while supporting high query concurrency. It 
provides fast and reliable data access, making SRT-Serv-
er’s data processing and retrieval efficient and effective. 
MySQL is a powerful and stable solution used in SRT-
Server for ease of data management. It is a widely used, 
open-source relational database management system that 
ensures the security and reliability of data storage and 
retrieval. Together, these web frameworks provide a sta-
ble and secure foundation for SRT-Server’s user manage-
ment system, ensuring the confidentiality and integrity of 

user data and making the platform a reliable and efficient 
tool for SRT data analysis.

The frontend web application in SRT-Server is respon-
sible for data uploading, interactive analytic pipeline 
building, model parameter setup, and results report-
ing and downloading. It is designed as a web single page 
application (SPA) and implemented using three open-
source frameworks: VUE, Element-UI, and LogicFlow. 
VUE is a rich and progressive ecosystem that builds on 
top of standard HTML, CSS, and JavaScript with an intu-
itive API that underlies the framework of SRT-Server. It 
provides a flexible and easy-to-use platform for build-
ing user-friendly interfaces that streamline data analysis. 

L-R
Data

Front-end Client

Back-end Server

REST API Environment

R v4.2.2

20 SRT packages
5 plot processing
packages
19 data
processing
packages

Server

JavaScript Framework
Class & Style
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Fig. 2 The design and implementation of SRT-Server. SRT-Server is a web-based application with an easy-to-use interface designed for analyzing 
and visualizing spatial transcriptomics data. Users can access SRT-Server website using Chrome or Firefox browsers. After logging in, users can 
upload their spatial transcriptomics data, create a personalized analytic pipeline, carry out desired SRT analyses, and download the generated 
results and figures. SRT-Server consists of a user management system, a front-end client, a back-end server, and a proxy client. The front-end client 
utilizes the VUE JavaScript framework, Element UI library, and LogicFlow for analytic pipeline creation. The back-end server employs the Spring 
Boot framework to build the ten analytic modules mentioned in the previous figure. The server further uses Docker to create an environment 
that encapsulates the R computing environment (v4.2.2) along with 43 R packages and the python computing environment (v3.10.6) along with 7 
R packages. We used APIs to transfer ten servers. Overall, SRT-Server facilitates effective and comprehensive analysis of the ever-growing collection 
of SRT datasets
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Element-UI is a comprehensive UI library that provides 
different choices of parameters for different analysis 
procedures in SRT-Server. It offers a wide range of user 
interface components such as radio buttons, checkboxes, 
input fields, time pickers, color pickers, and cascader, 
making it easy for users to set up their desired model 
parameters, select color scheme in the plots, and select 
files for uploading. LogicFlow is a flexible flow chart 
framework that provides a Lego-like interface for build-
ing analytic pipelines in SRT-Server. It enables users 
to drag and drop analytic modules and connect them 
together to form a user-defined analytic pipeline. This 
framework simplifies the process of building an analytic 
pipeline, making it more accessible to users without prior 
programming experience. Together, these open-source 
frameworks provide a solid foundation for SRT-Server’s 
frontend web application, allowing for easy and efficient 
data analysis while providing a user-friendly interface.

The web frontend in SRT-Server communicates with 
the Java-powered backend server through asynchronous 
HTTP requests (AJAX) using JSON as an interchange-
able format. All transmissions between the frontend and 
backend are encrypted using a secure socket layer (SSL) 
to ensure the confidentiality and integrity of user data. 
The Nginx proxy acts as a mediator, accepting HTTP 
requests from the website and forwarding them to the 
web frontend graphical user interface (GUI) and/or back-
end application based on URL routing rules. This setup 
ensures efficient and reliable communication between 
the frontend and backend of SRT-Server. The client–
server communication in SRT-Server is based on REST-
ful APIs constructed using Spring Boot. There are eight 
analysis procedure APIs available, providing a flexible 
and customizable platform for users to analyze their SRT 
data. Together, these technologies provide a robust and 
secure framework for SRT-Server, ensuring efficient and 
effective communication between the frontend and back-
end while maintaining the confidentiality and integrity of 
user data.

The backend web server in SRT-Server is responsible 
for detailed computation and is based on three open-
source frameworks: Nacos, Sentinel, and PowerJob. 
Nacos supports a dynamic configuration service, allow-
ing the server administrator of SRT-Server to manage the 
configuration of all applications and services in a central-
ized, externalized, and dynamic manner across different 
environments. This framework ensures the smooth oper-
ation of SRT-Server and allows for easy management and 
scalability of the server. Sentinel uses flow control, flow 
shaping, circuit breaking, and system adaptive protection 
to ensure the stability and robustness of SRT-Server’s 
microservices. This framework helps to prevent system 
overload and ensures the efficient and effective operation 

of SRT-Server. SRT-Server uses PowerJob, a distributed 
computing and job scheduling framework, to perform 
debugging for different analytic modules one at a time. 
This framework ensures efficient computation and mini-
mizes the risk of errors in the analysis process. The back-
end server deploys Docker to resolve conflicts between 
software packages. Docker provides an R (v4.2.2) and 
python (v.3.10.6) along with 53 third-party packages for 
the ten analytic modules and eight visualization modules. 
These packages include 26 data processing packages, 
five plot processing packages, and 22 SRT analysis pack-
ages (Table  2). For example, the SVG module contains 
four third-party SRT packages including SPARK [19, 
20], amap, dplyr, and spdep. These packages ensure effi-
cient and accurate computation for SRT analysis, making 
SRT-Server a reliable and powerful tool for data analysis. 
Together, these frameworks and technologies provide a 
robust and efficient backend for SRT-Server, ensuring the 
smooth operation of the server and the accurate and reli-
able analysis of SRT data.

Finally, the proxy client is deployed in SRT-Server to 
improve the speed of internet connection while maintain-
ing the privacy of the client’s IP address. This framework 
allows for efficient and effective data transfer between the 
client and server while ensuring the confidentiality and 
security of user data. The proxy client in SRT-Server acts 
as an intermediary between the client and server, inter-
cepting requests from the client and forwarding them to 
the server. This setup ensures that the client’s IP address 
remains hidden from the server, protecting the client’s 
privacy and confidentiality. In addition, the proxy client 
also helps to improve the speed of internet connection by 
caching frequently accessed data, reducing the need for 
repeated requests to the server. This setup improves the 
overall efficiency of SRT-Server, making it a reliable and 
user-friendly tool for SRT data analysis.

Analytic modules on SRT‑Server
Here, we provide details for the input data format and 
the ten analytic modules deployed on SRT-Server. Some 
modules also contain a set of reference datasets depos-
ited on the SRT-Server that are required by certain ana-
lytic functions inside these modules.

Input format
SRT-Server supports a generic data input format as well 
as four platform-specific data formats for SRT data col-
lected from four common SRT platforms: 10 × Visium, 
VIZGEN MERFISH, SeqFISH, and Slide-seqV2. The 
generic data format consists of two matrices: a gene 
expression matrix containing gene expression counts 
across genes (rows) for measured spatial locations (col-
umns), and a location information matrix containing the 
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x and y coordinates (columns) across measured spatial 
locations (rows).

For platform-specific data formats, SRT-Server accepts 
output files from the aforementioned common SRT plat-
forms. For 10 × Visium data [5], users can upload data 
output from Space Ranger in the form of an h5 format 
gene expression matrix, along with an additional file 
folder containing H&E staining images and location 
information. For MERFISH data [8], users can upload 
a file with a name ending in “cell_by_gene.csv” for gene 
expression and a file with a name ending in “cell_meta-
data.csv” for meta data. For Slide-seqV2 data [6], users 
can upload a file with a name including the phrase 
“expression” for gene expression and a file with a name 
including the phrase “location” for location information. 
For SeqFISH data [9], users can provide three file fold-
ers: (i) a cell_locations folder containing at least three 
files named “centroids_annot.txt,” “centroids_coord.
txt,” and “centroids_offset.txt;” (ii) a count_matrix folder 
containing at least one file named “expression.txt;” and 
(iii) a raw_data folder containing at least one file named 
“location_fields.png.” This flexibility in data input for-
mats allows users to easily upload their SRT data to SRT-
Server regardless of the SRT platform used, making it a 
versatile and user-friendly tool for SRT data analysis.

Module for quality control (QC)
This module performs standard quality control for 
SRT datasets. The QC module utilizes two functions 
(Load10X_Spatial and CreateSeuratObject) from the 

Seurat package to initially create a Seurat object, either 
for the 10 × Visium data format or for other data for-
mats. Standard QC is then conducted using min.fea-
tures (default setting: 100) and min.cells (default setting: 
100) parameters. min.features is used to filter out meas-
ured locations with a low number of expressed genes, 
while min.cells excludes features with a low number of 
expressed spots. In addition to these standard filtering 
processes, the QC module carries out extra gene filtering 
on data from the Visium and MERFISH platforms. Spe-
cifically, for Visium, SRT-Server removes the non-coding 
transcripts, such as microRNA (miRNA) and long non-
coding RNA (lncRNA), which are not tested on other 
platforms. For MERFISH, SRT-Server removes genes 
with names starting with “Blank”. After gene and loca-
tion filtering, the QC module saves the processed SRT 
data in the h5 format, which contains five information 
groups: gene expression matrix, location information, 
spot label, gene ID, and platform information. If multiple 
SRT samples are uploaded, the QC module applies the 
same parameter settings to perform QC for all samples, 
obtains the intersection of retained genes across sam-
ples, and saves the processed data into h5 format groups. 
The h5 format output from the QC module is compatible 
with various software programs, including R and python. 
Specifically, when using the QC module, user first drags 
Input Data and QC module to the canvas, connect them, 
and click the Save button. Afterwards, user can click 
Input Data to select or upload SRT data for analysis and 
can also set up parameter arguments for the QC module.

Table 2 Included R and python packages for different modules in SRT-Server

Modules/Utilities Packages

Input/Output (IO) hdf5r

Quality Control (QC) Seurat, dplyr, bigreadr

Deconvolution (DECON) CARD, hdf5r, plyr, gtools bigreadr, dplyr, SingleCellExperiment

Deconvolution (DECON_py) os, numpy, pandas, anndata, h5py, scipy, re, cell2location, tangram

DECON_Plot hdf5r, dplyr, bigreadr, ggplot2, scatterpie, SingleCellExperiment

Spatially Variable Genes (SVG) SPARK, dplyr, amap, spdep

SVG_Plot Seurat, ggplot2, dplyr, viridis, tidyr, reshape2, scales

Cell Typing (CT) Seurat, SeuratDisk, BASS, scSorter, monocle, garnett, org.Hs.eg.db, org.Mm.eg.db, glmGamPoi, dplyr, hdf5r, plyr

Spatial Domain Detection (SDD) BASS, SpatialPCA, dplyr

CT_Plot and SDD_Plot Seurat, hdf5r, dplyr, bigreadr, ggplot2

Differentially Expressed Genes (DE) Seurat, hdf5r, dplyr, bigreadr

DE_Plot hdf5r, dplyr, bigreadr ComplexHeatmap, viridis, circlize, reshape2

Cell Cell Communication (CCC) hdf5r, SpaTalk, liana, bigreadr, dplyr, SingleCellExperiment, Giotto

CCC_Plot CellChat, bigreadr, dplyr

Over Representative Analysis (ORA) clusterProfiler, ReactomePA, DOSE, org.Mm.eg.db, org.Hs.eg.db, dplyr, tibble, Matrix, bigreadr

Psudo-time Trajectory (TRAJ) Slingshot, SingleCellExperiment, tradeSeq, BiocParallel, Seurat, hdf5r, stringr, dplyr, tibble, tidyr, bigreadr

TRAJ_Plot hdf5r, ggplot2, bigreadr, dplyr, ComplexHeatmap, viridis, circlize, tidyr, reshape2, scales, ggtree, aplot, patchwork
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Module for identifying SVGs (SVG)
This module performs analysis to identify SVGs. It 
includes two different SVG detection methods: SPARK 
[19] and SPARK-X [20] as well as two standard spatial 
statistics tests Moran’s I and Geary’s C. SPARK employs 
a generalized linear spatial model (GLSM) with different 
kernel functions to directly model count data from SRT. 
It also uses an efficient penalized quasi-likelihood (PQL) 
algorithm for model fitting and an exact formula to test 
the spatial variance component for calibrated SVG detec-
tion. SPARK-X is a non-parametric version of SPARK 
and is highly scalable to very large-scale SRT datasets. 
SPARK can be more powerful than SPARK-X on datasets 
where SPARK is scalable, while SPARK-X is much more 
computationally efficient than SPARK so that it can han-
dle extremely large-scale SRT datasets that SPARK can-
not. In addition to these methods, the SVG module also 
offers a set of plotting functions (SVG_Plot) capable of 
producing three types of plots to visualize SVG analysis 
results. These plots include a qqplot that displays the dis-
tribution of SVG detection P values, a location feature 
plot that showcases the top significant SVGs, and a pat-
tern plot that reveals the spatial expression patterns of 
the detected SVGs.

Module for cell type deconvolution (DECON and DECON_PY)
This module performs cell type deconvolution at each 
measured spatial location for spot level SRT datasets, 
such as 10 × Visium. The DECON module employs three 
methods, including CARD implemented in the DECON 
module, as well as cell2location and Tangram imple-
mented in the python version of the DECON module 
(DECON_PY), for deconvolution analysis. CARD is a 
computationally efficient method that relies on a non-
negative matrix factorization to perform deconvolution 
while using a conditional autoregressive (CAR) modeling 
assumption to encourage similarity in cell type compo-
sition in neighboring spatial locations, thus optimizing 
deconvolution performance [26]. CARD can perform 
either reference-based deconvolution or reference-free 
deconvolution. The former uses an external scRNA-seq 
dataset measured on the same tissue as a reference, while 
the latter only requires the name of a list of cell marker 
genes for the target tissue. cell2location uses an approxi-
mate variation inference in the scvi-tools framework for 
deconvolution [35]. Tangram uses a nonconvex optimi-
zation algorithm to estimate the probabilistic mapping 
matrix between a scRNA-seq data and the SRT data [36]. 
The cell mode of Tangram requires the scRNA-seq and 
SRT data collected from the same sample, while the clus-
ter mode of Tangram supports different samples for the 
two datasets. For the reference-based version of CARD, 
cell2location, and Tangram, SRT-Server provides 51 

scRNA-seq data to serve as reference. For the reference-
free version of CARD, SRT-Server also provides gene 
marker sets from 20 normal tissue datasets in mice [37] 
and 8 normal tissues with 23 diseases status in humans 
(Additional file  1: Table  S1 and S2). Moreover, we have 
added an Upload Selection option for the user to first 
choose whether to upload their own reference data or 
not. In the case of user choosing to upload their own ref-
erence data, a cascade will show up, displaying all the files 
in the current data space with options for users to upload 
their own reference file. In addition to deconvolution 
analysis, the DECON module also offers a set of plotting 
functions (DECON_Plot) to produce four types of plots 
to visualize deconvolution results. These plots include a 
pie plot that displays the proportion of different cell types 
on each measured location, a cell type proportion plot 
that displays the proportion of a specific cell type on each 
location, a feature plot that displays expression measure-
ments for a given gene across locations, and a cell type 
location plot that displays the location of different cell 
types. Some of the plots can be created at enhanced reso-
lution thanks to the ability of CARD in creating refined 
spatial maps with a resolution higher than that measured 
in the original study.

Module for spatial domains detection (SDD)
This module performs spatial clustering to group spa-
tial locations into distinct tissue domains in a spatially 
informed manner. The SDD module employs two differ-
ent methods for spatial clustering: (1) SDD_sPCA: the 
spatially aware principal component analysis (Spatial-
PCA); and (2) CL_jo: the Bayesian analytics for spatial 
segmentation (BASS). SpatialPCA first performs spatial 
PCA to extract the spatial PCs, which represent a low-
dimensional embedding for the gene expression matrix 
with spatial localization information. Afterwards, Spa-
tialPCA performs either k-means clustering or Louvain 
clustering on the extracted spatial PCs. Users can choose 
the desired number of spatial domains during the analy-
sis. When handling multiple SRT samples, SpatialPCA 
in the SDD module directly uses the standard integra-
tion pipeline in Seurat to integrate gene expression data 
across multiple samples before preforming spatial PCA 
and spatial domain detection. BASS is a Bayesian hierar-
chical model that carries out multi-scale analysis in the 
form of cell type clustering and spatial domain detec-
tion. Users can similarly input the desired number of 
spatial domains and the desired number of cell types to 
BASS during the analysis. When handling multiple SRT 
samples, BASS in the SDD module supports two analysis 
options: merge [30], which directly merges the raw count 
matrices from different samples; and harmony [38, 39], 
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which iteratively removes batch effects from different 
samples using the harmony approach.

In addition to analytic methods, the SDD module also 
offers a set of plotting functions that can generate two 
types of plots. These plots include a location plot that 
displays the spatial clustering results across spatial loca-
tions and a heatmap that displays the average expression 
levels for a set of genes (either the top 50 highly vari-
able genes or a set of genes chosen by user) across the 
detected spatial domain clusters. Importantly, the SDD 
module provides an interactive page, which contains 
multiple interactive panels. Specifically, the first panel 
contains a location plot, which displays the inferred spa-
tial domain labels for the spatial locations. These labels 
are colored with the default color scheme. The second 
panel shows the same location plot but allows users to 
choose their own color scheme. The third panel contains 
a spatial expression plot, which displays gene expression 
level across tissue locations. The fourth panel contains 
the same location plot with the selected spatial domains. 
Users have the option to select which gene to display 
on the third panel and which spatial domain to display 
on the fourth panel. Besides these four panels, the SDD 
module also provides a table to display the correspond-
ing DEG information, including gene ID, cluster number, 
P-value, and FDR.

Module for cell typing (CT)
This module supports two distinct analyses for single-cell 
resolution SRT data, such as MERFISH: (1) cell typing 
(CT_PCA and CL_jo), also known as cell type cluster-
ing, which infers cell types and clusters each cell into a 
cell type; and (2) cell type annotation (CT_Annot), where 
the inferred cell types are annotated based on a refer-
ence panel or known cell type marker genes. The module 
provides two cell typing methods: principal component 
analysis (PCA) and joint model. The PCA method imple-
ments the standard Seurat pipeline that applies PCA 
to perform dimensional reduction, extracts the top 
PCs that explain at least 80% of gene expression vari-
ance, and conducts cell type clustering based on the top 
PCs using the k-means clustering algorithm. The PCA 
method allows users to specify a resolution parameter to 
achieve the desired number of cell type clusters. When 
handling multiple SRT samples, the PCA method in the 
CT module offers three options for data harmoniza-
tion: merge, integration [30], and SCTransform [40]. The 
merge option is consistent with what has been explained 
in the previous module. Both integration and SCTrans-
form options perform data normalization in each dataset 
first before harmonizing them across datasets. Specifi-
cally, the integration option normalizes the gene counts 
for each cell by dividing with the total counts for the 

cell, multiplying a scaling factor of 10,000, and applying 
the natural logarithm transformation. The SCTransform 
option uses a modeling framework for variance stabiliza-
tion and obtains Pearson residuals from regularized neg-
ative binomial regression. Subsequently, both integration 
and SCTransform options use the canonical correlation 
analysis (CCA) to project the normalized data into a sub-
space and identify the mutual nearest neighbors in the 
CCA subspace to serve as anchors for data harmoniza-
tion. For both integration and SCTrasform options, users 
can freely set the number of anchors and the number of 
canonical correlation vectors in the data harmonization 
step.

In addition to cell typing, SRT-Server can also per-
form cell type annotation using two approaches: scSorter 
[24] and Garnett [25]. scSorter requires an additional 
input file containing a list of cell type-specific marker 
genes. It first employs a likelihood function to integrate 
the expression levels of marker genes with that of non-
marker but highly variable genes, then optimizes the 
likelihood function to annotate known and unknown cell 
types. Garnett also requires a file that contains a list of 
cell type-specific marker genes, in addition to the SRT 
data. Garnett first selects “representative” cells using 
marker genes for each cell type, trains a multinomial 
classifier using an elastic net regression on the “repre-
sentative” cells using all genes, and then classifies the 
“non-representative” cells using the trained classifier. In 
addition, like the DECON module, user can also upload 
their own reference scRNA-seq data.

Aside from these analytic methods, the CT module 
also includes a set of plotting functions that can generate 
three types of plots. These plots include a location plot 
that displays the cell type clustering results across spatial 
locations, a scatter plot that displays the low-dimensional 
embedding based on the Uniform Manifold Approxima-
tion and Projection (UMAP), and a heatmap that displays 
the average expression levels for a set of genes (either 
the top 50 highly variable genes or genes chosen by user) 
across the cell type clusters. Importantly, the CT mod-
ule provides an interactive page, which contains multiple 
interactive panels. Specifically, the first panel contains a 
location plot, which displays the inferred cell type labels. 
These labels are colored with the default color scheme. 
The second panel shows the same location plot but 
allows users to choose their own color scheme. The third 
panel contains a spatial expression plot, which displays 
gene expression level across tissue locations. The fourth 
panel contains the same location plot with the selected 
cell types. Users have the option to select which gene to 
display on the third panel and which cell type to display 
on the fourth panel. Besides these four panels, the CT 
module also provides a table to display the corresponding 
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DEG information, including gene ID, cluster number, 
P-value, and FDR.

Module for detecting DEGs (DEG)
This module aims to identify genes that are differentially 
expressed either within a specific spatial domain, utiliz-
ing output from the SDD module, or within a specific cell 
type, using output from the CT module. Following the 
recommendations of [31], the DEG module implements 
the Wilcoxon rank-sum test from the FindAllMarkers 
function in Seurat to detect DEGs. In addition to the DE 
analysis method, the DE module also includes a set of 
functions that generate two types of plots to visualize DE 
results. These plots include a heatmap that displays the 
gene expression levels for a set of selected genes across 
clusters, and a feature plot that displays the expression 
level of the specific genes across locations.

Module for identifying pathways that are enriched with DEGs 
or SVGs (ORA)
This module aims to identify biological pathways that 
are enriched in the DEGs detected by the DEG module 
or in the SVGs detected by the SVG module. The ORA 
module implements the ORA function in clusterPro-
filer or ReactomePA for pathway enrichment analysis 
and includes five pathway databases: Gene Ontology 
(GO) [41], Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [42], WikiPathways [43], ReactomePA [44], and 
Disease Ontology (DO) [45]. Dependent on the species of 
the data, the ORA module converts the gene symbols to 
Ensembl ID using the bitr function either in org.HS.eg.
db for human [46] or in the org.Mm.eg.db for mice [47]. 
In addition to pathway enrichment analysis, the ORA 
module also offers a set of plotting functions for generat-
ing two types of plots to visualize the results. These plots 
include a bubble plot that displays the detected enriched 
biological pathways, and a dot plot that displays P value 
and the ratio for the top ten significant pathways.

Module for detecting cell–cell or domain‑domain 
communications (CCC)
This module aims to detect either cell–cell communi-
cations based on the output from the CT module or 
domain-domain communications based on the output 
from the SDD module. Using the results from CT or 
SDD, the CCC module employs SpaTalk and cellchat to 
detect communications through ligand-receptor (LR) 
interactions [29, 48]. The CCC module offers a total of 
20 LR databases in mouse and human: one from SpaTalk.
DB [29] and 18 from the LIANA databases (i.e. iTALK, 
CellTalkDB, CellPhenoDB, and so on) [28], and one 
from gitto.mouse [13]. With a user-selected LR data-
base, SpaTalk constructs a cell graph network using the 

K Nearest Neighborhood (KNN) algorithm, counts the 
1-hop neighbor nodes of receivers for each sender using 
the LR database, and defines the significant communica-
tions by shuffling cell labels to recalculate the number of 
LR interaction pairs. Based on cellchatdb, cellchat esti-
mates the LR strength and tests its significance using per-
mutation test.

In addition to detecting communications, the CCC 
module also offers a set of plotting functions to gener-
ate two types of plots for visualizing the communication 
detection results [48]. These plots include a circle plot 
that displays the number of significant LR pairs between 
cell type pairs or spatial domain pairs, and a dot plot 
that displays the magnitude for a selected set of LR pairs 
between cell type pairs or spatial domain pairs. Impor-
tantly, the CCC modules provides an interactive page, 
which contains a pathway information table, a circle plot 
connecting the identified interactions among cell types or 
spatial domains, a cell–cell communication network plot 
displaying the magnitude and significance of selected 
cell type pairs, and a heatmap to visualize the interaction 
strength and significance for pairs of genes from a gene 
pathway that is chosen by the user.

Module for estimating the trajectory across cells 
or across spatial locations (TRAJ)
This module aims to estimate the pseudo-time trajec-
tory either across spatial locations or across cells. The 
pseudo-time trajectory inference is straightforward on 
single-cell resolution SRT data. However, it can become 
challenging and difficult to interpret when directly 
applied to the gene expression measurements collected 
in non-single-cell/spot resolution SRT data. In particular, 
in the spot resolution SRT data, each measured spot may 
contain a mixture of cells from potentially heterogene-
ous cell types. Consequently, the pseudo-time inferred 
on each spot likely represents the average pseudo-time 
across the cells on the spot, making the interpretation 
challenging. Therefore, for single-cell resolution spatial 
transcriptomics, TRAJ can directly take as input the low 
dimensional components output from the PCA method 
in the CT module to perform trajectory inference across 
cells on the tissue. In addition, TRAJ can take as input 
the low-dimensional components output from the Spa-
tialPCA method in the SDD module to perform trajec-
tory inference across tissue locations. For spot resolution 
spatial transcriptomics, TRAJ can take as input the cell 
type-specific expression estimates output from the three 
methods in the DECON module to construct pseudo-
time across cells within a particular cell type to capture 
the developmental stages of the cells in the cell type. In 
either case, the TRAJ module employs Slingshot to per-
form trajectory analysis across cells or spatial locations. 
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Slingshot uses a cluster-based minimum spanning tree 
to stably identify the key elements of the global lineage 
structure. Then, Slingshot uses simultaneous principal 
curves to fit smooth branching curves. In addition to 
trajectory analysis, the TRAJ module also offers a set of 
plotting functions that can produce three types of plots 
to visualize the trajectory inference results. These plots 
include a scatter plot that displays how gene expression 
changes over pseudo time for selected gene, a heatmap 
that shows the expression levels of the top 50 genes asso-
ciated with the inferred pseudo-time, and a location plot 
to visualize the inferred pseudo-time across spatial loca-
tions on the tissue.

Module compatibility
We note that while we have described each of the ten 
analytic modules in the SRT-Server separately, it is 
important to note that there is a partial hierarchical 
structure among these modules (Fig. 1). Specifically, the 
QC module is typically positioned at the beginning of 
the analysis pipeline before any other modules. The DE, 
CCC, and TRAJ modules all require output from either 
the SDD module or the CT module. The ORA module 
requires output from either the SVG module or the DEG 
module. Finally, the DECON and DECON_PY modules 
are specifically designed for spot resolution SRT datasets 
while the CT module is specifically designed for single-
cell resolution SRT datasets.

Datasets for case studies
We demonstrate the utility of the SRT-Server through 
three case studies involving SRT datasets collected by 
various technologies and on distinct tissues and spe-
cies. In Case Study 1, we obtained the 10X Visium data-
set collected on mouse brain sagittal anterior sections 
from the 10X Visium spatial gene-expression repository 
(https:// www. 10xge nomics. com/ resou rces/ datas ets/ 
mouse- brain- serial- secti on-2- sagit tal- anter ior-1- stand 
ard). The data contains 19,330 transcripts measured on 
2695 spots. In Case Study 2, we obtained the 10X Visium 
dataset collected on two tissue samples of HER2 + breast 
cancer (samples GSM5732357 and GSM5732358 from 
GSE190811) [10]. The data contains 14,511 transcripts 
measured on 3055 and 4454 spots in the two samples, 
respectively. In Case Study 3, we acquired the Vizgen 
dataset collected on the mouse brain (slice 2 replica-
tion 3; https:// info. vizgen. com/ mouse- brain- data) and 
selected a quarter of the slice centering on the hippocam-
pus for analysis. The analyzed hippocampus data con-
tains 483 genes measured on 20,100 cells.

Results
Overview of SRT‑Server
The SRT-Server is a user-friendly, highly expandable 
server framework designed to facilitate the analysis of 
SRT studies (Fig.  1). A comprehensive description of 
the SRT-Server is provided in the “Methods” section. In 
summary, the SRT-Server enables users to construct an 
entire SRT analysis pipeline without any prior program-
ming knowledge by utilizing ten analytic modular build-
ing blocks. Each analytic module serves a specific SRT 
analytic task, such as quality control, SVG detection, 
cell type deconvolution for spot resolution SRT, cluster-
ing (cell type clustering for single-cell resolution SRT 
studies or spatial domain detection on the tissue), DEG 
detection in specific cell types or spatial domains, path-
way enrichment analysis, cell–cell communication detec-
tion with spatial location information, and pseudo-time 
trajectory inference with dimensional reduction results. 
Users can simply drag these modules onto an interac-
tive canvas within the SRT-Server and connect them to 
form customized analytic pipelines. Furthermore, the 
SRT-Server’s framework is highly adaptable, capable of 
incorporating new analyses and modules as they emerge, 
provided they are supported by an R package and adhere 
to pre-specified dependency structures (Fig.  2). The 
codeless environment and intuitive interface of the SRT-
Server prove invaluable for biologists, allowing them to 
perform thorough and rigorous SRT analyses without 
requiring a local computational environment, program-
ming language proficiency, or prior statistical and com-
putational knowledge. We demonstrate the advantages of 
the SRT-Server through three case studies.

Case Study 1: 10X Visium Data on Mouse Brain
We first examined a 10X Visium dataset collected from 
sagittal sections of the anterior region of the mouse 
brain. To analyze the data, we constructed an analytic 
pipeline on SRT-Server by dragging and connecting six 
analytic modules (QC, DECON, DECON_PY, TRAJ, 
SDD, DEG, and ORA; Fig. 3A, Additional file 1: Table S3, 
and Additional file 3: Fig. S1). This pipeline enabled us to 
perform quality control, spatial domain detection using 
SpatialPCA, cell type deconvolution with CARD, cell-
2location and tangram, pseudo-time trajectory inference 
using slingshot, DEG detection through the Wilcoxon 
test, and ultimately, pathway enrichment analysis for 
the identified DEGs. The hematoxylin and eosin (H&E) 
stained image of the tissue structure, along with its ana-
tomical annotations in sagittal sections from the Allen 
Brain Atlas [49], are provided in Fig. 3B, C.

After performing QC using default settings, we 
obtained data for 12,528 transcripts measured across 
2695 spots. We first conducted reference-based CARD 

https://www.10xgenomics.com/resources/datasets/mouse-brain-serial-section-2-sagittal-anterior-1-standard
https://www.10xgenomics.com/resources/datasets/mouse-brain-serial-section-2-sagittal-anterior-1-standard
https://www.10xgenomics.com/resources/datasets/mouse-brain-serial-section-2-sagittal-anterior-1-standard
https://info.vizgen.com/mouse-brain-data
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with the DECON module, utilizing a mouse brain 
scRNA-seq dataset hosted on SRT-Server as the ref-
erence. The reference scRNA-seq dataset comprises 
expression measurements for 14,699 genes across 32,621 
cells belonging to 20 cell types (Additional file  3: Fig. 

S2) [50]. The DECON analysis accurately estimated the 
expected layered structure of the mouse brain (Fig.  3D 
and Additional file  3: Fig. S3-S4). Some key findings in 
the DECON analysis include mature neurons, on aver-
age, represented the highest cell type proportion across 

Fig. 3 Analytic pipeline and results summary for the anterior mouse brain 10X Visium dataset. A The analytic pipeline built on the SRT-Server. The 
constructed analytic pipeline uses eight analytic modules, with the parameter settings for each module visualized on the panel. B The H&E staining 
image displays the general tissue structure of the anterior mouse brain. C A corresponding annotated brain tissue section from the Allen Brain Atlas. 
D A spatial scatter pie plot displays the inferred cell-type compositions across spatial locations from CARD in the DECON module. E The trajectory 
inferred by mature neuron whose proportion is estimated by cell2loction. F Fifteen detected spatial domains from SpatialPCA in the SDD module. 
G Bubble plot displays − log10(p-values) for different pathways from the ORA module (y-axis). Six pathways are colored: GO biological process (red), 
GO molecular function (yellow), GO cellular component (blue), KEGG (grass-green), Reactome (grass-green), and Wikipathways (purple)
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spots (mean = 63.23%, median = 71.03%); the propor-
tion of olfactory ensheathing glia was significantly 
higher in the olfactory bulb (OB) than that in other tis-
sue domains (t = 8.26, P value = 6.63E − 13); astrocyte 
proportion was higher in the first layer of the OB or cer-
ebral cortex than in the other tissue domains (t = 25.02, 
P value = 2.01E − 68). In addition, we compared three 
different deconvolution methods, including CARD, 
cell2location, and Tangram, in the DECON module. 
First, we found that the deconvolution results between 
CARD and cell2location are highly consistent (R = 0.949, 
P-value = 0.00E + 00, 95%CI 0.948–0.950), while the 
results from Tangram are different from the other two 
methods (Additional file  3: Fig. S5). Next, we carefully 
examined the devolution results on individual cell types 
and found that the key findings from cell2location are 
again consistent with those of CARD, both of which are 
different from Tangram. Specifically, as expected, both 
CARD and cell2locaton correctly identified the mature 
neurons to be the most abundant cell type in the brain 
(estimated mean proportion for CARD = 63.23%; esti-
mated mean proportion for cell2location = 54.94%), 
while Tangram identified mature neuron to be the fourth 
abundant cell type (mean proportion = 6.32%). In addi-
tion, both CARD and cell2location estimated astrocytes 
to be enriched in the first layer of the OB or in the cer-
ebral cortex as compared to the other parts of the brain 
(t = 25.02, P value = 2.01E − 68 for CARD; t = 15.94, P 
value = 2.56E − 39 for cell2location) while Tangram did 
not (t =  − 0.06, P value = 0.95). Finally, we found CARD 
to be much more computationally efficient than the other 
two methods. The computation time for CARD, cell-
2location, and Tangram are 0.092, 10.968, and 0.267  h, 
respectively.

In parallel to cell type deconvolution with DECON, the 
constructed analysis pipeline on SRT-Server also carried 
out spatial domain detection analysis using the TRAJ 
module. We used cell2location for deconvolution and 
obtaining the cell type-specific expression information, 
with which we further estimated the pseudo-time trajec-
tory using slingshot in the mature neurons (Fig. 3E). The 
inferred neuronal trajectory captures the key features of 
the rostral migratory stream, a migration path of newly 
generated neuroblasts that migrate from the sub ven-
tricular zone of the lateral ventricles into the OB [51]. In 
particular, the pseudo-time of OB (domain 8) is signifi-
cantly higher than that of the lateral ventricle (domain 9) 
(t = 117.11, P-value = 5.38E − 183).

In parallel to cell type deconvolution with DECON, 
the constructed analysis pipeline on SRT-Server also car-
ried out spatial domain detection analysis using the SDD 
module. Here, we selected the SpatialPCA method in 
SDD and set the domain number to be 15. We also set 

the number of domains to be 10 or 20 to explore domain 
detection results under different pre-specified domain 
numbers (Additional file 2: Fig. S6). In SDD, we employed 
the Gaussian kernel function to construct the distance 
kernel matrix across spots, used the Walktrap method 
for clustering spatial domains, and applied SPARK-X 
to select the top 3000 SVGs genes for dimensionality 
reduction (Fig.  3F). The detected spatial domains cap-
tured the three main anatomic structures of the mouse 
brain, including the cerebral cortex (e.g., olfactory area, 
somatomotor area, orbital area, and piriform area), the 
cerebral nuclei (e.g., caudoputamen, nucleus accum-
bens, and olfactory tubercle), and fiber tracts. Each spa-
tial domain consists of a distinct cell type composition 
and each cell type often displays enrichment in specific 
domains. For example, the proportion of astrocytes is 
higher in the cortex layer 1 (domain 14; 21.40%) than in 
the remaining domains (t = 18.86, P value = 9.92E − 38). 
The location plot based on using 15 spatial domains was 
more consistent with both anatomical annotations and 
DECON results than those from 10 and 20 domains.

The constructed analysis pipeline further performed 
DE analysis and detected a total of 26,932 domain-spe-
cific DEGs across 15 spatial domains, with an average 
of 1796 DEGs per domain (ranging from 22 to 4986; 
FDR < 0.01). Many of the detected DEGs are known 
cell type marker genes (Fig. 3D, E and Additional file 2: 
Fig. S7). For example, Plp1 is a known marker gene for 
oligodendrocytes and is involved in axon-supportive 
function of myelin [52, 53]. It is detected as a domain-
specific DEG for domain 11 (fiber tracts; log2FC = 1.67, 
FDR = 6.15E − 66), which contains a much higher pro-
portion of oligodendrocytes than the other domains 
(t = 20.10, P value = 4.95E − 52). As another exam-
ple, Omp is involved in signal transduction and odor 
discrimination while S100a5 is a brain-specific cal-
cium-binding protein [54–57]. Both are detected as 
domain-specific DEGs for domain 15 (glomerular; Omp, 
log2FC = 1.35, FDR = 1.96E − 254; S100a5, log2FC = 4.61, 
FDR = 2.07E − 128), where the proportion of olfactory 
ensheathing glia is much higher than the other domains 
(t = 8.26, P value = 6.63E − 13). As a third example, Igfbp2 
is known to be enriched in astrocytes in gray matter [58]. 
It is detected as domain-specific DEGs for domain 5 (cor-
tical layer 1; log2FC = 0.75, FDR = 1.16E − 22), where the 
proportion of astrocytes is higher than the other domains 
(t = 11.07, P value = 4.82E − 22).

With the detected DEGs, the constructed analysis 
pipeline performed ORA using six databases: GO Bio-
logical Process, GO Cell Component, GO Molecu-
lar Function, KEGG, Reactome, and Wikipathway. We 
first obtained significant pathways using all DEGs and 
a total of 5247 significant pathways (FDR < 0.01) were 
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detected. Examples include regulation of synapse organi-
zation (P value = 1.53E − 70), dendrite development (P 
value = 4.45E − 74), and regulation of neurogenesis (P 
value = 7.82E − 64) (Fig. 3G). We then obtained domain-
specific significant pathways using domain-specific DEGs 
and detected 21,049 significant domain-specific pathways 
based on the same FDR criterion, with, on average, 1403 
significant pathways per domain (median = 1248, rang-
ing from 40 to 3150). For example, 42 significant path-
ways related to synapse, such as synapse organization (P 
value = 6.24E − 41), were detected for domain 3 [59].

Case study 2: 10 × Visium Data on HER2 + Breast Cancer
Next, we analyzed a 10X Visium data collected on lymph 
node metastasis (LNM) from four breast cancer patients 
using SRT-Server [10]. For analysis, we built an ana-
lytic pipeline by dragging and connecting seven analytic 
modules on the server (QC, DECON, SDD, DEG, ORA, 
TRAJ, and CCC; Fig.  4A, Additional file  1: Table  S3, 
and Additional file  2: Fig. S8). The built pipeline allows 
us to perform quality control, spatial domain detection 
with SpatialPCA, cell type deconvolution with CARD, 
pseudo-time inference with slingshot, DEG detection 
with Wilcox test, pathway enrichment analysis on the 
detected DEGs, cell–cell communication identification 
using SpaTalk, and pseudo-time trajectory inference 
using slingshot. The H&E image of the tissue structure is 
provided in Fig. 4B.

After QC, we obtained expression measurements for 
9817 genes for the two HER2 + samples, with 3051 and 
4430 cells, respectively. We first performed cell type 
deconvolution using the DECON module, where we 
selected CARD for analysis with the reference data of 
HER2 + BRCA scRNA-seq that consists of 29,733 tran-
scripts on 19,311 cells from 17 cell types (Additional 
file  2: Fig. S9) [60]. The estimated cell type proportions 
on the SRT data are displayed in Fig. 4C and Additional 
file 2: Fig. S10. We found that the composition of differ-
ent cell types varies across the two HER2 + samples, sug-
gesting tumor heterogeneity in breast cancer [61]. For 
example, cancer epithelial cells were the fourth most 
abundant cell type in the first sample (mean = 7.59%, 
median = 8.51%) but were the most abundant cell type in 
the second HER2 + sample (mean proportion = 13.81%, 
median = 14.32%). The proportion of memory B cells 
and naïve B cells was higher in the first sample than the 
second sample (P value for memory B cells < 2.2E − 16; 
P value for naïve B cells < 2.2E − 16), while the propor-
tion of cancer-associated fibroblasts (CAF) is higher 
in the second sample than the first sample (t = 5.71, P 
value = 1.18E − 08). In addition, based on the deconvolu-
tion results from CARD, we estimated the pseudo-time 
in the cancer epithelial cells using TRAJ module and 

identified 148 genes to be associated with epithelial-mes-
enchymal transition (EMT) based on an FDR threshold 
of 0.05 (Fig. 4E, Additional file 2: Table S4) [62].

In parallel to cell type deconvolution with DECON, 
the constructed analysis pipeline on SRT-Server also car-
ried out spatial domain detection analysis using the SDD 
module, with the same parameter settings as in Case 
Study 1 (Fig. 4D and Additional file 2: Fig. S11). The loca-
tion plot based on using 10 spatial domains was more 
consistent with DECON results than those from 15 and 
20 domains. The detected spatial domains, when paired 
with further trajectory inference, reveal gradient changes 
from the tumor towards tumor-adjacent regions (Fig. 4F 
and Additional file  2: Fig. S12). We also combined the 
results from DECON with that from SDD and TRAJ and 
identified several cell types that are enriched in certain 
spatial domains. Specifically, first, for the second sam-
ple, the proportion of CAFs is higher in domain 7 than 
the other domains (mean in domain 7 = 33.26%, mean 
in other domain = 4.80%, t = 17.04, P value = 9.53E − 37). 
For the first sample, there is no significant difference 
in CAFs detected between these domains (t = 1.76, P 
value = 0.08). Based on evidence that inflammatory-like 
CAFs (iCAFs) disperse across invasive cancer region, 
we speculate that CAFs in the second sample might be 
iCAFs [60, 63]. Accordingly, S100A4 (log2FC = 0.37, 
FDR = 6.50E − 2), which classifies CAF into iCAFs and 
non-iCAFs, is one of the DEGs for domain 7 [64, 65]. 
Second, the proportion of cancer epithelial cells is higher 
in domain 10 than in other domains for both sam-
ples (Sample 1: mean in domain 10 = 11.00%, mean in 
other domains = 7.45%, t = 15.15, P value = 2.96E − 32; 
Sample 2: mean in domain 10 = 16.97%, mean in other 
domains = 13.42%, t = 45.46, P value < 1.05E-267). PTPRT 
(log2FC = 1.23, FDR = 3.74E − 153), which plays an impor-
tant role in cell–cell adhesion and has mutational inac-
tivation of its phosphatase, is the top DEG in domain 10 
[66]. In addition, the pseudo-time inferred on domain 7 
is statistically significantly later than that of domain 10 
(t = 84.19, P value = 0.00E + 00), which has a higher per-
centage of CAF. With the detected spatial domains, the 
constructed analysis pipeline performed DE analysis and 
detected a total of 23,547 domain-specific DEGs across 
10 domains, with 2354 DEGs per domain (ranges from 
5 to 4746; FDR < 0.01) (Additional file  2: Fig. S13). For 
example, FAM129C (log2FC = 1.58, FDR = 1.80E − 45) is 
one of DEGs for domain 7 and also one of the marker 
genes for B memory cells [67]. With the detected DEGs, 
we performed ORA and detected 1818 significant path-
ways with FDR < 0.01. Example significant pathways 
include 37 pathways associated with immune response 
and immune regulation and 27 pathways associated with 
cancer (Additional file 2: Fig. S14).
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Fig. 4 Analytic pipeline and results summary for two tissues from the HER2 + BRCA 10 × Visium dataset. A The analytic pipeline built 
on the SRT-Server. The constructed analytic pipeline uses seven analytic modules, with the parameter settings for each module visualized 
on the panel. B The H&E staining image displays the general tissue structure. C A spatial scatter pie plot displays the inferred cell-type compositions 
across spatial locations from CARD in the DECON module. D 10 detected spatial domains from SpatialPCA in the SDD module. We used 
the clustering result in domain number = 10 to all the downstream analysis, which is not mentioned in the pipeline. E The pseudo-time inference 
result in the cancer epithelial is obtained from slingshot in the TRAJ module after DECON analysis. F The pseudo-time inference results are obtained 
from slingshot in the TRAJ module. The left two panels show the pseudo-time of different cell types on the two samples. The right two plots include 
arrows to display pseudo-time change on the tissue: the arrow point from tissue locations with low pseudo-time towards tissue locations with high 
pseudo-time
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Finally, with the detected domains and the detected 
cell proportions on each spot, the constructed analysis 
pipeline performed CCC analysis using SpaTalk, with 
SpaTalk.DB serving as the LR database (Fig. 4F and Addi-
tional file 2: Fig. S15). In the CCC analysis, based on a P 
value threshold of 0.01, we detected 10,165 significant 
ligand-receptor pairs across cell types (ranges from 31 
pairs for NKT cells to 1809 for CAF). For example, the 
ligand EGF in cancer epithelial cells is significantly asso-
ciated with the receptors ERBB2 (P value = 0.009) and 
EGFR (P value = 0) in CAFs, suggesting a potential signal-
ing cascade from the former to the latter. The two recep-
tors belong to the ErbB family which can be activated by 
eight ligands including EGF. EGFR is expressed in almost 
all nonneoplastic cell types in TME, including CAFs [68].

Case Study 3: MERFISH Data on Mouse Brain
Finally, we examine a MERFISH data collected from 
mouse brain. For analysis, we built an analytic pipeline 
by dragging and connecting six analytic modules (QC, 
CL_jo, CT_annot, CT_PCA, TRAJ, and DEG; Fig.  5A, 
Additional file 1: Table S3, and Additional file 2: Fig. S16). 
The built pipeline allows us to perform quality control, 
joint cell type and spatial domain detection with BASS, 
cell type clustering with Seurat, cell type classification 
with Garnett by external scRNA-seq reference panel, 
pseudo-time inference with slingshot, and DEG detec-
tion with Wilcox test. The anatomic annotations for the 
tissue structures based on Allen Brain Atlas [49] are pro-
vided in Fig. 5B.

After quality control, we obtained 483 genes and 20,100 
cells. Because the data is of single-cell resolution, we per-
formed both spatial domain detection and cell type clus-
tering using the multi-scale method BASS (Fig.  5C, D). 
Based on the Allen Brain Atlas, we set the number of 
regions to 20 and the number of cell types to 40 for BASS 
(Additional file 2: Fig. S17). The spatial domain detected 
from BASS largely resembles that from the Allen Brain 
Atlas. For example, domains 5 and 9 correspond to 
the DG, CA3, and CA1 regions of hippocampus while 
domain 18 corresponds to cortical layer 1. Integrating the 
identified spatial domains with the identified cell types 
from BASS, we found that each spatial domain often 

consists of a unique combination of cell types. For exam-
ple, the hippocampus consisted of three cell types, with 
cell type 28 residing in DG, cell type 10 residing in CA3, 
and cell type 25 residing in CA1. In addition to BASS, we 
also applied two other cell type clustering methods, Seu-
rat and Garnet, for analysis. For Seurat, we set the resolu-
tion parameter to be 0.5 and 1 (Fig. 5E,F and Additional 
file  2: Fig. S18). Consistent with the results from BASS, 
Seurat also defined three cell types for hippocampus: cell 
type 11 residing in DG, cell type 18 residing in CA3, and 
cell type 15 residing in CA1 [69]. For Garnet, we used the 
“Brain_Ximerakis_2019” for reference-based cell type 
inference. With the limitation of gene number, only 17 
cell types are mapped in SRT data. Different to the results 
of BASS and Seurat, Garnet defines only hypendymal 
cells and neuronal restricted precursors in the hippocam-
pus (Additional file  2: Fig. S19). Based on the results of 
BASS from the SDD module, we estimated the pseudo-
time in the cerebral cortex. The cerebral cortex consists 
of domains 4, 8, 9, and 10, and we set domain 4 as the 
starting domain (Fig.  5G). The inferred pseudo-time 
trajectory is consistent with cortical development, with 
newer neurons sitting near to the white matter tract [70].

With the detected cell types from each clustering 
method, the constructed analysis pipeline further per-
formed DEG analysis and identified a total of 2025 and 
2159 cell type-specific DEGs (FDR < 0.01) for BASS and 
Seurat, respectively (Additional file 2: Fig. S20-S21). The 
identified DEGs are highly overlapped between BASS 
and Seurat for the same anatomical structure. For exam-
ple, the number of overlapping DEGs between BASS and 
Seurat for the DG, CA1, and CA3 is 22 (out of 24 DEGs 
in cell type 28 for BASS, all the DEGs in cell type 11 for 
Seurat), 81 (all the DEGs in cell type 10 for BASS, 98 
DEGs in cell type 18 for Seurat), and 64 (65 DEGs in cell 
type 25 for BASS, all the DEGs in cell type 15 for Seurat), 
respectively.

Discussion
In summary, we have designed and developed SRT-
Server to streamline SRT data analysis and make it more 
accessible to biological researchers. The advantages of 
SRT-Server include the following:

(See figure on next page.)
Fig. 5 Analytic pipeline and results summary for analyzing the mouse brain MERFISH dataset. A The analytic pipeline built on the SRT-Server. The 
constructed analytic pipeline uses five analytic modules, with the parameter settings for each module visualized on the panel. B A corresponding 
annotated brain tissue section from the Allen Brain Atlas. C 20 detected spatial domains from BASS in the CL_jo module. D 40 detected cell types 
from BASS in the CL_jo module. E The UMAP plot for 30 detected cell types from Seurat in the CT_PCA module. F Thirty detected cell types 
from Seurat in the CT_PCA module with resolution = 1. G The pseudo-time inference results are obtained from slingshot in the TRAJ module. The 
left panel shows the pseudo-time of four selected cell types. The right two plots include arrows to display pseudo-time change on the mouse brain: 
the arrow point from tissue locations with low pseudo-time towards tissue locations with high pseudo-time
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Fig. 5 (See legend on previous page.)
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(1) General data input compatibility. The input format 
is general and with four different ST platforms, con-
verting them into a consistent file format (H5 file). 
The h5 format is compatible with both Python and 
R, accommodating a wide range of analytic soft-
ware. The format also allows each module to only 
load the necessary part of the data, thus improving 
computational efficiency.

(2) User-friendly interface along with a comprehensive 
set of analytic methods, allowing for building user-
desired analytic pipelines using various method 
combinations. SRT-Server offers 13 computational 
methods implemented through ten analytic mod-
ules and provides 51 accompanying datasets to ena-
ble comprehensive analysis. Building upon a series 
of flexible frameworks and a compatible server 
design, SRT-Server makes building SRT data analy-
sis pipelines akin to “playing LEGO.”

(3) Ease of visualization. SRT-Server provides ample 
visualizations for each procedure and result files, 
ensuring users have a clear understanding of their 
data.

(4) An extendable framework, which allows compu-
tational biologists to integrate their own methods 
into SRT-Server in the future to make them readily 
available to biological researchers.

(5) A secure user management system that ensures 
data safety.

Importantly, the implementation of SRT-Server is dif-
ferent from many existing platforms such as Squidpy, 
Giotto, SPATA2, and Seurat, in four important aspects 
[11, 13, 14, 23]. First, SRT-Server uses a Lego-like inter-
face for building analytic pipelines for spatial transcrip-
tomics analysis, thus allowing users without any prior 
coding experience to analyze spatial transcriptomics data 
and democratizing the analysis of spatial transcriptomics 
across research domains. Second, SRT-Server is specifi-
cally designed for spatial transcriptomics analysis, while 
existing platforms are either primarily focused on single-
cell analysis or contain many tools that are not specifi-
cally designed for spatial transcriptomics. For example, 
the primary dimensional reduction procedure imple-
mented in all existing platforms is principal component 
analysis (PCA), which works well for single-cell data 
but does not accommodate spatial correlation informa-
tion that is necessary for various spatial transcriptomics 
analytic tasks. In contrast, SRT-Server uses SRT-specific 
dimension reduction method SpatialPCA [27], which 
accommodates spatial correlation across measured 
locations on the tissue and thus facilitates SRT-specific 
downstream analysis. Third, SRT-Server provides a com-
prehensive set of advanced and cutting-edge tools for 

users to choose from in each SRT analytic task. With a 
total of ten analytic modules and 16 implemented meth-
ods, SRT-Server represents the most comprehensive SRT 
analytic platform available to date. In contrast, the tools 
for each task in existing SRT platforms are often lim-
ited and simple. For example, for deconvolution analy-
sis, Squidpy, SPATA2, and Seurat do not provide any 
deconvolution tools. Giotto provides only one deconvo-
lution tool, SpatialDeconv, which does not perform well 
in recent benchmarking studies [18]. While SRT-Server 
implements three spatial transcriptomics-specific decon-
volution methods, including CARD, cell2location and 
Tangram, which are among the best performing methods 
in recent benchmarking studies. Finally, SRT-Server pro-
vided a wide selection of datasets for deconvolution, cell 
typing, and cell–cell communication analysis, while most 
existing platforms do not provide any datasets. For exam-
ple, for deconvolution analysis, all existing platforms 
require users to input an annotated scRNA-seq data as a 
reference panel. In contrast, SRT-Server not only allows 
users to provide their own reference data, but also, in the 
absence of such user-provided reference data, offers users 
the option to perform deconvolution using any of the 
51 provided scRNA-seq reference datasets. As another 
example, SRT-Server provides two cell type annotation 
methods with 44 reference data sets for annotating the 
detected cell types in the cell tying analysis, while none of 
the other platforms offer any of these features. As a third 
example, for CCC, SRT-Server provides 20 ligand-recep-
tor databases, while Giotto only provides two databases 
and none of the other platforms provide any databases.

One important future direction of SRT-Server is to 
extend the server to handle cohort-scale spatial tran-
scriptomics data that will likely appear in the coming 
years, with diverse experimental groups and specific 
spatial features. Cohort-scale spatial transcriptomics 
data introduces important statistical and computational 
challenges that are not yet well addressed in the field, as 
there is currently limited data availability for cohort-scale 
spatial transcriptomics. Specifically, the largest spatial 
transcriptomics data to date contains only 12 samples 
[71, 72]. Because of a lack of large cohort data, almost all 
existing spatial transcriptomics studies have focused on 
analyzing one tissue slice at a time, and only a few nota-
ble exceptions of computational tools can handle multi-
ple tissue slices or multiple tissue samples. For example, 
the BASS method incorporated in our SDD module on 
the SRT-Server can integrate SRT data from multiple 
tissue samples for detecting cell type clusters and spa-
tial domains [22]. However, while it remains a challenge 
to analyze cohort-scale spatial transcriptomics data, we 
implemented multiple additional features to SRT-Server 
to make it ready for analyzing the potentially large cohort 
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of spatial transcriptomics data as they will likely emerge 
in the next few years. First, we have modified the data 
input framework, adding a drop-down manual in the 
Input Data, so that multiple datasets can be uploaded to 
SRT-Server and jointly analyzed there. Second, we have 
implemented in SRT-Server multiple data integration 
methods developed for scRNA-seq data analysis, includ-
ing merge, harmony, and integration in Seurat, to be 
used for spatial transcriptomics integration across mul-
tiple datasets. In particular, all three methods in Seurat 
are incorporated in the CT module and the merge and 
harmony functions in Seurat are also incorporated in 
the SDD module as options for data integration before 
running BASS. Finally, we have also implemented BASS 
in the SDD module, which can directly model multiple 
tissue slices in spatial transcriptomics. Importantly, we 
applied the newly added options in the real-data applica-
tions for analyzing multiple tissues slices collected from 
different individuals. In particular, we applied two ana-
lytic modes of BASS to jointly analyze two tissue slices for 
spatial domain detection in Case Study 2. The two modes 
of BASS include a batch corrected mode where Harmony 
was used to correct for batch effects before analysis and a 
batch uncorrected mode where BASS is directly applied 
to the data without batch effect correction (Additional 
File 2: Fig.  22). The results highlight the importance of 
performing batch correction before joint tissue slice anal-
ysis, supporting the benefits of SRT-Server in analyzing 
large spatial transcriptomics.

Conclusions
Overall, SRT-Server presents a user-friendly, efficient, 
effective, secure, and expandable solution for SRT data 
analysis, opening new doors for researchers in the field. 
In addition, while SRT-Server is specifically designed for 
SRT data analysis, its architecture lays the groundwork 
for the development of additional computational web 
servers that cater to a wide variety of omics data analysis 
needs.
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mouse brain sagittal anterior. CARD provides an additional analysis to 
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Here, the resolution is set to be 2,000. Fig. S5. Scatter plots display the 
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shows the cell type proportion estimated by cell2location and tangram. 
y-axis shows the cell type proportion estimated by CARD. The correspond-
ing relationship between cell type and color is consistent with the pie plot 
of DECON. Fig. S6. Results summary for the SDD module with SpatialPCA 
for the mouse brain sagittal anterior. A) The location plot with domain 
number to 10. B) The location plot with domain number to 20. C) The 
feature plot for the top ten HVGs. Fig. S7. The heatmap of the 15 domains 
from SpatialPCA with top five DEGs. We use SpatialPCA to cluster the spots 
into 15 domains. The heatmap shows the top five DEGs for each domain. 
Fig. S8. Pipeline of case study 2 in SRT-Server. We used QC, DECON, SDD, 
DEG, ORA, CCC, and TRAJ module with its corresponding plot module. 
Fig. S9. Summary for the reference scRNA-seq of BRCA HER2+ data. A) 
Cell type compositions of the reference scRNA-seq data. Each sample 
includes 17 cell type composition: Endothelial, CAFs, PVL, B cells Memory, 
B cells Naive, CD8_T_cells, CD4_T_cells, NK cells, Cycling T-cells, NKT cells, 
Macrophage, Monocyte, Cycling Myeloid, DCs, Normal Epithelial, Plasma-
blasts, Cancer Epithelial. B) The heatmap of marker gene for each cell type. 
B) The heatmap of the top five marker genes for each cell type. Fig. S10. 
Scatter plot of cell type proportion distributions across spatial locations in 
the BRCA HER2+ samples. Specifically, cell type proportions are estimated 
by CARD using the reference consisting of 17 cell types. Here, for each 
cell type, the cell type proportion is scaled to 0-1 range. Color is showed 
to represent the 0-1 range of cell type proportions correspondingly. Fig. 
S11. Results summary for the SDD module with SpatialPCA for the BRCA 
HER2+ samples. A) The location plot with domain number to 10. B) The 
location plot with domain number to 20. C) The feature plot for the top 
ten HVGs. Fig. S12. Summary for TRAJ analysis for BRCA HER2+ samples. 
A) The relationship between pseudo-time and the gene expression. The 
x and y axis shows the pseudo-time and gene expression, respectively. B) 
Heatmap for gene expression and pseudo-time. Fig. S13. The heatmap of 
the 10 domains from SpatialPCA with top five DEGs for BRCA HER2+ sam-
ples. We use SpatialPCA to cluster the spots into 10 domains. The heatmap 
shows the top five DEGs for each domain. Fig. S14. Bubble plot from ORA 
analysis. Bubble plot displays –log10(p-values) for different pathways from 
the ORA module (y-axis). Pathways are colored by seven categories: DO 
(red), GO biological process (yellow), GO cellular component (sky blue), 
GO molecular function (green), KEGG (chocolate2), Reactome (blue), and 
Wikipathways (grass-green). Fig. S15. The circle plot for each cell type for 
BRCA HER2+. Each plot shows the number of significant ligand-receptor 
pairs from a specific cell type to other cell types. The edge width is propor-
tional to the indicated number of ligand-receptor pairs. Fig. S16. Pipeline 
of case study 3 in SRT-server. We used QC, CT, DEG, and TRAJ module with 
its corresponding plot module. Note that we added three CT modules 
with different methods, which results in the output of DEG are different. 
TRAJ module is only followed by CT with BASS. Fig. S17. Summary for 
the CL_jo module with BASS. A) The location plot for spatial domain with 
domain number = 20 and cell type number = 35. B) The location plot for 
spatial domain with domain number = 25 and cell type number = 35. C) 
The location plot for spatial domain with domain number = 25 and cell 
type number = 40. D) The location plot for cell type with domain number 
= 20 and cell type number = 35. E) The location plot for cell type with 
domain number = 25 and cell type number = 35. F) The location plot for 
cell type with domain number = 25 and cell type number = 40. Fig. S18. 
Summary for the clustering result from Seurat. A) The location plot of cell 
type with resolution = 0.5. B) The UMAP plot with resolution = 0.5. Fig. 
S19. 17. cell types annotated by Garnett in the CL_annot module. Fig. 
S20. The Heatmap for BASS with top five DEGs. We use BASS to cluster 
the cells into 33 domains. The heatmap shows the top five DEGs for each 
domain. Fig. S21. The Heatmap from Seurat (resolution = 1) with top five 
DEGs. We use Seurat to cluster the cells into 30 cell types. The heatmap 
shows the top five DEGs for each domain. Fig. S22. Location plots display 
the domain clustering results from BASS on different samples with or 
without the data integration step. The number of spatial domains is set 
to be 10 and the number of cell types is set to be 20. A) BASS results 
after a data integration step with Harmony; B) BASS results without data 
integration.
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