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Abstract 

Optimal integration of transcriptomics data and associated spatial information is essential towards fully exploiting 
spatial transcriptomics to dissect tissue heterogeneity and map out inter-cellular communications. We present SEDR, 
which uses a deep autoencoder coupled with a masked self-supervised learning mechanism to construct a low-
dimensional latent representation of gene expression, which is then simultaneously embedded with the correspond-
ing spatial information through a variational graph autoencoder. SEDR achieved higher clustering performance 
on manually annotated 10 × Visium datasets and better scalability on high-resolution spatial transcriptomics datasets 
than existing methods. Additionally, we show SEDR’s ability to impute and denoise gene expression (URL: https:// 
github. com/ Jinmi aoChe nLab/ SEDR/).

Keywords Spatial transcriptomics, Spatial clustering, Variational graph auto-encoder, Batch integration, Trajectory 
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Background
Single-cell omics technologies enable measurements 
at single-cell resolution, and this has led to discover-
ies of new subpopulations across various tissues, in 

both healthy and diseased states. However, the dissocia-
tion of tissue into single cells prior to high-throughput 
omics data acquisition leads to cellular spatial informa-
tion being lost, hindering our ability to dissect the spatial 
organization and intercellular interactions of individual 
cells. While computational tools have been developed to 
predict cell–cell interactions from ligand and receptor 
expression, they require validation using immunohisto-
chemistry (IHC) or immunofluorescence (IF) experi-
ments. Emerging spatial omics technologies overcome 
these limitations by retaining the spatial location of 
gene/protein expression measurements. Such spatially 
resolved transcriptomes of histological tissues enable the 
reconstruction of tissue architecture and cell–cell inter-
actions [1–9]. This approach has proven valuable in many 
applications, including studies on brain disorders [2, 10], 
tumor microenvironments [3, 11], and embryonic devel-
opment [12].

Among the currently available spatial transcriptom-
ics approaches, in  situ capturing-based technologies 
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such as 10 × Genomics Visium and Nanostring GeoMX 
DSP are highly popular owing to their accessibility and 
ability to profile large numbers of mRNA targets within 
each spot. In principle, a histological section from a tis-
sue sample is permeabilized, and the released mRNA is 
captured either by spatially arrayed oligos on the slide 
surface or by pre-hybridized RNA-target barcodes in 
manually defined regions of interest (ROIs). However, 
both technologies suffer from mRNA capture spot size 
limitations, with each spot covering multiple cells. To 
overcome this, several computational methods have 
been developed to deconvolve the cell mixtures of spa-
tial spots [13–20]. Recent improvements in mRNA cap-
ture methods have led to smaller capture spots that are 
not greater than 10  µm in diameter. These high-resolu-
tion spatial transcriptomics methods can obtain spatially 
resolved transcriptomes with increased spatial fidelity 
without compromising the number of genes captured. 
They include Slide-seq [4, 7], DBiT-seq [8], Stereo-seq 
[5], PIXEL-seq [6], and Seq-Scope [9]. Some of these 
methods offer sub-cellular resolution and usually voxel 
binning or cell segmentation is performed to produce a 
gene-by-cell expression matrix for downstream analysis. 
Capture area sizes have also improved and increased the 
overall cell count throughput, necessitating new compu-
tational methods that can handle big spatial data.

Another class of methods relies on fluorescence imag-
ing where DNA probes with attached fluorophores 
cyclically hybridize to cellular mRNAs, coupled with 
sequencing-by-ligation or sequencing-by-synthesis 
techniques to determine the mRNA sequence bases. 
Early examples of fluorescence in  situ hybridization 
(FISH) methods had low gene coverage, but MERFISH 
[21] and seqFISH + [22] can achieve high gene cover-
age with sub-cellular resolution. Commercial vendors 
like 10 × Genomics, Vizgen, and Nanostring are debut-
ing their imaging-based methods, Xenium [23], MER-
SCOPE, and CosMX [24], respectively, which also offer 
sub-cellular resolution. Similar to other in situ sequenc-
ing or barcoding-based methods with sub-cellular resolu-
tion, data preprocessing is needed to generate the desired 
gene-by-cell expression matrices.

When analyzing spatial transcriptomics data, com-
bining both gene expression and spatial information to 
learn a discriminative representation for each cell or 
spot is crucial. However, established workflows such as 
Seurat [25] still employ pipelines designed for single-
cell RNA-seq (scRNA-seq) analysis, which primar-
ily focuses on the gene expression data and ignores the 
spatial arrangement of cells. Recently, several meth-
ods have been developed for spatial transcriptomics to 
overcome this limitation. For example, Giotto [26] and 

BayesSpace [27] utilize Markov random field models to 
detect domains with spatially coherent gene expression. 
stLearn [28], SpaGCN [29], DeepST [30], and STAGATE 
[31] adopt deep learning approaches to identify spatial 
domains. The latter three are based on graph neural net-
works, and they construct neighborhood graphs of cells 
or spots based on their spatial adjacency. This process 
can be time-consuming for datasets with large numbers 
of cells or spots. Some other methods combine gene 
expression and spatial information into a new feature 
matrix or latent representation that can be used for clus-
tering and other follow-up analyses. For instance, UTAG 
[32] calculates an inner product between the spatial 
adjacency matrix and the expression matrix, returning 
a new matrix of spatially aggregated expression values. 
SpatialLDA [33] introduces a spatial regularization term 
to the latent Dirichlet allocation model to encourage 
agreement between neighboring cells and outputs spa-
tially aware topics. SpaGene [34] detects spatially vari-
able genes on which non-negative matrix factorization is 
applied to generate latent factors. Furthermore, another 
key challenge in spatial transcriptomics analysis is drop-
out events and data sparsity, which is not yet taken into 
account by these existing methods.

In this work, we developed an unsupervised spa-
tially embedded deep representation (SEDR) method 
for learning a low-dimensional latent representation 
of gene expression embedded with spatial information. 
The SEDR model consists of two main components, a 
deep masked autoencoder network for learning latent 
representation and a variational graph autoencoder 
network for embedding spatial information. These two 
components are optimized jointly to generate a latent 
representation suited for spatial transcriptomics data 
analysis. We applied SEDR to 10 × Genomics Visium, 
Slide-seq, and Stereo-seq datasets, demonstrating its 
ability to achieve better representations for various fol-
low-up analysis tasks, namely clustering, visualization, 
trajectory inference, batch effects correction, and gene 
expression imputation.

Methods
Model structure
SEDR implements a variational graph autoencoder [35] 
(VGAE) coupled with a masked self-supervised learn-
ing framework to learn a latent representation from 
gene expression profiles and spatial information. As 
shown in Fig.  1, the SEDR framework contains two 
major components, i.e., data masking and latent rep-
resentation learning. Next, we will elaborate on each 
component of the framework.
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Data masking
Before the latent representation learning, we first gen-
erate a masked gene expression matrix as input. The 
masked matrix is then fed into the deep autoencoder 
and the VGAE, respectively. Specifically, let X ∈ R

n×m 
be a spot-by-gene expression matrix with n spots and 
m genes. We first randomly sample a subset of spots 
SPsub ⊂ SP and mask each of their gene expression vector 
xi ∈ R

m(i ∈ SPsub) with a learnable vector xi ∈ R
m . Thus, 

the input expression matrix X is re-defined as the masked 
expression matrix X ′ as follows:

One of the main objectives of this masked self-supervised 
framework is to reconstruct the masked gene expressions 
of spots in SPsub given the remaining gene expressions 
X ′ and spatial adjacency matrix A . Formally, the masked 
reconstruction loss is denoted as follows:

xi′ =

{
x̃i, i ∈ SPsub
xi, i /∈ SPsub

Lmask =

SPsub∑

i=1

�xi − x̃i�
2
F .

Graph construction for spatial transcriptomics data
To create a graph representing the spot-spot spatial rela-
tionships in spatial transcriptomics data, we calculate the 
Euclidean distances between spots using the spatial coor-
dinates. We then use the K-nearest neighbors for each 
spot to construct an adjacency matrix. The adjacency 
matrix, denoted by A , is a symmetric matrix, where 
Aij = Aji = 1 if i and j are neighbors, and 0 otherwise. 
To save CPU memory and running time, the adjacency 
matrix is stored as a sparse matrix.

Latent representation learning
The latent representation of gene expression is learned 
using a deep autoencoder. The encoder part consists of 
two fully connected stacked layers and generates a low-
dimensional representation Zf ∈ R

n×df  from the masked 
gene expression matrix X ′ ∈ R

n×m . Meanwhile, the 
decoder part with one fully connected layer recon-
structs the expression matrix X̂ ∈ R

n×m from the latent 
representation Z ∈ R

n×d , which is obtained by concate-
nating the low-dimensional representation Zf  and spa-
tial embedding Zg∈ R

n×dg . Here, df , dg , andd are the 
dimensions of the low-dimensional expression 

Fig. 1 Overview of SEDR. SEDR learns a low-dimensional latent representation of gene expression embedded with spatial information by jointly 
training a masked self-supervised deep autoencoder and a variational graph convolutional autoencoder. The low-dimensional embedding 
produced by SEDR can be used for downstream visualization, spot clustering, trajectory inference, and batch effect correction. The reconstructed 
feature matrix can be used to impute the raw gene expression with dropouts
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representation learned by the encoder, the spatial 
embedding learned by the graph convolutional neural 
network (GCN), and the final latent representation of 
SEDR, respectively, with d = df + dg . For the decoder, 
SEDR has two modes, clustering and gene imputation. 
For the clustering mode, the decoder is a GCN-based 
decoder which can capture more spatial information, 
while a plain linear decoder is used for gene imputation 
since it helps to avoid over-smoothing caused by a 
GCN-based decoder. The objective function of the deep 
autoencoder maximizes the similarity between the input 
gene and reconstructed expressions measured by the 
mean squared error (MSE) loss function 

∑(
X − X̂

)2
.

With the adjacency matrix A and its degree matrix D , 
the VGAE learns a graph embedding Zg with the fol-
lowing format: g : (A,Zf ) → Zg , where Zf  is the feature 
representation from the deep autoencoder. The infer-
ence part of the VGAE is parameterized by a two-layer 
GCN [36]:

where µ is the matrix of mean vectors, and σ is the 
matrix of standard deviation. µ and log(σ ) are obtained 
by two-layer GCN which is defined as follows:

with weight matrices W0,Wµ,Wσ , and symmetrically 
normalized adjacency matrix Ã = D− 1

2AD− 1
2 . In com-

putational programming, the distribution of the spatial 
embedding Zg cannot be fully depicted. Instead, it is 
obtained by reparametrization:

where ǫ ∼ Normal(0, 1) . After obtaining Zg , merged 
latent representation Z is obtained by concatenating Zg 
and Zf  , and the reconstructed adjacency matrix Â are 
generated as follows:

The objective of the VGAE is to minimize the cross-
entropy (CE) loss between the input adjacency matrix 
A and the reconstructed adjacency matrix Â , while 
simultaneously minimizing the Kullback–Leibler (KL) 
divergence between g

(
Zg |A,Zf

)
 and the Gaussian prior:

g
(
Zg |A,Zf

)
=

∏
g(zi|A,Zf ),with g

(
zi|A,Zf

)
= N (zi|µi, diag(σ

2
i ))

GCNµ

(
A,Zf

)
= ÃReLU

(
ÃZf W0

)
Wµ,

GCNlog(σ )

(
A,Zf

)
= ÃReLU

(
ÃZf W0

)
Wσ ,

zg = µ+ σ ⊙ ǫ

Â = σ(Z · ZT )

Batch effect correction for spatial transcriptomics
Spatial relationships only exist within a single spatial tran-
scriptomic measurement; spots from different transcrip-
tomic measurements have no direct spatial relations. Let 
Ak and Zk

f  denote the adjacency matrix and deep gene rep-
resentation of spatial omics k , respectively; we then create a 
block-diagonal adjacency matrix Ak and concatenate the 
deep gene representation in the spot dimension as follows:

where K  is the number of spatial omics. Based on 
this formulation, the different spatial omics datasets (of 

potentially different sizes) are transformed into multiple 
graph instances in the form of one block-diagonal adja-
cency matrices as inputs to SEDR.

To remove batch effects and enhance the compactness 
of its latent representation, SEDR employs an unsuper-
vised deep embedded clustering (DEC) method [37] to 
iteratively group the spots into different clusters. To ini-
tialize the cluster centers, we employ the KMeans func-
tion in scikit-learn on the learned latent representations. 
The number of clusters is pre-defined as a hyperparam-
eter. With this initialization, DEC improves the clustering 
using an unsupervised iterative method of two steps. In 
the first step, a soft assignment qij of latent point zi to clus-
ter center µj is calculated using Student’s t-distribution:

In the second step, we iteratively refine the clusters by 
learning from their high-confidence assignments with 
the help of an auxiliary target distribution p based on qij:

Based on the soft assignment qij and auxiliary target 
distribution pij , an objective function is defined using the 
KL divergence:

p
(
Zg

)
=

∏
i
N (zi|0, I)

A =



A1 · · · 0
...

. . .
...

0 · · · AK


Zf =




Z1
f

...

ZK
f




qij =

(
1+

∣∣∣∣zi − µj

∣∣∣∣2
)−1

∑
j′

(
1+

∣∣∣∣zi − µj′
∣∣∣∣2

)−1

pij =
q2ij/

∑
iqij∑

j′(q
2
ij′/

∑
iqij′)
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The SEDR parameters and cluster centers are then 
simultaneously optimized using stochastic gradient 
descent (SGD) with momentum.

Clustering
After obtaining latent representation, the results can be 
used to cluster for the spatial data. SEDR accepted vari-
ous clustering methods. In this manuscript, mcluster (R 
package mclust v6.0.0) was selected because the cluster-
ing performance is high, and the number of clusters can 
be determined. We used Python to create a wrapped 
mcluster function in SEDR code.

Data cohorts
For benchmarking SEDR with other competing meth-
ods, we utilized a human dorsolateral prefrontal cor-
tex (DLPFC) dataset described by Kristen et  al. [2]. 
This dataset contains 12 sections, each with 3460–4789 
spots, which had been manually annotated into 7 corti-
cal layers, namely layers 1–6 and white matter (WM). 
To support the ability of SEDR to denoise spatial tran-
scriptomics data, a human ovarian cancer dataset (3493 
spots), and a human lymph node dataset (4035 spots) 
were downloaded from the 10 × database. In addition, to 
demonstrate that SEDR can be applied to high-resolution 
spatial transcriptomics data, we used two datasets of sim-
ilar sample size that were generated with Stereo-seq and 
Slide-seqV2, respectively [5, 7]. The Stereo-seq dataset 
contains 19,109 spots and 27,106 genes, and the Slide-
seqV2 dataset contains 21,724 spots and 21,220 genes. 
In the case study of tumor heterogeneity, we downloaded 
a Visium dataset for human breast cancer from the 
10 × database, which consists of 3798 spots and 36,601 
genes.

Results
Overview of SEDR
SEDR learns a gene expression representation in a low-
dimensional latent space with jointly embedded spatial 
information (Fig. 1). Given a set of spatial transcriptom-
ics data, SEDR first learns a non-linear mapping from the 
gene expression space to a low-dimensional feature space 
using a deep autoencoder network. A masked self-super-
vised learning mechanism is used to enforce the encoder 
to capture more gene expression information through 
pretext tasks. Simultaneously, a variational graph autoen-
coder is utilized to aggregate the gene representation 
with the corresponding spatial neighborhood relation-
ships to produce a spatial embedding. Next, the gene rep-
resentation and spatial embedding are concatenated to 

KL(P||Q) =
∑

i

∑
j
pijlog

pij

qij

form the final latent representation used to reconstruct 
the gene expression. Thereafter, an unsupervised deep 
clustering method [37] is employed to enhance the com-
pactness of the learned latent representation. This itera-
tive deep clustering generates a form of soft clustering 
that assigns cluster-specific probabilities to each spot, 
leveraging the inferences between cluster-specific and 
spot-specific representation learning. Finally, the learned 
latent representation can be applied towards various 
downstream analysis tasks, including clustering, data 
visualization, trajectory inference, and batch integration. 
Using the scaled expression as input, the reconstructed 
matrix can be used to impute and denoise the raw data 
with dropouts.

Quantitative assessment of SEDR on human dorsolateral 
prefrontal cortex (DLPFC) dataset
To perform a quantitative comparison of SEDR with 
competing methods, we downloaded the LIBD human 
DLPFC data with manual annotation, acquired using the 
10 × Genomics Visium spatial transcriptomics platform 
[2]. We chose this dataset because the human DLPFC has 
clear and established morphological boundaries which 
can serve as the ground truth [38]. We first applied the 
standard Seurat pipeline [25] to process and cluster spots 
using only gene expression profiles and set the result as 
the benchmarking baseline to investigate the extent to 
which spatial information improves spot clustering. Next, 
current methods that integrate gene expression with 
associated spatial information were used to benchmark 
SEDR, namely SpatialLDA [33], Giotto [26], stLearn [28], 
SpaGene[34], SpaGCN [29], BayesSpace [27], UTAG 
[32], DeepST [30], and STAGATE [31] (Additional file 1: 
Supplementary methods). The computational features of 
those methods are summarized in Table 1.

First, we considered one cortex slice for illustration, 
#151,673 (Fig.  2A) with 3639 spots and 33,538 genes. 
We found that SEDR achieved the best performance 
in terms of both layer borders and adjusted rand index 
(ARI), followed by STAGATE (Fig.  2A). When compar-
ing the results on all 12 DLPFC samples, we employed 6 
quantitative measures, ARI, adjusted mutual information 
(AMI), purity score, homogeneity, completeness, and v 
measure. These quantitative measures reflect the good-
ness of matching between ground truth and predictions 
from different aspects (Additional file 1: Supplementary 
methods). For all 6 metrics, SEDR had statistically sig-
nificant higher scores than competing methods, except 
for DeepST and STAGATE (Mann–Whitney U test, 
p-value < 0.05, Fig. 2B). Compared to DeepST and STA-
GATE, the median scores were still higher for SEDR 
though the difference was not statistically significant. 
In addition, the Silhouette score was used to measure 
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the matching between the latent representation and the 
ground truth labels (Additional file  1: Supplementary 
methods). The Silhouette score for SEDR was the high-
est and only not statistically significant with respect to 
DeepST (Additional file 1: Fig. S1). The lack of statistical 
significance when compared to DeepST can be attributed 
to the high variance in DeepST’s Silhouette scores.

As the baseline method, the Seurat pipeline processes 
spatial transcriptomic data without considering the spa-
tial information, obtaining the poorest results. Among 
the spatially informed methods, methods that use graph 
convolutional frameworks (GCN) including SpaGCN, 
DeepST, STAGATE, and SEDR, generally achieved bet-
ter performance than others, indicating the superior 
ability of GCNs to integrate spatial information. When it 
comes to the usage of histological information, stLearn, 
SpaGCN, and DeepST employed the H&E image of the 
spots, but their performance was not outstanding, sug-
gesting the limited utility of image information, which 
is potentially due to the low quality of the images. Addi-
tionally, the image processing step is inefficient in terms 
of running time and memory usage, especially for high-
resolution images. This can make such methods unsuit-
able for larger spatial transcriptomics data as such data 
are growing in availability and scale.

To explore the robustness of SEDR and competing 
methods with respect to hyperparameters, we tested the 
top 3 methods, namely SEDR, STAGATE, and DeepST 
(Fig.  2) with a varying number of nearest neighbors 
(K), which determines the level of local spatial smooth-
ing. There was a slight fluctuation of ARI scores for all 
3 methods on the 12 DLPFC sections with different K 
values (Additional file 1: Fig. S2). But for each K, SEDR 

achieved the best ARI score over the other methods. Fur-
thermore, even the lowest median ARI score (0.532 when 
K = 14) of SEDR was higher than the best score of STA-
GATE (0.50 when k = 18).

We next tested SEDR’s low-dimensional representa-
tion features in trajectory inference [39]. Monocle3 
[40] was employed to perform trajectory inference on 
the same DLPFC slice (#151,673) with the low-dimen-
sional representations from Seurat, stLearn, DeepST, 
STAGATE, and SEDR (Additional file  1: Supplemen-
tary methods). In the UMAP plot, the RNA-only rep-
resentation (Seurat) clearly segregated the WM as a 
separate cluster from the other layers and the cortical 
layers showed mixing with no clear ordering according 
to their developmental trajectory (Fig. 2C, top). In con-
trast, the spatially informed methods’ latent embed-
dings mostly recapitulated the ordering from the WM 
to layer 6 and sequentially to layer 1. Setting WM as 
the root, the pseudo-time of trajectory was computed 
with Monocle. With DeepST and SEDR’s latent repre-
sentations, Monocle could accurately infer the “inside 
out” developmental trajectory. By plotting trajectories 
on the original spatial positions, we observed a strong 
correlation between the ordering of pseudotime and 
the physical location of cortical layers (Fig.  2C, mid-
dle and bottom). Comparatively, the trajectories from 
stLearn and STAGATE’s embeddings, while improving 
over the RNA-only inference, still showed incorrect 
layer locations based on the inferred orderings. This 
demonstrated that incorporating spatial information 
into pseudo-time trajectory inference can be beneficial 
and SEDR’s latent representation is well-suited for this 
application [38, 41, 42].

Table 1 Summary of features of the methods for detecting spatial domains. Compared to other methods, SEDR allows the 
implementation of more types of data and provides more information for downstream analyses, including latent representation and 
de-noised feature values. In addition, it uses GPU to accelerate calculations

Methods Model Resolution Latent 
representation

De-noising Batch 
integration

Programming GPU

Seurat Principal component analysis Spot or single cell √  × √ R  × 

SpatialLDA Latent Dirichlet allocation Single cell √  ×  × Python  × 

Giotto (HMRF) Hidden Markov random field Spot or single cell  ×  ×  × R  × 

stLearn Spaital morphological gene expression 
normalization

Spot or single cell √  × √ Python √

SpaGene Spatial network (KNN) Single cell √  ×  × R  × 

SpaGCN Graph convolutional network Spot or single cell  ×  × √ Python  × 

BayesSpace Bayesian model with a Markov random field Spot  ×  ×  × R  × 

DeepST Variational graph autoencoder Spot or single cell √  × √ Python √

STAGATE Graph attention autoencoder Spot or single cell √  × √ Python √

UTAG Graph + clustering Single cell  ×  × √ Python  × 

SEDR Variational graph autoencoder + masked 
self-supervised

Spot or single cell √ √ √ Python √
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Fig. 2 Quantitative assessment of SEDR on the human dorsolateral prefrontal cortex (DLPFC) dataset. A Manual annotation for the DLPFC 
#151673 section and clustering results of eleven methods (SpatialLDA, Seurat, Giotto, stLearn, SpaGene, SpaGCN, BayesSpace, UTAG, STAGATE, 
DeepST, and SEDR). B Barplot for the 6 performance metrics (ARI, AMI, purity score, homogeneity, completeness, v measure) on the clustering 
results of the DLPFC 12 sections. Notation for statistical significance testing: n.s.p-value > 0.05, *p-value < 0.05, **p-value < 0.005, ***p-value < 0.0005, 
****p-value < 0.00005. C UMAP and spatial visualization of Monocle 3 pseudo-time trajectories inferred with the latent representation by the tested 
methods of DLPFC slice #151673. UMAP plots with ground-truth labels (above), UMAP plots overlaid with Monocle 3 pseudo-time trajectories 
(middle), and Monocle 3 pseudo-time ordering on spatial coordinates (bottom). D The 12 human DLPFC sections with manual annotation. E 
Normalized cLISI and iLISI scores for DLPFC section integration results using the latent representations of four methods (Seurat, Harmony, STAGATE, 
SEDR). F UMAPs of integration results for four methods
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SEDR corrects for batch effects
The proliferation of spatial omics applications is gen-
erating ever-increasing volumes of spatially resolved 
omics data across different labs. However, differences 
in protocols and technologies complicate comparisons 
and data integration when trying to achieve consensus 
on spatially resolved tissue atlases. As with scRNA-Seq, 
removing batch effects in spatial omics datasets is a sig-
nificant challenge. The deep embedded clustering (DEC) 
loss function employed in the SEDR model helps retain 
biological variations while reducing technical variations. 
Here, we tested the use of joint embeddings across mul-
tiple batches and projected them into a shared latent 
space.

We evaluated three methods, SEDR, stLearn, and STA-
GATE, using their latent representations of the DLPFC 
dataset in batch integration (Fig.  2D, E). To establish a 
baseline, we used Seurat to calculate the PCA embed-
dings for raw data (Fig.  2F). For batch integration, we 
employed Harmony due to its superior performance in 
scRNA-seq data integration [43]. With Seurat’s PCA 
embeddings, Harmony mixed the batches evenly but 
also mixed the cortical layers together (e.g., layers 1 and 
2, Seurat UMAP, Fig.  2F). With stLearn’s embeddings, 
the cortical layers were also well-mixed. For STAGATE 
and SEDR’s embeddings, the different cortical layers’ 
cells showed clear separation with the developmental 
ordering visible. However, STAGATE’s integrated output 
showed the batches to be integrated into two major clus-
ters. In contrast, the batch mixing was much more even 
in SEDR’s output. We also assessed the batch integration 
results with the integration LISI (iLISI) and cell type LISI 
(cLISI) metrics for all 12 slices (Fig. 2E, Additional file 1: 
Supplementary methods). In terms of cLISI, stLearn was 
the poorest with a score similar to the uncorrected data, 
and this corroborated the visual inspection of the UMAP. 
In terms of iLISI, the SEDR-derived integration was 
third (Mann–Whitney U test < 0.05), again matching the 
observations made on the plotted UMAPs. Taking both 
cell type separation and batch integration into considera-
tion, we consider SEDR to be the overall best-performing 
method.

The integration results also suggested that the 
inclusion of spatial information within embed-
dings can have variable results. In the case of SEDR’s 
embeddings, the spatial information was integrated 
such that it improved the cortical layer cell label sepa-
ration over the typical PCA embedding. On the other 
hand, it may have interfered with the batch integra-
tion as in STAGATE’s case. Overall, this example 
demonstrated that the combination of SEDR and Har-
mony can be effective for batch integration of spatial 
transcriptomics data.

Effective noise removal and imputation of spatial 
transcriptomics with SEDR
Spatial transcriptomics offers unprecedented oppor-
tunities in dissecting tissue heterogeneity but suffers 
from measurement noise including dropouts. Conse-
quently, effective imputation with noise removal can 
help reveal spatially resolved features within the data. 
With masked self-supervised learning, SEDR can con-
struct a denoised and imputed gene expression matrix, 
which cannot be achieved by other competing meth-
ods for learning latent representations. Instead of using 
principal components (PCs) as input for clustering 
tasks, SEDR uses the processed gene expression matrix 
as input and generates the reconstructed expression 
matrix with the decoder module.

On the 10 × Genomics Visium human ovarian can-
cer dataset (downloaded from the 10 × website) [44] 
(Fig.  3A, B), the PTPRC (CD45) gene expression 
showed poor correlation (0.193) with the protein 
expression from immunofluorescent (IF) staining. This 
is primarily explained by the high levels of dropouts for 
PTPRC expression in the data. Using SEDR, we suc-
cessfully imputed the PTPRC expression to attain a 
higher correlation of 0.499. Visually, we can observe the 
imputed region in the top left which was captured by IF 
but not found in the original data, indicating that such 
denoising is not simply spatial smoothing.

To further investigate SEDR’s denoising and impu-
tation capabilities, we next applied SEDR to a healthy 
human lymph node dataset (Fig.  3C) [44]. The lymph 
node contains substructures called germinal centers 
(GCs), which can be identified through H&E staining. 
We first outlined three GCs and plotted the denoised 
values of three gene markers for substructures within 
the GC. As shown in Fig.  3D, the denoised BCL6, 
FCER2, and EGR1 expressions better delineated the 
germinal center structures compared to the raw expres-
sions. The gene BCL6 marks the mature B cells found 
in the center of the GC, while FCER2 is a marker for 
naïve B cells located at the marginal zone of the follicle 
containing the GC, and EGR1 marks activated B cells 
found outside the follicles [45]. We also assessed the 
gene–gene correlations before and after the denoising. 
IGHD is known to positively correlate with MS4A1 and 
CD1C and negatively with CD3D. We found SEDR’s 
denoised values to show stronger expected gene–gene 
correlations than the raw and the Sprod [44] denoised 
values (Fig. 3E, F).

SEDR can handle high-resolution spatial transcriptomics
Newly emerging methods such as Stereo-seq [5], 
PIXEL-Seq [6], and Seq-Scope [9] can achieve sub-
micrometer and thus subcellular resolution. With 
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continued technology advancement, the spatial reso-
lution and number of cells detected per tissue will sig-
nificantly improve, producing large datasets with high 
throughput. As such, we evaluated SEDR’s performance 
on Stereo-seq and Slide-seq data of mouse olfactory 
bulb tissues. We first consider the Stereo-seq data with 
19,109 spots and 27,106 genes. The coronal section of a 
mouse olfactory bulb can be divided into 7 layers, the 
olfactory nerve layer (ONL), glomerular layer (GL), 
external plexiform layer (EPL), mitral cell layer (MCL), 
internal plexiform layer (IPL), granule cell layer (GCL), 
and rostral migratory stream (RMS) (Fig. 4A). We per-
formed dimension reduction and unsupervised cluster-
ing using 10 methods to computationally reconstruct 

the spatial distribution of tissues within the olfac-
tory bulb. With this data, stLearn, SpaGCN, UTAG, 
DeepST, STAGATE, and SEDR all produced distinct 
clusters that match the layers in the olfactory bulb, 
consistent with the annotated staining. (Fig.  4A, B). 
We further plotted the individual clusters per method 
to visualize their differences (Fig.  4C). For stLearn, 
SpaGCN, and STAGATE, they were unable to fully 
remove the technical noise from Stereo-seq seen near 
the core of the olfactory bulb, as visible in their clus-
ter 9. Overall, we found DeepST, STAGATE, and SEDR 
to be competitive with the most similar clusters which 
also well matched the markers of the different tissue 
domains within the olfactory bulb (Fig.  4D). Namely, 

Fig. 3 Denoised gene expression with SEDR. A Immunofluorescence (IF) values, raw RNA-seq counts, and denoised gene expression by SEDR 
for PTPRC (CD45) on the ovarian cancer dataset. B Scatter plot of scaled IF values with raw counts and de-noised PTPRC expression by SEDR. C H&E 
image with identified germinal centers (GCs) in the lymph node tissue sample. D Denoised expression of three marker genes within the selected 
GCs. BCL6, FCER2, and EGR1 are the markers for different regions of GCs. E Denoised expression of IGHD and three genes that are correlated 
with IGHD: MS4A1 and CD1C are positively correlated with IGHD while CD3D is negatively correlated with IGHD. F Pearson correlation 
between IGHD and the correlated genes (MS4A1, CD1C, CD3D) as measured by raw counts, de-noised value by Sprod, and de-noised value by SEDR
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cluster 0 corresponded to the RMS, cluster 1 to GCL, 
cluster 2 to IPL, clusters 3 and 4 to MCL, clusters 5 and 
6 to EPL, cluster 7 to GL, and cluster 8 to ONL. We 
also applied the methods to the Slide-seq data acquired 
from the mouse olfactory bulb with 21,724 spots and 
21,220 genes. The clusters obtained are provided in 
Additional file 1: Fig. S3. Similar to the Stereo-seq data, 

stLearn, SpaGCN, UTAG, DeepST, STAGATE, and 
SEDR showed good performance.

With the increasing sample size of high-resolution 
spatial transcriptomics data, the scalability of process-
ing methods becomes correspondingly more and more 
important. Here, we tested the run time and memory 
usage of the ten methods. As shown in Fig.  4E, SEDR 

Fig. 4 Application of SEDR on Stereo-seq dataset. A Laminar organization of a DAPI-stained mouse olfactory bulb. B Unsupervised clustering 
results from SEDR and nine competing methods on the olfactory bulb Stereo-seq data. C Visualization of individual identified clusters for selected 
methods (stLearn, SpaGCN, UTAG, DeepST, STAGATE, and SEDR). D Predicted olfactory bulb layers and corresponding marker genes. E 
Computational efficiency of ten methods tested on slice #151673 of the DLPFC set, and Stereo-seq data and Slide-seq data of mouse olfactory bulb. 
Left: run time of methods. Right: CPU memory usage of methods
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required less time than other methods except for Seurat 
and stLearn. It is reasonable for Seurat to require less run 
time as the Seurat pipeline only performed the baseline 
PCA dimension reduction of the gene expression matrix 
and ignored spatial information. For stLearn, it required 
much more time on the 10 × Visium DLPFC but less 
time on Slide-seq and Stereo-seq data, because its pipe-
line for 10 × Genomics Visium data contains a time-con-
suming image processing step, while the pipeline for the 
other two datasets does not contain such step. For CPU 
memory usage, SEDR required less CPU memory than 
all other methods, which can be explained by the use of 
a sparse matrix in its graph construction and compu-
tational steps involved in graph multiplication, greatly 
reducing the CPU memory requirement. We also com-
pared SEDR with DeepST and STAGATE for GPU mem-
ory usage. SEDR also required less GPU memory than the 
other two methods (Additional file  1: Fig. S4A). To fur-
ther demonstrate SEDR’s capacity in handling large data-
sets, we created a series of augmented datasets based on 
the mouse olfactory bulb Slide-seq data, which contained 
1/2, 1, 2, and 4 times the number of spots compared to 
the original data (20,000 spots). The results demonstrated 
that the cost of time, CPU, and GPU memory were still 
acceptable even in the case of 4 × data size (80,000 spots) 
(Additional file 1: Fig. S4B).

Dissecting tumor heterogeneity and immune 
microenvironments using SEDR
Intratumoral heterogeneity in cancer complicates effec-
tive treatment formulations and is associated with poor 
survival prospects [46]. Spatial transcriptomics offers 
advantages over scRNA-seq at dissecting and charac-
terizing intratumoral heterogeneity and tumor-immune 
crosstalk by retaining the spatial information that can 
help reconstruct spatially distributed domains and dis-
tance-dependent interactions. In this example, we tested 
SEDR on the 10 × Genomics Visium spatial transcrip-
tomics acquired data for human breast cancer, which is 
known for its high intratumoral and intertumoral dif-
ferences [47]. To aid in interpreting the SEDR’s results, 
we performed manual pathology labeling based on the 
H&E staining. It should be noted that, unlike the cere-
bral cortex which has clear and established morphologi-
cal boundaries, tumor tissues are highly heterogeneous 
and encompass complex microenvironments; manual 
labeling solely based on tumor morphology is inade-
quate for characterizing such complexity. Based on the 
pathological features, we first manually segmented the 
histology image into 20 regions, which we then grouped 
into 4 main morphotypes: ductal carcinoma in  situ/
lobular carcinoma in  situ (DCIS/LCIS), healthy tissue 
(Healthy), invasive ductal carcinoma (IDC), and tumor 

surrounding regions with low features of malignancy 
(Tumor edge) (Fig. 5A, Additional file 1: Fig. S5A).

To detect spatial domains, eleven methods, namely 
SpatialLDA, Seurat, Giotto, stLearn, SpaGene, SpaGCN, 
UTAG, BayesSpace, DeepST, STAGATE, and SEDR, were 
used to produce the same number of clusters (20). Visu-
ally, all methods agreed with the manual annotations at 
the macroscopic level (Fig. 5A). Giotto’s clusters showed 
the highest levels of fragmentation, more than Seurat’s, a 
non-spatially aware method. Notably, SEDR, UTAG, and 
DeepST divided the tumor region DCIS/LCIS_3 into an 
outer “ring” and a tumor core, while BayesSpace, Spa-
Gene, and STAGATE divided the region into two halves.

To explore the cell types in SEDR cluster 11 (tumor 
core) and cluster 13 (tumor edge) in SEDR clustering 
results (Fig.  5B), Seurat 3 was employed to deconvo-
lute spatial data against the scRNA-seq reference data 
for human breast [48] (Additional file 1: Supplementary 
methods). For each spot, we obtained a composition vec-
tor for cell types (Additional file  1: Fig. S5B). Interest-
ingly, we found that cluster 13 contains significantly more 
tumor-associated macrophages (TAMs) than cluster 11 
(Fig. 5C). TAM infiltration is known to be strongly asso-
ciated with poor survival rate in solid tumor patients due 
to its promotion of tumor angiogenesis and induction of 
tumor migration, invasion, and metastasis [49, 50].

We also performed differential expression analysis fol-
lowed by pathway enrichment analysis (Fig.  5D, Addi-
tional file  1: Supplementary methods). In cluster 11, we 
observed the upregulation of interferon signaling path-
ways (IFIT1, IFITM1, IFITM3, and TAP1) and NK or 
neutrophil activities (FCGR3B and TNFSF10) (Fig.  5D, 
Additional file 1: Fig. S6). In addition, RHOB was upregu-
lated in this region, pointing towards reduced metastatic 
potential [51]. Therefore, cluster 11 represented a region 
where cancer growth was limited by pro-inflammatory 
immune responses. On the other hand, in cluster 13, 
we observed the presence of TAMs (Additional file  1: 
Fig. S5B), memory B cells (IGHG1, IGHG3, IGHG4, 
IGLC2, and IGLC3), and fibroblasts (COL1A1, COL1A2, 
COL3A1, COL5A1, COL6A1, COL6A2, and FN1) 
(Additional file  1: Fig. S6). Upregulated cathepsin activ-
ity (CTSB, CTSD, and CTSZ) and complement pathway 
(C1QA, C1S) indicated pro-tumor activity by the TAMs 
in this region [52–54]. Overall, cluster 13 represented a 
region with an immune-suppressed pro-tumor microen-
vironment and a high potential for cancer metastasis.

In summary, SEDR analysis dissected intratumoral het-
erogeneity within visually homogeneous tumor regions 
and revealed the tumor outer ring (cluster 13) with TAM 
infiltration and cancer-associated fibroblasts (CAFs), 
both of which have been reported to facilitate tumor 
spread [55, 56].
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Discussion
Cell type heterogeneity is a feature of both healthy and 
diseased tissue. Capturing this heterogeneity, coupled 
with its spatial arrangement in the tissue, is crucial 
when studying the roles of cells and their crosstalk. Spa-
tial omics technologies represent the state-of-the-art 
approaches for capturing omics data with corresponding 
spatial information from tissue samples. In this paper, 
we introduced SEDR, which leverages cutting-edge 
graph neural network techniques to achieve a better 
representation of spatial omics data that can be used for 
clustering and further downstream analyses. SEDR first 
learns a low-dimensional latent space representation of 
the transcriptome information with a deep autoencoder 

network coupled with masked self-supervised learn-
ing, which is then aggregated with spatial neighbor-
hood information by a variational graph autoencoder 
to create a spatial embedding. This spatial embedding 
is then concatenated with the encoded gene expres-
sion to reconstruct the final gene expression for further 
analyses. We first demonstrated SEDR’s efficacy in delin-
eating the different cerebral cortex layers with higher 
clarity than competing methods and recapitulating the 
associated development order by using the joint latent 
representation with Monocle 3. We also demonstrated 
SEDR’s ability in data imputation with human ovar-
ian cancer and health lymph node tissue data acquired 
with the 10 × Genomics Visium technology. SEDR is not 

Fig. 5 Application of SEDR on 10 × Visium spatial transcriptomics data of human breast cancer. A Manual pathology labeling based on H&E staining 
(annotation) and clustering results of eleven methods. B SEDR clusters 11 (core) and 13 (out ring) that captured the annotated DCIS/LCIS_3 region. 
C Percentage of tumor-associated macrophages (TAMs) in clusters 11 and 13. D Enriched pathways for differentially expressed genes identified 
between clusters 11 and 13
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restricted to Visium-acquired data, as we also showed 
its efficacy on high-resolution Stereo-seq and Slide-
seq data, being able to more accurately recover tissue 
domains compared to competing methods.

To enhance the analytical power and resolution of spa-
tial omics, we need to integrate multiple datasets from 
the same tissue. Similar to single-cell transcriptomic data, 
spatial omics datasets generated in different batches also 
contain batch-specific systematic variations that present 
a challenge to batch-effect removal and data integration. 
In our study, we demonstrated that by combining SEDR 
and Harmony, we were able to effectively remove batch 
effects present.

Spatial omics technologies such as Stereo-seq are able 
to measure a large number of spots in a single experiment 
through high spatial resolutions and large tissue sizes. 
Based on current trends, we expect to see ever-increasing 
throughput from spatial omics experiments, which will 
result in spatial omics big data that poses significant chal-
lenges to data analysis and integration. Computational 
methods that employ GCNs require the entire graph to 
be loaded into GPU memory, which inhibits their appli-
cation to very large datasets. Currently, the current ver-
sion of SEDR is the most CPU and GPU memory efficient 
and second fastest among methods that do not employ 
image processing. To enable SEDR to scale with larger 
datasets, we will further improve the memory efficiency 
of SEDR using a GCN mini-batch or parallel techniques 
to construct large-scale graphs for spatial omics data of 
high throughput and resolution. Furthermore, technolo-
gies with a capture spot size smaller than the diameter of 
a cell will also require new computational methods that 
can accurately delineate cells based on capture spots. 
We plan to integrate cell segmentation based on H&E or 
DAPI staining images into the SEDR workflow to handle 
such data.

The current SEDR methodology employs gene 
expression and spatial information and does not make 
use of histology images. Contemporary methods such 
as SpaGCN and stLearn use histological images as 
input, but in a suboptimal fashion, as demonstrated 
in our study. Specifically, SpaGCN utilizes histology 
image pixels as features by calculating the mean color 
values from the RGB channels directly. However, the 
pixel values are easily affected by noise and cannot pro-
vide semantic features for cell analysis. A potentially 
more effective approach is to adopt a deep CNN model 
which can learn high-level representations of histology 
images. stLearn introduces a deep learning model to 
extract the image features of spots and integrates them 
with the spatial location and gene expression. However, 

stLearn employs a model pre-trained on natural images 
which is not fine-tuned for histology images. In the 
future, we will incorporate histology images as an addi-
tional modality into the SEDR model. We will employ 
an image autoencoder network to first learn image 
features, followed by joint learning of the latent repre-
sentation by integrating gene expression, image mor-
phology, and spatial information.

In summary, SEDR is a promising new approach that 
builds an integrated representation of spots using both 
transcriptomic data and spatial coordinates. SEDR-
derived low-dimensional embedding enables more 
accurate clustering, trajectory inference, batch effect 
correction, gene expression imputation, and denois-
ing. Our model is also able to handle spatial transcrip-
tomics with capture spot sizes ranging from 50  µm to 
less than 1  µm. Furthermore, we applied SEDR on a 
human breast cancer sample to reveal heterogeneous 
sub-regions within the seemingly homogeneous tumor 
region and shed light on the role of immune microenvi-
ronments on tumor invasiveness.

Conclusions
In this work, we introduce SEDR as a novel method that 
processes spatial transcriptomics data to derive deep 
representation, which benefits various downstream 
analyses, including spatial clustering, batch integra-
tion, trajectory inference, gene expression imputation, 
and denoising. To obtain more accurate and informa-
tive low-dimensional representations from spatial tran-
scriptomics data, SEDR integrates spatial information 
with RNA-seq data using a variational graph autoen-
coder, which improves the embedding results signifi-
cantly compared to the one purely based on RNA-seq 
data.

We conclude by discussing the future development 
of SEDR. Although SEDR works well on data generated 
by 10 × Genomics Visium, Slide-seq, and Stereo-seq, 
the ability for it to integrate other types of spatial tran-
scriptomics data is not fully investigated, especially for 
the technologies based on multiplexed imaging, such as 
SeqFISH [22] and MERFISH [57], which are different 
from spot-based ones in terms of data format, resolution, 
and data quality. We plan to upgrade SEDR to enable it 
to analyze more data types. We also plan to employ a 
mini-batch strategy to train models on part of the graph 
instead of the whole dataset to further enhance its scala-
bility. Furthermore, we will also upgrade SEDR to include 
more downstream analyses and visualization methods to 
make it more user-friendly. 
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Additional file 1: Supplementary methods. Fig. S1. Silhouette score for 
5 methods on 12 DLPFC sections. n.s.: p-value > 0.05, *: p-value < 0.05, **: 
p-value < 0.005, ***: p-value < 0.0005, ****: p-value < 0.00005. Fig. S2. ARI 
boxplot for 3 methods on 12 DLPFC datasets with different K (number of 
nearest neighbors). Fig. S3. Unsupervised clustering results for SEDR and 
competing methods on olfactory bulb Slide-seq data. Fig. S4. Computa-
tional requirements of SEDR. A) GPU memory usage for DeepST, STAGATE 
and SEDR when processing DLPFC, mouse olfactory bulb Slide-seq and 
Stereo-seq data. B) Time, CPU memory and GPU memory costed by SEDR 
on simulated data. Simulated data is generated with Slide-seq data (20000 
spots) by randomly selecting ½, 1, 2, 4 times of the spots as the raw data. 
Fig. S5. Human breast cancer histology and cell type mixtures of spatial 
spots. A) H&E staining. B) Probability of cell types for spots that was pre-
dicted by Seurat. Fig S6. Differentially expressed genes (DEGs) between 
SEDR cluster 11 and cluster 13 in human breast cancer data.
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