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Abstract 

Background Detecting human cancers through cell-free DNA (cfDNA) in blood is a sensitive and non-invasive 
option. However, capturing multiple forms of epigenetic information remains a technical and financial challenge.

Methods To address this, we developed multimodal epigenetic sequencing analysis (MESA), a flexible and sensitive 
approach to capturing and integrating a diverse range of epigenetic features in cfDNA using a single experimental 
assay, i.e., non-disruptive bisulfite-free methylation sequencing, such as Enzymatic Methyl-seq. MESA enables simul-
taneous inference of four epigenetic modalities: cfDNA methylation, nucleosome occupancy, nucleosome fuzziness, 
and windowed protection score for regions surrounding gene promoters and polyadenylation sites.

Results When applied to 690 cfDNA samples from 3 colorectal cancer clinical cohorts, MESA’s novel modalities, 
which include nucleosome fuzziness, and genomic features, including polyadenylation sites, improve cancer detec-
tion beyond the traditional epigenetic markers of promoter DNA methylation.

Conclusions Together, MESA stands as a major advancement in the field by utilizing comprehensive and comple-
mentary epigenetic profiles of cfDNA for effective non-invasive cancer detection.
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Background
Cancer has long been a leading cause of death worldwide. 
While research on cancer treatment continues to make 
progress in reducing cancer mortality, early detection 
provides the best opportunity to improve patient survival 
and lower treatment cost [1]. Recently, the analysis of cir-
culating cfDNA — degraded DNA fragments in blood 
plasma originating primarily from the apoptosis of nor-
mal and diseased cells — has shown great potential for 
early cancer detection [2–4]. Using these liquid biopsies 
(non-invasive blood cfDNA-based detection methods) 
in routine screening is central to increasing surveillance 
adherence, identifying cancers in early curable stages, 
and ultimately reducing worldwide cancer mortality. 
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One such approach is the whole-genome sequencing of 
cfDNA, which provides genetic information, such as 
somatic mutations and copy number variations [5, 6]. 
However, detecting cancer-specific genetic alterations 
is challenging due to the limited number of detectable 
changes and low fraction of circulating tumor DNA in 
patient blood samples [2, 5, 7, 8].

Aside from genetic alterations, cfDNA methylation has 
been shown as a promising biomarker for early cancer 
detection, as aberrant DNA methylation has been fre-
quently reported in cancer cells and may occur early in 
tumorigenesis [9–12]. Recent studies showed that meth-
ylation has the best performance among those evaluated 
[13, 14] for cancer detection by performing simultane-
ous analysis of genetic alterations and methylations in 
cfDNA. Currently, the gold standard for the detection 
of DNA methylation is bisulfite sequencing. However, 
this harsh bisulfite treatment degrades a significant frac-
tion of the DNA, resulting in biased genome coverage 
and increased sequencing cost [15]. Recently, the devel-
opment of bisulfite-free DNA methylation sequencing 
methods, such as Enzymatic Methyl-seq (EM-seq) and 
TET-assisted pyridine borane sequencing (TAPS), have 
improved methylation sequencing quality and reduced 
sequencing cost [16–18]. Several studies compared 
bisulfite sequencing and EM-seq from the same cfDNA 
samples and found that methylation levels were similar 
between the two methods. However, EM-seq outper-
formed bisulfite sequencing in various metrics such as 
DNA damage, conversion efficiency, alignment quality, 
coverage, and sensitivity [19–21]. Furthermore, EM-seq 
was effective with lower input DNA and could preserve 
fragmentation patterns, making it a suitable method for 
evaluating the cfDNA methylome in both research and 
clinical settings.

Circulating cfDNA primarily consists of nucleosome-
associated fragments that largely retain the chromatin 
structure information of the cells from which they origi-
nate [22, 23]. As cfDNA is degraded by endonucleases 
before being released into the bloodstream, closed chro-
matin regions with dense nucleosomes are particularly 
well-protected against enzymatic degradation, while 
open chromatin regions are more sensitive to endonucle-
ase activity [22]. Several studies have developed methods 
utilizing chromatin-associated features for the non-inva-
sive detection or monitoring of cancers, including nucle-
osome occupancy [24, 25], window protection score 
(WPS) [22], and fragmentation profile [23, 26]. However, 
these methods rely on whole genome sequencing and 
thus do not provide further epigenetic information.

Recently, the non-destructive nature of EM-seq and 
TAPS enabled the combination of two epigenetic modali-
ties based on low-coverage whole-genome methylation 

sequencing (Additional file  1: Table  S1). In particular, 
cfDNA TAPS [27] provided DNA methylation and frag-
mentation for 85 samples from cancer patients, cirrhosis 
patients, pancreatitis patients, and healthy controls. Sim-
ilarly, EM-seq-based cfDNA sequencing [21] measured 
DNA methylation and nucleosome occupancy for 12 
samples from chronic kidney disease patients and healthy 
controls. Despite this progress, these two methods are 
largely limited by small sample sizes and fail to utilize 
the full spectrum of epigenetic information from cfDNA. 
Here, we introduce a multimodal epigenetic sequenc-
ing analysis (MESA) of cfDNA (Fig. 1) for 690 colorectal 
cancer and control samples from three cohorts with deep 
targeted EM-seq. MESA can simultaneously infer four 
highly complementary epigenetic modalities, namely 
(1) cfDNA methylation, (2) nucleosome occupancy, (3) 
nucleosome fuzziness, and (4) WPS across gene promot-
ers and polyadenylation sites. The introduction of novel 
modalities (e.g., nucleosome fuzziness) and genomic fea-
tures (e.g., polyadenylation sites) in MESA significantly 
improved cancer detection beyond traditional epigenetic 
markers (e.g., promoter DNA methylation).

Methods
Study cohort
There are three clinical cohorts in this study, namely 
cohort 1, cohort 2, and cohort 3 (Additional file 1: Tables 
S2-S4). Cohort 1 comprised 70 patients diagnosed with 
colorectal cancer and 60 control individuals without 
colorectal cancer. Cohort 1 subjects were recruited at 
clinical sites within the USA through the ELITE Study 
(NCT05181826) or were obtained through the follow-
ing contract research organizations: BioIVT (Westbury, 
NY, USA), BioOptions (Brea, CA, USA), Discovery Life 
Sciences (Boston, MA, USA), and DX Biosamples (San 
Diego, CA, USA). Cohort 2 comprised 129 patients 
diagnosed with colorectal cancer and 203 control indi-
viduals without colorectal cancer. Cohort 2 subjects were 
enrolled at the Sun Yat-sen University Cancer Center 
(Guangzhou, China). Cohort 3 comprised 88 patients 
diagnosed with colorectal cancer and 140 control individ-
uals without colorectal cancer (there were 53 overlapped 
with subjects of cohort 1). Cohort 3 has been divided 
into two sub-cohorts: cohort 3.1, which comprises newly 
recruited subjects, and cohort 3.2, which includes the 
original subjects from cohort 1. Due to a shortage of 
cfDNA material in cohort 1, we could only obtain 7 non-
cancer control samples in cohort 3.2. To carry out the 
cross-cohort validation analysis, we added 33 additional 
control samples with matching age and gender to the 
original control samples in cohort 1, to be included in 
cohort 3.2. As a result, the final composition of cohort 3.1 
includes 42 cancer patients and 100 control individuals, 
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Fig. 1 Schematic diagram displaying the design of MESA. cfDNA is isolated from blood samples of three cohorts (cohort 3 was split into cohort 
3.1 and cohort 3.2 for cross-cohort validation) and then processed to generate targeted EM-seq libraries using three targeted panels. Analysis 
of the EM-seq data enables the extraction of four modalities: cfDNA methylation (purple), nucleosome occupancy (blue), nucleosome fuzziness 
(green), and windowed protection score (orange). Then, the feature processing and selection are performed for each modality separately. Firstly, 
features that contain NA or have low variance are removed. Next, the Boruta algorithm is used for feature ranking, and the top-ranking features 
(shown in red) are selected for the following analysis. Selected features are used for tenfold inner cross-validation for each modality to get 
the base predictions. Finally, by stacking and training the base predictions, we get a multimodal machine learning model which outperforms 
the single-modality models in cancer detection
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while cohort 3.2 consists of 46 cancer patients and 40 
control individuals. Cohort 3 subjects were recruited at 
the same sites as cohort 1. We did a principal compo-
nent analysis based on DNA methylation data for cohort 
1 and cohort 3 and noticed that the variation caused by 
different collection sites was insignificant (Additional 
file 2: Fig. S1). Subjects diagnosed with colorectal cancer 
were diagnosed according to current clinical practices. 
We required that the control subjects had no clinical 
history or symptoms of colorectal cancer and excluded 
the possibilities of colorectal cancers and precancer-
ous lesions using colonoscopy. Cohort 1 and cohort 2 
were used for leave-one-out cross-validation analysis 
separately. Cohort 3 was used for cross-cohort analysis. 
All specimen collection protocols were approved by the 
respective Institutional Review Board (IRB). For all three 
cohorts, informed consent was obtained from all patients 
following the Declaration of Helsinki Ethical Principles 
for medical research involving human subjects.

Collection and preparation of samples
Cohort 1 and cohort 3 specimens were drawn into PAX-
gene cfDNA tubes (PreAnalytiX) and shipped to a cen-
tral Helio Genomics laboratory (USA) using custom 
specimen collection and shipping kits (Helio Genomics, 
USA). The whole blood specimens were then processed 
to cleared plasma by centrifugation and stored at approx-
imately – 80 °C until analysis. Cohort 2 specimens were 
drawn into KANGJIAN blood collection tubes at the cor-
responding hospital. Samples were shipped to a Youze 
labortory (Guangzhou Youze Biological Pharmaceuti-
cal Technology Company Ltd., China) with dry ice and 
stored at approximately – 80 °C until analysis.

Targeted sequencing panel design
TCGA-COAD and TCGA-READ 450  K methylation 
array data were downloaded from the UCSC Xena data-
base (https:// tcga. xenah ubs. net) [28]. Additional DNA 
methylation array datasets were downloaded from GEO 
with accession numbers GSE53051 [29], GSE48684 [30], 
and GSE42752 [31] (https:// www. ncbi. nlm. nih. gov/ geo/). 
All datasets were processed by a custom script to iden-
tify CpG sites with significant methylation differences 
between cancerous and adjacent normal tissues. A total 
of 9599 significantly differentially methylated CpG sites 
in the colorectal cancer samples, along with 200 markers 
mentioned in the literature, were selected. A list of 150 bp 
genomic regions centered on each of the selected CpG 
sites was designed for targeted sequencing. Additionally, 
912 promoter regions (Transcription start site ± 1 kb) and 
365 polyadenylation regions (polyadenylation site ± 1 kb) 
of the curated cancer-related genes were added to the 
targeted panel. With the repeat elements and ENCODE 

blacklist regions removed [32], the size of the version 1 
colorectal cancer targeted panel (used on cohort 1) was 
about 4.6 Mb (Additional file 1: Tables S5, S6). To design 
the panel in cohort 2, we selected the top-performing 
1000 methylation markers from the initial set in cohort 
1. Furthermore, 355 top nucleosome features in cohort 
1 were selected based on a prediction AUC of >  = 0.725. 
The shrinking version 2 colorectal cancer targeted panel 
(used on cohort 2) was about 220  kb (Additional file  1: 
Tables S7, S8). To design the panel in cohort 3, top 
methylation features and nucleosome organization fea-
tures were selected based on F-statistics in each fold of 
the repeated fivefold cross validation from the initial set 
in cohort 1. The most frequently selected features were 
finally included. Additionally, promoter regions of colo-
rectal tissue specific genes and differentially expressed 
genes in cancer patients identified from the TCGA data-
set were also included in the panel. The shrinking ver-
sion 3 colorectal cancer targeted panel (used on cohort 
3) was about 472  kb (Additional file  1: Tables S9, S10). 
All targeted panels were synthesized by Twist Bioscience 
(USA).

Targeted EM‑seq of cfDNA
The Helio ECLIPSE™ platform was used to analyze 
cfDNA extracted from patient specimens as previ-
ously described [33]. Briefly, total cfDNA was isolated 
from specimens by using either (cohort 1 and cohort 3) 
a QIAsymphony DSP Circulating DNA Kit (QIAGEN, 
USA) or (cohort 2) the EliteHealth cfDNA Extraction 
Kit (EliteHealth, China). Spike-in control unmethylated 
Lambda DNA was sheared down into about 170  bp by 
sonication. A total of 5  ng cfDNA along with 0.2  pg of 
unmethylated Lambda DNA per specimen was used to 
prepare the barcoded NGS libraries using the NEB Next 
Enzymatic Methyl-seq Kit (New England Biolabs, USA) 
according to the manufacturer’s instructions. The librar-
ies were then hybridized with a custom set of capture 
probes (Twist Bioscience, USA) to capture the targeted 
library sequences using the Twist Fast Hybridization and 
Wash Kit, along with the Twist Universal Blocker. Then, 
a PCR step with 12 cycles was applied to the targeted 
library sequences for library amplification. The PCR 
product was purified and quantified by Thermo Fisher 
Qubit 4 Fluorometer. Only products that had a volume 
higher than 30  μL and concentration high than 2  ng/
μL were kept for the following steps. Finally, the distri-
bution of the library fragment length was measured by 
Agilent 4200 TapeStation. Only high-quality libraries 
with peak size between 300 and 350  bp (corresponding 
to 130–180  bp cfDNA fragments and 170  bp adapter) 
were kept for sequencing. The captured libraries were 
then supplemented with a 20% PhiX genomic DNA 
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library to increase base calling diversity and submitted 
for sequencing using Illumina NovaSeq 6000 instruments 
as 2 × 150 bp reads.

Targeted EM‑seq data processing and quality control
Raw sequencing reads were first trimmed by TrimGalore 
(https:// github. com/ Felix Krueg er/ TrimG alore, –paired 
-q 20 –clip_R1 5 –clip_R2 10 –three_prime_clip_R1 30 
–three_prime_clip_R2 30; v0.6.5) to remove low-quality 
reads and potential adaptor contamination. Then, the 
remaining reads were aligned to the hg19 human genome 
reference using BSMAP (v2.90) [34]. The aligned reads 
were further processed by Samtools (v0.1.19) [35] and 
deepTools (v3.5.0) [36] to only keep primarily mapped 
reads with fragment sizes between 80 and 200  bp to 
remove potential genomic DNA contamination from 
normal blood cells. This final file served as the input file 
for all the following processes except fragment size dis-
tribution analysis, which used reads without a size filter. 
Spike-in unmethylated lambda DNA was used to control 
for C to T conversion efficiency. Samples with lambda 
methylation levels of more than 1% (CT conversion rate 
less than 99%) were removed from the downstream anal-
ysis. In total, there were 5 samples removed because of 
low CT conversion rate including 2 from cohort 1 and 3 
from cohort 2.

Multimodal feature extraction from targeted EM‑seq 
of cfDNA
We extracted four types of features: cfDNA methylation, 
nucleosome occupancy, nucleosome fuzziness, and WPS.

• cfDNA methylation: Conventional methylation ratio 
was calculated by Methratio.py (BSMAP, v2.90) [34] 
from aligned bam files for the target CpG sites.

• Nucleosome occupancy: Occupancy values were cal-
culated using DANPOS2 (v2.2.2) [37]. For cohort 2 
and cohort 3, the average value for each nucleosome 
organization target region was calculated using big-
WigAverageOverBed from UCSC tools (v393) [38].  
Due to the relatively long target regions of cohort 1 
(2 kb), we split each target region into 1 kb sliding win-
dows with 10 bp steps. Then, for each sliding window, 
we calculated the average nucleosome occupancy.

• Nucleosome fuzziness: Fuzziness values were cal-
culated using DANPOS2. For each nucleosome 
organization target region (1 kb sliding windows for 
cohort 1), we calculated the average fuzziness of all 
the nucleosomes whose center is located within the 
region.

• WPS: Average WPS was calculated for each targeted 
region as described previously [22].

Single modality machine learning models for cancer 
detection
We trained machine learning models for cohort 1 and 
cohort 2 using the same procedure. All the models were 
trained and evaluated using the leave-one-out cross-val-
idation method. Briefly, all the N samples were divided 
into training and test samples for N iterations, where the 
number of test samples = 1 and the number of training 
samples = N -1. Since missing values could reduce the 
accuracy of the machine learning model, we excluded 
features with missing values in each iteration. Next, 
low-variance features were removed before training the 
model in the remaining training datasets. The feature’s 
predictive capabilities and the model’s performance were 
then assessed using the test datasets. Finally, the results 
of all the N iterations were aggregated together to calcu-
late performance metrics. The Random Forest classifier 
from scikit-learn package (v0.24.2) [39] was used for the 
single modality model construction.

Feature selection
For each of the four modalities, we used the Boruta 
algorithm in the BorutaPy package (v0.3) [40] in each 
iteration of leave-one-out cross-validation to determine 
feature importance. Specifically, we created copies of 
the original features and randomly permuted their val-
ues. Then, we trained a machine learning model using 
Random Forest on the datasets with both original and 
permuted features. We evaluate the importance of each 
real feature and mark it as “confirmed important” when 
it showed significantly higher importance than its per-
muted version. If a feature was less important than its 
permuted version, it was considered “unimportant” and 
was eliminated from further consideration. We repeated 
the steps above until all features were either confirmed 
important or unimportant. Finally, the Boruta algorithm 
ranked the features based on their importance, with 
the “confirmed important” features having the highest 
importance. Finally, we selected the top 100 features for 
each modality for model training and prediction.

Multimodal machine learning model for cancer detection
We built the multimodal machine learning model using 
the model-based multimodal integration strategy [41]. 
For each of the four modalities, we selected a feature 
subset using the Boruta algorithm and trained a Random 
Forest classifier using the complete training dataset as a 
base estimator. Specifically, in each iteration of leave-one-
out cross-validation, we used the tenfold cross-validation 
(CV) inside the training dataset, and we stacked all base 
predictive probabilities in each CV of four modalities 
as input to a meta-classifier to make prediction on the 
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corresponding leave-one-out cross-validation test data-
set. This ensemble learning approach could preserve 
unique information from different modalities and pro-
vide complementary information across different types of 
features.

cfDNA TAPS data processing and machine learning models 
for cancer detection
The cfDNA TAPS data was processed in the same man-
ner as the original paper [27]. Raw sequenced reads were 
trimmed using TrimGalore (v0.6.5, https:// github. com/ 
Felix Krueg er/ TrimG alore) to remove adapter and low-
quality bases. Trimmed reads were aligned to the hg19 
human reference genome using bwa mem (v0.7.17) [42]. 
The alignment files were filtered to remove low map-
ping quality (MAPQ < 20) as well as duplicate reads using  
alignmentSieve from deepTools (v3.5.0) [36]. MethylDackel  
extract (v0.6.1, https:// github. com/ dprya n79/ Methy lDack el)  
was used for methylation calling. CpG sites that overlapped 
common single-nucleotide polymorphism (SNP) [43] 
(https:// ftp. ncbi. nih. gov/ snp/ organ isms/ human_ 9606_ 
 b151_ GRCh3 7p13), blacklisted regions [32], centromeres, 
and sex chromosomes were excluded from downstream 
analysis.

Next, we extracted three types of features: DNA meth-
ylation, nucleosome occupancy, and WPS. (1) DNA 
methylation: The methylation ratio was calculated using 
the number of methylated CpGs divided by the total 
number of sequenced CpGs for each promoter and 
enhancer region. The promoter and enhancer regions 
were downloaded from Ensemble [44] (http:// ftp. ensem 
bl. org/ pub/ grch37/ relea se- 100/ regul ation/ homo_ sapie 
ns/ homo_ sapie ns. GRCh37. Regul atory_ Build. regul atory_ 
featu res. 20191 101. gff. gz). (2) Nucleosome occupancy: 
Occupancy values were calculated using DANPOS2. 
Average values of the 1 kb regions surrounding TSSs and 
polyadenylation sites of all RefSeq annotated genes [45] 
were calculated. The locations of polyadenylation sites 
were downloaded from PolyA_DB (version 3) [46]. Due 
to the relatively low coverage of cfDNA TAPS data, we 
removed features that had occupancy values lower than 
the mean of all values in at least one sample. (3) WPS: 
Average WPS was calculated for the 1  kb regions sur-
rounding TSSs and polyadenylation of all RefSeq anno-
tated genes, which were also used for nucleosome 
occupancy.

We then trained both two-class (distinguishing can-
cer (HCC or PDAC) and control samples) and three-
class models (distinguishing HCC, PDAC, and control 
samples) using the same procedure as for targeted EM-
seq data. For the three-class models, we used accuracy 
instead of AUC as the performance metric.

Cross‑cohort validation analysis
We performed cross-cohort validation on cohort 3. 
Briefly, after feature extraction for both cohorts, we per-
formed feature preprocessing, selection, and multimodal 
integration as described before. Then, we trained the 
model on cohort 3.1 and calculated the predictive perfor-
mance with the trained model on cohort 3.2.

SMAC‑seq data processing
SMAC-seq data for the human GM112878 cell line was 
downloaded from https:// zohar shipo nh. s3. amazo naws. 
com/ NMETH_ 2020/ index. html. Then, the data was 
processed by following the steps in the original paper 
[47] using scripts from https:// github. com/ georg imari 
nov/ SMAC- seq- scrip ts. Next, nucleosome occupancy 
could be calculated based on the ratio of methylated A/
unmethylated A. The nucleosome occupancy profile 
from SMAC-seq around all polyadenylation sites down-
loaded from PolyA_DB (version 3) [46] was visualized 
using R (v4.0.4).

Results
MESA cohorts
To systematically demonstrate the performance of 
MESA, we designed three targeted EM-seq panels of 
different scales for three clinical cohorts, namely cohort 
1 (n = 130), cohort 2 (n = 332), and cohort 3 (n = 228) 
(Fig. 1, Additional file 1: Tables S2-S4). We used cohorts 1 
and 2 individually to showcase the versatility and robust-
ness of the MESA method and used cohort 3 for cross-
cohort analysis with cohort 1. The target regions included 
a custom-designed methylation panel and a nucleosome 
organization panel with 1-kb regions surrounding both 
transcription start sites (TSSs) and polyadenylation sites 
(PASs) of cancer-related genes (Methods; Additional 
file  1: Tables S5-S10). The methylation panel included 
significantly differentially methylated CpG sites from the 
TCGA 450 K colorectal cancer cohort and CpG markers 
collected from the literature. Novel to our panel design 
is the introduction of polyadenylation sites, whose alter-
native regulation is frequently reported to be involved 
in tumorigenesis [48–51]. Since nucleosome occupancy 
around polyadenylation sites is also associated with alter-
native polyadenylation regulation [52–54], we predicted 
that its inclusion would contribute to the improvement of 
the cancer detection model’s performance. While our tar-
get panel was specifically designed for colorectal cancer, 
its design strategies allow for easy adaption to other can-
cer types or non-cancer diseases. In contrast to low-pass 
whole-genome methylation sequencing such as cfDNA 
TAPS [27] (mean coverage of 11.6 ×), this targeted design 
allowed us to perform deeper sequencing with a mean 
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coverage of 74.2 × (range from 41 to 123 ×) for cohort 1, 
a mean coverage of 200.3 × (range from 76 to 570 ×) for 
cohort 2, and a mean coverage of 157.4 × (range from 78 
to 314 ×) for cohort 3 at a relatively low cost. Next, we 
assessed the quality of the sequencing data based on non-
human internal spike-in controls with known unmethyl-
ated CpG sites (CpG-unmethylated lambda DNA). Only 
samples with a conversion efficiency of at least 99% were 
kept for analysis, corresponding to less than 1% methyla-
tion detected in the unmethylated lambda DNA.

cfDNA methylation in MESA enables accurate detection 
of colorectal cancer
As a baseline, we first explored the effectiveness of cfDNA 
methylation features alone in distinguishing between 

cancer patients and non-cancer controls. We observed 
that the average methylation level of all target CpG sites 
was elevated in cancer samples compared to non-cancer 
controls (Fig.  2A and B). This observation is consist-
ent with the fact that the targeted CpG sites are primar-
ily located in promoter regions, which are known to be 
frequently hypermethylated in cancers [55]. Principal 
component analysis (PCA) for cfDNA methylation levels 
in all target CpG sites showed reasonable separation in 
PC1 and PC2 (Fig. 2C and D). Next, we investigated the 
performance of these methylation features for colorectal 
cancer prediction using machine learning methods with 
leave-one-out cross-validation (Methods). Methylation 
alone achieved an impressive prediction of colorectal 
cancer in both cohorts based on random forest models 

Fig. 2 Differential cfDNA methylation between cancer and non-cancer samples enables accurate cancer detection. A‑B The average methylation 
level of all target CpG sites in cancer patients (Cancer) and controls (Non-Cancer) from cohort 1 (A) and cohort 2 (B). C‑D Scatter plots showing 
PC1 and PC2 from PCA of methylation level of all target CpG sites in cancer patients (Cancer) and controls (Non-Cancer) of cohort 1 (C) and cohort 
2 (D). The percentage of variances explained by each PC is shown in the parentheses. E‑F Receiver operating characteristic (ROC) curves of model 
performance based on the methylation level of CpG sites for cohort 1 (E) and cohort 2 (F). The results from 130 iterations for cohort 1 and 332 
iterations for cohort 2 of leave-one-out cross-validation analysis were shown
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(Fig.  2E and F, AUC (area under the curve) = 0.8663 for 
cohort 1 and AUC = 0.8293 for cohort 2). These results 
indicated that cfDNA methylation in MESA can be used 
to detect colorectal cancer with reasonable accuracy.

MESA successfully captures nucleosome organization 
information
EM-seq preserves the integrity of cfDNA as compared 
to bisulfite conversion, enabling us to capture additional 
epigenetic information. From all the sequenced frag-
ments merged from non-cancer controls, we observed a 
peak around 166 bp (corresponding to the length of DNA 
associated with a nucleosome and a linker histone) in the 
cfDNA fragment length distribution (Fig.  3A for cohort 
1, Additional file 2: Fig. S2A, B for cohort 2 and cohort 

3), which is consistent with that from cfDNA whole-
genome sequencing data [22, 24]. The size distribution 
of fragments between the two US-collected cohorts 
(cohort 1 and cohort 3) did not differ significantly, as 
determined by a Kolmogorov–Smirnov test (P = 0.5944). 
Further supporting the association between cfDNA and 
nucleosomes, the dinucleotide frequency of these frag-
ments showed a ~ 10  bp periodicity (Fig.  3B for cohort 
1, Additional file 2: Fig. S3A, B for cohort 2 and cohort 
3), which recapitulates key features of nucleosome-asso-
ciated fragments digested by micrococcal nuclease [56]. 
Next, to accurately measure nucleosome organization 
profiles from cfDNA, we used the quantification method  
DANPOS2 [37, 57], a tool widely used for processing 
micrococcal nuclease digestion with deep sequencing  

Fig. 3 Nucleosome organization information from targeted EM-seq of cfDNA. A Fragment length distribution of sequenced cfDNA fragments. 
A peak value at 167 bp (black dashed line) is consistent with the association with nucleosomes. B The distribution of dinucleotide fraction 
across 147 bp fragments and the flanking genomic regions. C Genome browser tracks showing sequencing signals of targeted EM-seq of healthy 
cfDNA (cfDNA targeted EM-seq) and nucleosome calls generated by ENCODE project with accession number ENCSR000CXP (Lymphoblastoid cell 
MNase-seq). DANPOS2, occupancy values reported by DANPOS2. Raw coverage, occupancy values estimated by read coverage. D‑E Aggregate 
lines showing nucleosome occupancy profiles across TSSs (D) and polyadenylation sites (E) of target genes. PAS, polyadenylation sites. NDR, 
nucleosome depleted regions. Relative nucleosome occupancy represents nucleosome occupancy normalized by the average value of the plotted 
regions. Results in this figure are based on merged targeted EM-seq data of 60 healthy controls from cohort 1
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(a technique used for profiling nucleosome landscape) data 
[58]. The occupancy profiles reported by DANPOS2 were  
concordant with nucleosome profiles from lymphoblas-
toid cells (Fig.  3C), indicating the targeted EM-seq suc-
cessfully captured nucleosome information. Moreover, 
profiles reported by DANPOS2 had lower background 
noise compared with raw read coverage measurements, 
as shown by example regions (Fig.  3C) and the typi-
cal well-positioned nucleosomes around TSSs (Fig. 3D). 
Interestingly, we also observed a nucleosome-depleted 
region around polyadenylation sites and well-positioned 
nucleosomes flanking this region (Fig.  3E). To exclude 
potential AT bias of coverage-based sequencing data, 
we further used SMAC-seq [47], an enzymatic footprint 
strategy based on the ratio of methylated A and unmeth-
ylated A, to measure nucleosome occupancy. SMAC-seq 
data for the human GM112878 cell line also showed a 
nucleosome-depleted region around polyadenylation 
sites, which was even clearer than those from the cover-
age-based approaches (Additional file  2: Fig. S4). These 
results demonstrate that MESA successfully captures 
nucleosome organization information in both TSSs and 
polyadenylation sites.

Nucleosome occupancy and fuzziness in MESA enable 
accurate detection of colorectal cancer
Based on our findings that DANPOS2 could accurately 
measure nucleosome organization features from targeted 
EM-seq, we then investigated whether these features 
could be used for cancer detection. We derived two types 
of features from nucleosome organization: (1) nucleo-
some occupancy, which reflects the frequency with 
which nucleosomes occupy a given DNA region in a cell 
population; (2) nucleosome fuzziness, which is defined as 
the deviation of nucleosome positions within a region in 
a cell population and could reflect cell heterogeneity at 
the chromatin level (Fig. 4A). Both features were defined 
for each nucleosome organization target region (TSS 
and polyadenylation sites target regions) by DANPOS2 
(Methods). We hypothesized that nucleosome occupancy 
and fuzziness might capture non-overlapping changes 
between cancer and control samples. Genome browser 

track visualization of four regions showed examples of 
either occupancy or fuzziness changes between cancer 
and control samples in cohort 1 (Fig.  4B). Particularly, 
these changes were found in both TSS (Fig. 4B, top pan-
els) and polyadenylation (Fig. 4B, bottom panels) regions, 
emphasizing the importance of introducing polyadenyla-
tion site target regions in the MESA panel design.

Using the leave-one-out cross-validation method, we 
then investigated the predictive potential of nucleosome 
occupancy and fuzziness. Consistent with previous work 
[24], our model based solely on nucleosome occupancy 
of TSS target regions achieved an AUC of 0.8494 for 
cohort 1 and 0.9213 for cohort 2 (Fig. 4C and D). Inter-
estingly, adding polyadenylation site target regions fur-
ther improved model performance, as demonstrated by 
the enhanced AUC after combining nucleosome occu-
pancy features of TSS and polyadenylation site target 
regions (Fig.  4C and D; AUC = 0.8590 for cohort 1 and 
AUC = 0.9257 for cohort 2). To the best of our knowl-
edge, this is the first time that nucleosome occupancy 
around polyadenylation regions from cfDNA has been 
utilized in cancer detection, as most of the previous stud-
ies utilizing nucleosome-associated features did not uti-
lize polyadenylation sites and primarily focused on gene 
promoters (Additional file 1: Table S11). Another novelty 
of our design is the introduction of nucleosome fuzzi-
ness, which reflects cell heterogeneity at the chromatin 
level [37, 59]. Nucleosome fuzziness based on cfDNA 
may differentiate cancer from controls, as cancerous 
tissue is typically more heterogeneous than normal tis-
sue [60, 61]. To exclude the possibility that nucleosome 
fuzziness had been previously reported under a differ-
ent name, we examined two measurements derived from 
the nucleosome-associated metrics, namely WPS [22] 
and orientation-aware cfDNA fragmentation (OCF) [62]. 
However, our results demonstrate that nucleosome fuzzi-
ness is distinct from these metrics, as evidenced by its 
low per-sample correlations (absolute value less than 0.5) 
and differing predictive probabilities (Spearman correla-
tion of 0.61 for nucleosome fuzziness and WPS, Spear-
man correlation of 0.51 for nucleosome fuzziness and 
OCF, as shown in Additional file  2: Fig. S5). Therefore, 

(See figure on next page.)
Fig. 4 Accurate detection of cancer based on nucleosome occupancy and fuzziness. A A schematic diagram showing the differences 
between nucleosome occupancy and fuzziness for four example positions in four cells. B Genomic regions showing nucleosome occupancy (left 
panel) and fuzziness changes (right panel) between cancer and non-cancer samples. The top panel shows genome browser tracks of TSS target 
regions, and the bottom panel shows PAS target regions. For each panel, two example cancer and non-cancer samples are displayed. The blue 
boxes show the gene bodies with white arrows indicating the transcription directions. C, D ROC curves showing the model performances based 
on the nucleosome occupancy of TSS target regions (Occupancy TSS), PAS target regions (Occupancy PAS), or combination of the two (Occupancy 
TSS + PAS). E, F ROC curves showing the model performances based on nucleosome fuzziness of TSS target regions (Fuzziness TSS), PAS target 
regions (Fuzziness PAS), or combination of the two (Fuzziness TSS + PAS). PAS, polyadenylation site. For the ROC curves, results from 130 iterations 
for cohort 1 and 332 iterations for cohort 2 of leave-one-out cross-validation analysis were shown
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Fig. 4 (See legend on previous page.)
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the inclusion of nucleosome fuzziness and polyadenyla-
tion sites remain the primary novel contributions in our 
study. Our model based solely on nucleosome fuzziness 
showed good performance in cancer detection, and the 
addition of polyadenylation sites further improved the 
model’s performance (Fig.  4E and F; AUC = 0.7793 for 
cohort 1 and AUC = 0.8601 for cohort 2). These results 
suggested that the new modality (nucleosome fuzziness) 
and genomic feature (polyadenylation sites) introduced 
in MESA are effective for cancer detection.

Integrating multimodal epigenetic features in MESA 
enhances cancer detection
We next investigated the integration of multimodal fea-
tures captured by MESA for cancer detection. In addition 
to DNA methylation, nucleosome occupancy, and nucle-
osome fuzziness features we previously introduced, we 
also included WPS, which has been widely used for can-
cer detection [21, 22, 63, 64]. Using leave-one-out cross-
validation, we found that the integrated models had the 
highest AUC, sensitivity (at 90% specificity), and F1 score 
compared to the four single modality models (Fig.  5A 
and B; Additional file  1: Tables S12, S13), highlighting 
the benefits of incorporating multimodal information in 
cancer prediction. When evaluating models based on the 
cancer stages, the multimodal model still outperformed 
single modality models (Additional file 1: Table S14). By 
visualizing the predicted probability of classifying each 
sample to the cancer group, we found a similar pattern 
for the four single modality models (Fig.  5D and E), 
suggesting that each modality concordantly predicted 
the same classification for most samples. Additionally, 
when examining the correlations between the probabili-
ties of different single-modality models, we found cor-
relations as low as 0.53 (Fig.  5G and H), indicating that 
single-modality models may capture complementary 
information for cancer detection. The observed improved 
performance of the integrated model is consistent with 
the fact that the integration of single modalities com-
bines complementary information.

MESA for cross‑cohort analysis
To demonstrate the robustness of MESA across cohorts, 
we included a third cohort (cohort 3, n = 228) for cross-
cohort analysis with cohort 1. To achieve a more cost-
effective deep sequencing coverage, we reduced the 
targeted panel of cohort 3 based on the panel used in 
cohort 1. To minimize batch effects, we re-sequenced the 
samples of cohort 1 using the modified panel. As a result, 
cohort 3 has been divided into two sub-cohorts: cohort 
3.1, which comprises newly recruited subjects (42 can-
cer patients and 100 control individuals), and cohort 3.2, 
which includes the original subjects from cohort 1 (46 

cancer patients and 40 control individuals) (Methods). 
Our MESA method still demonstrated strong perfor-
mance, as evidenced by the cross-cohort analysis results, 
where the model was trained on cohort 3.1 and validated 
on cohort 3.2 (Fig. 5C). Furthermore, each modality cap-
tured complementary information and predicted the 
same classification for most samples in the cross-cohort 
analysis (Fig. 5F and I).

MESA for other bisulfite‑free DNA methylation sequencing 
methods
As MESA took advantage of the non-disruptive nature 
of EM-seq to capture multimodal epigenetic informa-
tion from a single assay, the multimodal approach was 
predicted to effectively perform on any cfDNA methyla-
tion sequencing assay of a similar nature. We tested this 
hypothesis on another bisulfite-free cfDNA sequenc-
ing method, cfDNA TAPS [27], which was applied to a 
cohort including 21 hepatocellular carcinoma (HCC) 
patients, 23 pancreatic ductal adenocarcinoma (PDAC) 
patients, and 30 non-cancer controls. As shown by a 
well-studied nucleosome array, the occupancy reported 
by DANPOS2 for cfDNA TAPS data was consistent with 
nucleosome profiles from lymphoblastoid cells (Fig. 6A), 
indicating cfDNA TAPS could capture nucleosome infor-
mation as targeted EM-seq did. Despite the low sequence 
depth (mean coverage of 11.6 ×), we still observed occu-
pancy changes between cancer and control samples for 
regions surrounding either TSSs or polyadenylation sites 
(Fig.  6B). Then, we extracted three types of features, 
including DNA methylation, nucleosome occupancy, and 
WPS. Next, we applied the same model training method 
for cohort 1 and cohort 2 to the cohort of cfDNA TAPS 
data (HCC vs. control; PDAC vs. control). Here, we did 
not include nucleosome fuzziness because it was inaccu-
rate to calculate the fuzziness score when the sequencing 
depth was low. In line with the above results, we found 
that the multimodal model has the highest AUC com-
pared with three single-modality models (Fig. 6C and D; 
AUC = 0.8683 for the HCC cohort and AUC = 0.8087 for 
the PDAC cohort). Since there were two cancer types in 
this dataset, we also trained three-class models to dis-
tinguish HCC, PDAC, and controls to demonstrate the 
outperformance of the multimodal model. We found that 
the multimodal model achieved an overall accuracy of 
0.6892 (Fig. 6D), outperforming the three single-modality 
models. Moreover, the multimodal model had an over-
all high accuracy in distinguishing the two cancer types 
as shown by the confusion matrixes (Additional file  2:  
Fig. S6). Together, these results suggest that MESA’s inte-
grated analysis of multimodal epigenetic features is widely 
applicable across multiple non-disruptive methylation 
sequencing protocols.
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Fig. 5 Multimodal epigenetic analysis from MESA improves the performance of cancer detection model. A–C ROC curves showing model 
performances based on different modalities. Methylation, methylation ratio of all target CpGs; Occupancy, nucleosome occupancy of all TSS 
and polyadenylation target regions; Fuzziness, nucleosome fuzziness of all TSS and polyadenylation target regions; WPS, average WPS for all target 
regions; Multimodal, the combination of all four types of features. D–F Heatmaps showing the predicted probabilities of single modality models 
for each sample. The probability represents the predicted probability of classifying the sample to the cancer group. G–I Heatmaps showing pairwise 
Spearman correlations of the predicted probability of all samples between different types of features. The Spearman correlation values are labeled 
on the heatmaps. LOOCV on cohort 1, the leave-one-out cross-validation analysis results from 130 iterations on cohort 1. LOOCV on cohort 2, 
the leave-one-out cross-validation analysis results from 332 iterations on cohort 2. Cross-cohort validation on cohort 3, results of models trained 
on cohort 3.1 and validated on cohort 3.2
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Discussion
In this study, we present a comprehensive epigenetic 
analysis of cfDNA, aiming at improving the non-invasive  
early detection of human cancers. Our integrated  
model shows enhanced detection accuracy for colo-
rectal, liver, and pancreatic cancers compared to single 
modality models in four cohorts with either EM-seq or 
cfDNA TAPS. Besides the good performance, another 
significant advantage of MESA is its flexibility. Although 
the biomarkers and model used in MESA are specific to 
a particular cancer type, the inclusion or exclusion of 
modalities is adaptable based on their performance when 
applied to different cancer types. For example, cancer 
types with relatively unchanged nucleosome occupancy 
may benefit only from integrating the remaining modali-
ties. Removal of nucleosome occupancy features, in this 

case, could prevent confounding and unnecessary com-
plexity. Therefore, this multimodal approach allows for 
the developing of an unbiased combinatorial prediction 
model. Furthermore, all four modalities are simultane-
ously captured in a single assay, offering full flexibility 
without the need to perform multiplex assays while mini-
mizing potential batch effects and other technical biases 
in multiplex and separated assays.

MESA can also be applied to other clinical scenarios 
besides the basic classification question in this study. 
It can be used for a multi-cancer early detection test or 
test for high-risk individuals if trained on data of multi-
ple cancer types or high-risk individuals. Furthermore, 
to utilize MESA for detecting minimal residual disease 
(MRD), we can train the models on patient samples 
with post-treatment recurrence status information, 

Fig. 6 Multimodal epigenetic analysis of cfDNA TAPS improves the performance of cancer detection model. A Genome browser tracks showing 
sequencing signals of cfDNA TAPS of controls (cfTAPS of healthy controls) and nucleosome calls generated by ENCODE project with accession 
number ENCSR000CXP (Lymphoblastoid cell MNase-seq). Sequencing signals from cfDNA TAPS are calculated by DANPOS2. B Genomic regions 
showing nucleosome occupancy changes between HCC (left panel) or PDAC (right panel) and control samples. Nucleosome occupancy 
is calculated by DANPOS2. The top panel shows tracks of regions surrounding TSSs, and bottom panel shows regions surrounding polyadenylation 
sites. For each panel, two example cancer and control samples are displayed. The blue boxes show the gene bodies with white arrows indicating 
the transcription directions. C, D ROC curves showing the performances of two-class models which distinguish HCC (C) or PDAC (D) from control 
samples. The results from 51 iterations for (C) and 53 iterations for (D) of leave-one-out cross-validation analysis were shown. E Bar plot showing 
the overall accuracy of three-class models which distinguish HCC, PDAC, and control samples. The results from 74 iterations of leave-one-out 
cross-validation analysis are shown. Methylation, methylation ratio of promoter and enhancer regions; Occupancy, nucleosome occupancy 
of 1 kb regions surrounding TSSs and polyadenylation sites; WPS, WPS of 1 kb regions surrounding TSSs and polyadenylation sites; Multimodal, 
the combination of all three types of features
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which can indicate MRD. In cases of early detection, 
where the proportion of healthy samples far exceeds 
the number of cancer samples in the training cohort, we 
may need to take additional steps during preprocessing 
to address the imbalance. This can be done using tech-
niques such as the Synthetic Minority Over-Sampling 
Technique to generate synthetic samples by randomly 
sampling attributes from instances in the minority class 
before training the models. Additionally, performance 
metrics such as precision, recall, and F1 score can be 
used to evaluate the performance of classifiers in imbal-
anced datasets. A penalized classifier can also be used 
to give more weight to the minority class. These modi-
fications can be easily applied to MESA by adjusting its 
parameters. In the case of small training cohorts, over-
fitting can become a major issue. To mitigate this issue, 
a regularization parameter can be added to the classifier, 
and its parameters can be fine-tuned on the training set 
to reduce overfitting. The optimal parameters can then 
be used to train a final model for clinical use.

A potential concern of this multimodal approach is 
that modalities might be highly correlated, thus not nec-
essarily reflecting complementary information. In this 
paper, we showed that the predicted probabilities of indi-
vidual modalities are not highly correlated. For example, 
although the nucleosome organization is related to WPS 
[22], nucleosomes can provide additional information. 
For example, nucleosome fuzziness can capture the cell 
heterogeneity at the chromatin level. Even if two sam-
ples have the same WPS profile, these samples may pos-
sess dramatically different nucleosome fuzziness in most 
regions. Therefore, they can still provide complementary 
information for the prediction model. We further note 
that, to our knowledge, this study introduces the meas-
urement of nucleosome fuzziness and polyadenylation  
regions for the first time in cfDNA sequencing data analysis. 
Our results show that they both contribute to a better 
performance of the cancer detection model.

One limitation of our study is its relatively small sample 
size. Follow-up studies will be needed to strengthen the 
application of MESA in a wide variety of human cancers. 
However, despite the limitations, our study demonstrates 
a salient example of how targeted EM-seq of cfDNA 
captures multimodal epigenetic information and ena-
bles accurate cancer detection at a low relative cost. Our 
design provides a clinically practical method for liquid 
biopsy, especially for cancer types with few or no genetic 
changes. Moreover, for cohort 1, we observed better per-
formances of the multimodal model for early-stage (I and 
II) than for late-stage (III and IV) patients (Additional 
file  1: Table  S14). Although this observation may be 
biased by the relatively small sample size of each stage, it 

shows the possible advantages of MESA on early cancer 
detection. As cfDNA methylation-based liquid biopsies 
garner more attention and clinical use, MESA represents 
a widely applicable platform for improving non-invasive 
cancer detection.

Conclusions
The multimodal epigenetic sequencing analysis (MESA), 
which integrates multiple epigenetic modalities, has 
demonstrated superior detection accuracy for colorectal, 
liver, and pancreatic cancers compared to models based 
on a single modality. This enhanced detection has been 
validated in four distinct cohorts using either EM-seq or 
cfDNA TAPS techniques. As a result, MESA represents 
a major advancement in non-invasive cancer detection 
by leveraging comprehensive and complementary epige-
netic profiles of cfDNA.
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