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Abstract 

Background As normal cells transform into cancers, their cell state changes, which may drive cancer cells 
into a stem‑like or more primordial, foetal, or embryonic cell state. The transcriptomic profile of this final state may 
encode information about cancer’s origin and how cancers relate to their normal cell counterparts.

Methods Here, we used single‑cell atlases to study cancer transformation in transcriptional terms. We utilised bulk 
transcriptomes across a wide spectrum of adult and childhood cancers, using a previously established method 
to interrogate their relationship to normal cell states. We extend and validate these findings using single‑cell cancer 
transcriptomes and organ‑specific atlases of colorectal and liver cancer.

Results Our bulk transcriptomic data reveals that adult cancers rarely return to an embryonic state, but that a 
foetal state is a near‑universal feature of childhood cancers. This finding was confirmed with single‑cell cancer 
transcriptomes.

Conclusions Our findings provide a nuanced picture of transformation in human cancer, indicating cancer‑specific 
rather than universal patterns of transformation pervade adult epithelial cancers.

Background
Malignant transformation is underpinned by changes in 
the cell state towards a less differentiated or stem-like cell 
state. Consequently, cancers may broadly retain the cell 
state of origin or transform to resemble a more primitive 
cell type, of tissue-specific foetal or primordial embry-
onic cells. Which cell state—primordial or otherwise—
cancer assumes is a fundamental question of cancer 
biology as it provides a net readout of the consequences 
of cancer formation.

The cancer cell state can be studied using tran-
scriptional readouts that represent cellular pheno-
types and differentiation states. The key challenge 
in such an analysis is defining cellular states, such as 
stemness, embryonicness, foetalness, etc., in quantita-
tive molecular terms. One approach is to use appro-
priate mRNA signals, identified using unsupervised 
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clustering or pattern recognition methods applied to 
single cell atlases, that embody the state the cancer 
may transform into. A number of studies have used 
this approach to investigate “stemness” across the 
entire spectrum of human cancer [1–3], for example, 
by measuring stemness signals derived from in  vitro 
differentiating human embryonic stem cells [4]. These 
studies indicate that human cancer transcriptomes 
resemble transcriptional modules of in  vitro differen-
tiating embryonic stem cells. Whether the correlation 
of such modules represents a global transcriptional 
transformation towards an antenatal state remains 
unknown. Furthermore, it is conceivable that other 
developmental states, such as gastrulation, foetal tis-
sues, or post-natal stem cells, may also contribute to 
the state of cancer transcriptomes.

Recent efforts, referred to as the Human Cell Atlas 
project [5], have begun to provide transcriptional 
definitions of human cells across all stages of devel-
opment for multiple tissues using single-cell mRNA 
sequencing. These reference transcriptomes provide 
the opportunity to study cancer transformation using 
a more complete and nuanced set of reference states 
than has been possible in the past.

We approach the quantification of cancer cell state 
by probing cancer bulk transcriptomes for evidence 
of single-cell-defined human reference signals using a 
previously established method [6]. This method, which 
is conceptually similar to deconvolution, quantifies the 
extent to which reference signals explain the observed 
expression profile of a bulk transcriptome. Crucially, 
this approach also estimates the fraction of the bulk 
transcriptomic profile unexplained by the provided 
reference, which, together with goodness of fit metrics, 
assesses the extent to which reference signals account 
for bulk transcriptomes.

Methods
The human reference cell types we included in each 
analysis encompassed the entire spectrum of human 
tissue development: human pre-gastrulation epiblast 
and hypoblast cells [7]; cells representing the three 
germ layers, endoderm, mesoderm, and ectoderm in 
their earliest stages [8]; and tissue-specific foetal [9] 
and adult cells [10] (Additional file  1: Table  S1). We 
applied this combined reference to a wide spectrum 
of childhood and adult solid tissue cancers [11–16] 
(Additional file  1: Table  S2). We then extended these 
results using high-resolution atlases of specific tissues 
together with single-cell cancer transcriptomes for two 
types of adult epithelial cancers.

Single‑cell hepatoblastoma processing
Surplus tumour tissue obtained at diagnostic biopsy 
or tumour resection was processed immediately after 
receipt in the histopathology laboratory (< 1  h after 
interventional radiology/surgical procedure). Tis-
sue was minced using a scalpel and then incubated in 
RPMI 1640, supplemented with 10% foetal calf serum, 
1% l-glutamine, and 1% penicillin/streptomycin, with 
collagenase IV (1.6  mg/ml; catalog no. 11410982; MP 
Biomedicals), for 30  min at 37  °C, inverting the tube 
every 10  min. The digested tissue was passed through 
a 70-μm filter and incubated in 1 × RBC lysis buffer 
(catalog no. 420301; BioLegend) for 10  min at room 
temperature.

The obtained single-cell suspension was used for down-
stream processing. Part of the single-cell suspension was 
depleted of CD45 + cells to enrich for tumour cells using 
a CD45 MicroBeads kit (catalog no. 130–045-801; Milte-
nyi Biotec), following the manufacturer’s protocol. Both 
CD45 nondepleted and CD45-depleted single-cell sus-
pensions were depleted of dead cells using a Dead Cell 
Removal kit (catalog no. 130–090-101; Miltenyi Biotec), 
following the manufacturer’s protocol. Obtained viable 
single-cell suspensions were processed on the 10 × Chro-
mium platform.

The concentration of single-cell suspensions was man-
ually counted using a haemocytometer and adjusted to 
1000 cells/μl or counted by flow cytometry. Cells were 
loaded according to the standard protocol of the Chro-
mium Single Cell 3’ Kit (v2 and v3 chemistry). All the 
following steps were performed according to the stand-
ard manufacturer’s protocol. One lane of Illumina HiSeq 
4000 per 10 × chip position was used.

Single-cell RNA-seq data were mapped, and counts 
of molecules per barcode were quantified using the 
10 × software package cellranger (versions 2.0.2 and 3.0.2) 
to map sequencing data to version 2.1.0 of the build of 
the GRCh38 reference genome supplied by 10x.

Single‑cell data processing
To perform cell signal analysis and/or logistic regression, 
the following were required for each single-cell dataset: 
(i) a count table that has undergone quality control and 
(ii) cell annotations. Where both could be obtained, no 
further action was taken. These were taken directly from 
the publication where available, or reproduced follow-
ing the methods of the relevant publication. All datasets 
were 10x, except where specified below. All cell types 
with < 10 cells were removed. When merging single-cell 
data matrices from different sources, only common rows 
(ENSEMBL IDs wherever possible) were kept. Additional 
processing was performed for the following references:
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Gastrulation data
QC’d count tables and annotations were obtained from 
the authors. As this was a Smart-Seq2 dataset, the raw 
count table was transformed to transcripts per kilobase 
million (TPM) to account for gene length bias.

Foetal liver
QC’d count tables and annotations were obtained from 
the authors. Sub-types of erythroid cells, B-cells, and 
dendritic cells were merged into one cell type to simplify 
the annotation (e.g. early, mid, and late erythroid cells 
were re-labelled to erythroid cells).

Adult liver
QC’d count tables and annotations were obtained from 
the authors. Clusters of hepatocytes, T-cells, and liver 
sinusoidal endothelial cells into one cell type to simplify 
the annotation.

Epithelial liver cell reference by Segal et al.
A QC’d raw count table was obtained from the authors. 
As this was a Smart-Seq2 dataset, raw count tables 
were transformed to transcripts per kilobase million to 
account for gene length bias. Adult and foetal HHyP and 
hepatocyte, and adult BECs, were annotated based on 
marker gene expression.

Hepatoblastoma
Single-cell RNA-seq data were mapped, and counts 
of molecules per barcode were quantified using the 
10 × software package cellranger (version 3.0.0) to 
map sequencing data to version 2.1.0 of the build of 
the GRCh38 reference genome supplied by 10x. Cells 
with > 20% mitochondrial expression, fewer than 200 
detected genes, or 500 UMIs were removed as low qual-
ity. Data were log normalised and clustered using a com-
munity detection method [17]. Clusters were annotated 
with the following markers: CD45 (leukocyte marker), 
HBA and HBB (erythrocyte markers), EPCAM and AFP 
(tumour cell markers), PECAM1 (endothelial marker), 
and ACTA2 (hepatic stellate marker). Only those cells 
that could be definitively annotated using these markers 
were used for the analysis.

Hepatocellular carcinoma
Single-cell RNA-seq data were mapped, and counts 
of molecules per barcode were quantified using the 
10 × software package cellranger (version 3.0.0) to 
map sequencing data to version 2.1.0 of the build of 
the GRCh38 reference genome supplied by 10x. Cells 
with > 10% mitochondrial expression, fewer than 300 

detected genes, or 1000 UMIs were removed as low qual-
ity. Cells were then annotated using marker gene expres-
sion [13].

Bulk data processing
To perform cell signal analysis, the following were 
required for each bulk sample: (i) gene counts and (ii) 
gene lengths. These were generated in the following 
manner:

TCGA data
Gene counts and lengths were taken from the recount2 
mapping of the TCGA [18].

St Jude’s
Raw sequencing reads were mapped against the GRCh38 
reference v1.2.0 provided by 10X, using a pseudo-aligner 
[19], which produced both gene counts and lengths. Can-
cers which were not unique to childhood (osteosarcoma 
and melanoma) were removed.

Hepatoblastoma (tumour and normal)
Gene counts were provided by authors, and the same 
gene lengths as used for the TCGA were used.

Colorectal bulk (tumour, normal, adenomas)
Gene counts and lengths were provided by the authors.

Foetal liver bulk
Gene counts were provided by authors, and the same 
gene lengths as used for the TCGA were used.

Foetal gut bulk
Gene counts were provided by authors, and the same 
gene lengths as used for the TCGA were used.

Blastoid bulk
Gene counts were downloaded from GEO, and at acces-
sion GSE179040, the same gene lengths as used by the 
TCGA were used.

GTEx
TPM values provided by the GTEx consortium were 
used, with gene lengths set to 1.

Cell signal analysis: comparing bulk transcriptomes 
to a single cell reference
Cell signal analysis was performed as previously 
described [20]. For the pan-cancer analysis, we excluded 
mitochondrial and ribosomal genes and downweighted 
the likelihood of housekeeping genes by 50%. From the 
foetal reference, we excluded reference cell types from 
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the foetal heart as there were no corresponding cell types 
in the adult reference.

Cell similarity: comparing single‑cell transcriptomes 
to a single‑cell reference
To measure the similarity of a target single-cell transcrip-
tome to a reference single-cell dataset, logistic regression 
was used to train a model on the reference single-cell 
dataset [21]. This model was then applied to predict the 
probability of similarity (normalised to 1 across all cat-
egories), between each cell type in the reference dataset 
and each cell in the target dataset.

Stemness score calculation
Code to calculate the stemness score as previously 
described was provided by the authors [4]. To provide a 
comparison between all samples, both adult and paediat-
ric, the stemness score was calculated across all bulk sam-
ples from both the TCGA and St Judes simultaneously.

Cell signal summary score calculation
Cell signal analysis produces for each bulk transcriptome, 
the relative contribution of each single cell defined cell 
type provided in the reference. In this paper, we make 
use of various summary scores (embryoness, foetalness, 
etc.) which we define as the sum of all relevant cell signal 
analysis scores for a bulk transcriptome. For example, we 
defined the foetalness score as the sum of all the cell sig-
nal contributions across all cell types derived from foe-
tal tissues, when cell signal analysis is performed using 
a reference consisting of both a foetal and mature tissue 
reference.

Results
The starting point of our analysis was to test whether 
our approach captured similar information to existing 
measures of “stemness” in human adult cancer. We com-
pared previously published stemness scores that build on 

gene sets to a broader signal of stemness, the transcrip-
tomes of human pre-gastrulation embryo cells (hypoblast 
and epiblast). Despite these differences in underlying 
methodology, we observed that stemness score and our 
measure, the fraction of each cancer bulk transcriptome 
explained by human pre-gastrulation embryo cells, cor-
related strongly (Pearson correlation 0.45, Additional 
file 2: Fig. S1). However, we also found that only a small 
fraction of each cancer transcriptome could be explained 
by early embryonic signals (mean goodness of fit = 0.25; 
mean fraction of unexplained signal = 0.52), which was 
particularly apparent when compared to positive control 
transcriptomes (blastoid transcriptomes [22]). Examin-
ing which genes drove the stemness score, we found that 
genes associated with S and G2M phases of the cell cycle 
were significant drivers of stemness (Additional file 2: Fig. 
S1). Consistent with this observation, we found stemness 
scores were higher in dividing than non-dividing tissues 
(Additional file 2: Fig. S1). Overall, these results suggest 
that proliferation is a key driver of previously reported 
stemness scores. This then raises the question of whether 
cancers exhibit tissue-specific signals of reversion to an 
antenatal state beyond proliferative signals.

Accordingly, we re-examined bulk transcriptomes by 
progressively expanding the reference we used for com-
parison, which enabled us to assess at which point can-
cer transcriptomes were most completely accounted for. 
In successive iterations of the analysis, we expanded the 
reference of pre-gastrulation cells with the following 
human cell atlases: gastrulation embryo, foetal tissues, 
and adult tissues. For the control population (blastoids), 
the vast majority of the bulk transcriptomic signal was 
explained by the early embryo and gastrulation reference, 
even when 658,368 foetal and post-natal cells were pro-
vided (Fig. 1A, B, Additional file 2: Fig. S2-4). By contrast, 
very little of the early embryonic signals were retained by 
solid cancers once tissue-specific references were avail-
able (Fig.  1A, B, Additional file  2: Fig. S2-4). We also 

Fig. 1 A Pan‑cancer analysis of transformation state from pan‑tissue single‑cell reference atlases. Fit quality and embryonic signal of bulk 
transcriptomes with increasingly complete reference atlases: Fractional contribution of embryonic reference (y‑axis, early embryo + gastrulation 
for full reference, early embryo otherwise) in explaining bulk transcriptomes (dots) as a function of goodness of fit (x‑axis, pseudo R‑squared) 
when fit using single cell reference consisting of cells from the early embryo (yellow), early embryo and gastrulation (dark red), or early embryo, 
gastrulation, foetal, and mature pan‑tissue reference (green). Bulk cancer transcriptomes are circled in black and genuinely embryonal controls 
(blastoids) are circled in grey. B Relative contribution of references to explaining the bulk transcriptomes of a range of adult and childhood 
cancers: Average relative contribution of early embryo (yellow), gastrulation (dark red), foetal (purple), and adult (green) single cell reference 
populations in explaining bulk transcriptomes (y‑axis) for different combinations of these references (x‑axis, labels at top). Bulk transcriptomes 
are organised by source (labels on the right). C Childhood cancers have a stronger foetal contribution than adult cancers or control populations: 
Relative contribution of foetal reference (y‑axis) in explaining bulk cancer transcriptomes (dots), when provided a complete set of the early embryo, 
gastrulation, foetal, and adult single‑cell references. Bulk transcriptomes are split into childhood (purple), adult (green), and blastoid control (orange) 
and then by cancer type (x‑axis). Distributions are summarised by median (horizontal lines), 1st and 3rd quartiles (horizontal lines for cancer types, 
shaded coloured areas for childhood/adult/control), and 1.5 times inter‑quartile range (light‑shaded areas)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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investigated whether aggregated signals from the least 
differentiated cell types once tissue-specific references 
are available are predictive of survival outcome. While 
in three adult tumour types and one paediatric type, a 
higher signal from these least differentiated cell types 
correlated with poorer survival outcome (Additional 
file  2: Fig. S7), this was not universal. Taken together, 
these results indicate that while cancer cells may share 
functional features with embryonic stem cells, the cancer 
transcriptome does not return to an embryonic state.

While embryonic signals seemed to have no discern-
able biological meaning once more mature references 
were available, we found a strong and consistent dif-
ference between the amount of retained foetal sig-
nal, or “foetalness”, in childhood versus adult tumours 
(Fig.  1C). This finding extends previous work in renal 
tumours that described a foetal-like transcriptome 
in childhood, but not adult kidney tumours [20]. One 
limitation of our approach is that pan-tissue human 
atlases, which we used in our analyses, inevitably lack 
the granularity of annotation and resolution of dedi-
cated, tissue-specific cell atlases. Although our pan-tis-
sue analyses are sufficient to make general statements 
about stemness, foetalness, etc., they are insufficient to 
make detailed comparisons to specific cell types. There-
fore, in the second part of our analyses, we sought to 
study particular tumours utilising detailed tissue-spe-
cific cell atlases and single cancer cell transcriptomes 

for validation of our findings. For this analysis, we 
focused on liver and colorectal cancer, as both develop-
mental and adult cell atlases of normal liver and colo-
rectal tissues are available.

Hepatocellular carcinoma (HCC) is the most common 
adult liver cancer. It is an epithelial cancer that arises 
from hepatocytes, often in the context of chronic liver 
disease. The precise state of hepatocellular carcinoma 
has not been established, compounded by an ongo-
ing debate about the nature of hepatobiliary stem cells. 
It is noteworthy that some hepatocellular carcinomas 
resume expression of foetal albumin (alpha-fetoprotein, 
AFP), which may represent the reversion of some cancers 
towards a foetal hepatic state [23]. We assessed 360 hepa-
tocellular carcinoma bulk transcriptomes from 3 cohorts, 
as well as 64 bulk transcriptomes of the childhood liver 
cancer, hepatoblastoma (HB) [11, 12, 15]. Using a highly 
detailed combined reference map of adult and foetal liver 
[24–26], together with the pre-gastrulation and early 
embryo references [7, 8], we asked which reference best 
explained the bulk transcriptomes state. As with our 
pan-tissue analysis (Fig. 1), the reference foetal and adult 
liver cells accounted for the majority of the transcrip-
tome in hepatocellular carcinoma and hepatoblastoma 
(Fig. 2A, Additional file 1: Fig. S5). The state of hepatocel-
lular carcinoma bulk transcriptomes was therefore most 
completely represented by liver cells, but not by more 
primordial human cell populations.

(See figure on next page.)
Fig. 2 Detailed analysis of bulk and single cell liver and gut cancers. A Contribution of different signal types to bulk transcriptomes of liver: 
Relative contribution (y‑axis) of different reference single‑cell populations (horizontal facets) in explaining bulk transcriptomes (dots) grouped 
by transcriptome type (x‑axis within facets) as indicated by x‑axis symbols and labels. The fit was performed with all single‑cell reference atlases 
provided, related groups of reference cell populations indicated by hierarchical labels (top), and the distribution of groups of bulk transcriptomes 
summarised by their median (horizontal lines) and 1st/3rd quartiles (vertical lines). B Foetal hepatocyte contribution correlated with AFP expression: 
Foetal hepatocyte contribution to bulk transcriptomes of hepatocellular carcinoma (y‑axis) plotted against alpha‑fetoprotein (AFP) expression 
(log10 of TPM, x‑axis), for each bulk transcriptome (dots). A best fit linear trend line is shown along with its equation and associated R squared value 
(p < 2.2 ×  10−16, t‑test).The fit of the foetal hepatocyte signature to the bulk transcriptome was performed excluding the AFP gene. C UMAP of liver 
cancer transcriptomes: Dimensionality reduction analysis (UMAP) showing single cell transcriptomes (dots) derived from 1 hepatoblastoma (left) 
and 8 individual hepatocellular carcinomas (right), grouped by cell type (contours, labels, and colours). Different donors of cancer cells are indicated 
by different shades of blue. D Similarity of single cell HCC/HB transcriptomes with embryonic and liver reference atlases: Similarity score (logistic 
regression, colour value) of single‑cell transcriptomes of liver cancers (C) grouped by cell type (y‑axis) and compared to transcriptomes of reference 
cell types (x‑axis) using a reference consisting of embryonic cells, developmental liver, and post‑natal liver. Each rectangle represents a group of cells 
(indicated by y‑axis label) and shows the distribution of similarity scores for those single cells compared to the reference cell population (indicated 
by x‑axis label). E Contribution of different signal types to bulk transcriptomes of the intestines: Relative contribution (y‑axis) of different reference 
single cell populations (horizontal facets) in explaining bulk transcriptomes (dots) grouped by transcriptome type (x‑axis within facets) as indicated 
by x‑axis symbols and labels. The fit was performed with all single cell references provided, related groups of reference cell populations indicated 
by hierarchical labels (top), and the distribution of groups of bulk transcriptomes summarised by their median (horizontal lines) and 1st/3rd 
quartiles (vertical lines). F UMAP of colorectal carcinoma cell transcriptomes from 25 individuals: Dimensionality reduction analysis (UMAP) showing 
single‑cell transcriptomes (dots) derived from 25 individual HCCs, grouped by cell type (contours, labels, and colours). Different donors of cancer 
cells are indicated by different shades of blue. G Similarity of single‑cell CRC transcriptomes with embryonic and intestine reference atlases: 
Similarity score (logistic regression, colour value) of single‑cell transcriptomes of colorectal cancers (F) grouped by cell type (y‑axis) and compared 
to transcriptomes of reference cell types (x‑axis) using a reference atlas consisting of embryonic cells, developmental intestine, and post‑natal 
intestine. Each rectangle represents a group of cells (indicated by the label on the y‑axis) and shows the distribution of similarity scores for those 
single cells compared to the reference cell population (indicated by x‑axis label)
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Fig. 2 (See legend on previous page.)
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The next step in the analysis was to determine which 
precise liver cell type best explains the transcriptome 
in hepatoblastoma and hepatocellular carcinoma and 
to exclude that the signal derives from non-parenchy-
mal cells. We found that adult and foetal hepatocytes, 
alone or in combination, were the main cell signal in 
adult hepatocellular carcinoma, with hepatoblastoma 
favouring the foetal hepatocytes as expected (Fig.  2A, 
Additional file  1: Fig. S5). In some HCCs, the foetal 
hepatoblast signal predominated, which correlated with 
serum AFP levels and AFP mRNA counts. The pre-
dominance of this signal persisted when we removed 
AFP from the reference transcriptome, indicating that 
it was not driven by this transcript alone (Fig.  2B). The 
foetal state of some hepatocellular carcinoma may be of 
prognostic significance, as AFP serum levels have previ-
ously been associated with poor outcomes in hepatocel-
lular carcinoma [27]. Occasional adult tumours exhibited 
signals of other rare liver cells, namely foetal hepatobil-
iary hybrid progenitors (HHyP) or so-called adult BEC 
(hepatocytes and biliary epithelial cells, Additional file 2: 
Fig. S5). A clinical or pathological significance of these 
unusual cellular signatures was not apparent. Consistent 
with our pan-tissue analysis (Fig. 1C), we found that the 
foetal hepatocyte signal dominated in the childhood can-
cer hepatoblastoma (Fig. 2A).

To validate these findings, we integrated (published) 
single-cell transcriptomes from hepatocellular carcino-
mas [13] (n = 25,605 cells from 8 tumours) and generated 
13,180 single-cell transcriptomes from a hepatoblastoma 
using the Chromium 10X platform (Fig.  2C). For each 
single-cell transcriptome, we calculated a similarity score 
(using logistic regression [21]) against the same reference 
used to analyse the bulk transcriptomes (Fig.  2D). The 
single-cell mRNA analyses verified our bulk transcrip-
tomic findings, namely that adult hepatocellular carci-
noma may be viewed as aberrant adult hepatocytes, some 
of which transform towards a foetal hepatoblast state 
(Fig.  2D). By contrast, most childhood hepatoblastoma 
cells matched foetal hepatocytes (Fig. 2D).

We next applied our analytical approach to bulk 
and single-cell transcriptomes of colorectal cancers 
(n = 65,362 cells from 23 patients), as well as to adeno-
mas (polyps) [14, 16]. Adenomas are low-grade neo-
plastic lesions of colorectal epithelium that have the 
potential to progress to carcinomas, via the sequen-
tial acquisition of cancer-causing somatic mutations 
(adenoma-carcinoma sequence). In the first instance, 
we assessed which reference most fully accounted for 
adenoma and cancer transcriptomes (Fig.  2E, Addi-
tional file  1: Fig. S6) and again found that the tissue-
specific colorectal reference, but not more primordial 
references, provided the best fit and that foetal cells 

contributed little signal to this adult cancer. We then 
analysed which specific cell type of the colorectal tis-
sue reference mostly explained adenoma bulk tran-
scriptomes (Fig.  2E). We found that adult, but not 
foetal, colorectal stem cell signals predominated across 
cancers, with a roughly comparable contribution from 
more mature epithelial cells. Interestingly, the same 
stem cell signal pervaded adenomas. Thus, transcrip-
tional, genetic, and histological differences notwith-
standing, from a cell state perspective there was no 
obvious change (e.g. further reversion) from adenomas 
to carcinomas. We next verified cell signals in colorec-
tal cancers by comparing single cancer cells [14] with 
normal reference cells, which confirmed that colorec-
tal cancer cells resemble a mixture of stem and more 
mature epithelial cells (Fig. 2F,G) do not dedifferentiate 
to more primordial states. Overall these findings indi-
cate that the predominant cell state of premalignant 
and malignant colorectal tumours is the colorectal 
stem cell [28]. This may indicate that the cell of origin 
of these neoplasms is the colorectal stem cells or, that 
irrespective of where in the differentiation hierarchy 
of colorectal epithelium tumours originate, they ulti-
mately converge at the stem cell state.

Discussion
The study of the dedifferentiation state of cancer in tran-
scriptional terms has largely focused on similarity to stem 
cells, or “stemness”. This study demonstrates that when a 
wider set of reference states is considered, the transcrip-
tional state obtained by cancer cells is more nuanced, 
with adult cancers best explained by post-natal cells. As 
such, future work aiming to understand the transcrip-
tional behaviour of adult cancers should consider post-
natal tissue-specific models rather than embryonic stem 
cells.

We also found a clear categorical difference between 
adult and childhood cancers, with childhood cancer tran-
scriptomes more closely resembling foetal cells. This is 
consistent with the theory that childhood cancers arise 
during development. Either way, these findings demon-
strate that childhood cancers should be considered differ-
ently, at least in transcriptional terms, then adult cancers 
of the same tissue. Future work may be able to exploit 
these differences for therapeutic or diagnostic purposes.

It should be recognised that the reference data used in 
various analyses may not be entirely inclusive and might 
be missing cell types necessary for interpreting specific 
samples. With the availability of more extensive single-
cell datasets, we anticipate improved inferential preci-
sion, although, to our knowledge, such a resource is not 
yet at hand.
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Conclusions
Our analyses reveal a nuanced picture of the differentia-
tion state of adult cancers, wherein most adult tumours 
were best explained by post-natal cells, but not by a 
reversion to an antenatal state. By contrast, a “foetal-like” 
transcriptome was a near-universal feature of childhood 
tumours, likely as a consequence of their probable ori-
gins in development. Overall, these findings suggest that 
cancer transformation, at the level of the transcriptome, 
is a highly tissue and cancer-type-specific process, rather 
than a general hallmark of adult cancer.
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