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Abstract 

Background African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis 
of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a mul‑
ticenter study involving 16 sites in West Africa. We conducted the first‑ever genome‑wide association study (GWAS) 
of stroke in indigenous Africans.

Methods Cases were consecutively recruited consenting adults (aged > 18 years) with neuroimaging‑confirmed 
ischemic stroke. Stroke‑free controls were ascertained using a locally validated Questionnaire for Verifying Stroke‑Free 
Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets 
were imputed into the NIH Trans‑Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, 
we performed fine‑mapping, trans‑ethnic meta‑analysis, and in silico functional characterization to identify likely 
causal variants with a functional interpretation.
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Results We observed genome‑wide significant (P‑value < 5.0E−8) SNPs associations near AADACL2 and miRNA 
(MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status 
in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated 
with stroke (P‑value < 1.0E−6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective 
and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 
and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P‑value < 1.0E−6). In addition, 
we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), 
and DLGAP1 (chromosome 18) (P‑value < 1.0E−6). Both genomic regions near genes AADACL2 and MIR4458 remained 
significant following fine mapping.

Conclusions Our findings identify potential roles of regulatory miRNA, intergenic non‑coding DNA, and intronic 
non‑coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help 
close the current gaps in accurate African ancestry‑based genetic stroke’s risk prediction and development of new 
targeted interventions to prevent or treat stroke.

Keywords Stroke, Genomics, GWAS, African ancestry, Ischemic stroke, SNP, miRNA

Background
Stroke has the largest racial disparity of any chronic disease 
with a striking disparity in the burden of stroke among 
individuals of African ancestry compared to other popu-
lations [1–5]. However, the genetic architecture of stroke 
in indigenous African populations is largely unknown [1, 
6, 7]. Previous genome-wide association studies (GWAS) 
have identified important genetic variants associated with 
stroke risk in European and Asian ancestry populations, 
with sparse inclusion of African-American populations 
[8–11] (who have up to 80% African genetic admixture) 
[12, 13]. Despite this progress, the stroke genetic landscape 
remains incomplete. It is imperative to explore indigenous 
African populations because of the higher stroke heritabil-
ity in African ancestry populations [14, 15]. The increased 
diversity of the African genome [16, 17] also improves the 
potential for making novel discoveries [18]. Moreover, the 
inclusion of African ancestry populations is vital to trans-
ancestry meta-analysis with implications for fine-mapping 
of known stroke-associated loci, uncovering of novel loci, 
characterization of causal variants, design of polygenic risk 
scores, development of new targeted therapies, and per-
sonalized interventions for stroke in Africans and other 
global populations.

In a GWAS meta-analysis of stroke in > 22,000 indi-
viduals of African ancestry undertaken by the Con-
sortium of Minority Population GWAS of Stroke 
(COMPASS)) (physician-adjudicated stroke patients 
= 3734 and no history of stroke = 18317), one single-
nucleotide polymorphism (SNP rs55931441) near the 
HNF1A gene attained genomic significance, while vari-
ants in 24 additional unique loci including the SFXN4 
and TMEM108 genes demonstrated suggestive asso-
ciations [8]. In the most recent GIGASTROKE project 

which involved cross-ancestry GWAS meta-analyses 
of stroke and its subtypes in 110,182 stroke patients 
(33% non-European) and 1,503,898 control individuals 
from five ancestries, association signals were detected 
at 89 independent loci, and effect sizes were correlated 
across ancestries demonstrating consistent directional-
ity even when significance was not attained. New drug 
targets were discovered [19]. However, no variants were 
described for indigenous African populations.

The Stroke Investigative Research and Education Net-
work (SIREN) is the largest epidemiological study on 
stroke among indigenous Africans with dual goals of 
characterizing the dominant modifiable vascular risk 
factors [20] and unraveling potential unique genetic 
variants associated with stroke occurrence among 
West Africans. Herein, we report the findings of the 
first stroke GWAS performed in an indigenous African 
population of 3434 subjects (1691 ischemic stroke cases 
and 1743 stroke-free controls) from the SIREN Study. 
The report also includes an African ancestry meta-anal-
ysis combining summary statistics from the COMPASS 
Consortium (n > 22,000; 3734 cases, 18,317 controls) 
[8, 9] and a trans-ancestry meta-analysis with sum-
mary datasets from the MEGASTROKE [10] (521,612 
individuals: 67,162 cases and 454,450 controls). We 
fine-mapped identified GWAS loci using PAINTOR. 
To understand the functional relevance of putative 
genes, we functionally annotated potential causal vari-
ants through the Cerebrovascular Disease Knowledge 
Portal [21] (https:// cd. hugea mp. org/), the GTEx Por-
tal (https:// www. gtexp ortal. org), and chromatin inter-
action and eQTL analysis using Functional Mapping 
and Annotation of Genome-Wide Association Studies 
(FUMA) [22, 23]. Additionally, we used the University 
of California, Santa Cruz (UCSC) browser to confirm 
the potential chromatin interactions in putative genes.

https://cd.hugeamp.org/
https://www.gtexportal.org
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Methods
Patient enrollment and data acquisition
The rationale and design of the SIREN study have been 
described elsewhere [24]. In brief, the SIREN study was 
initiated in August 2014 as a multi-center case-control 
study with 16 sites in Nigeria and Ghana. The ethno-
graphic characteristics of the study population are as pre-
viously described [25]. Ethical approval was obtained for 
all study sites, and informed consent was obtained from 
all subjects. Cases were consecutively recruited con-
senting adults (aged 18 years or older) with first clinical 
stroke within 8 days of current symptom onset or “last 
seen without a deficit” with confirmatory cranial CT or 
MRI scan performed within 10 days of symptom onset. 
Stroke-free controls were also recruited, and their status 
ascertained with a locally validated version of the Ques-
tionnaire for Verifying Stroke-Free Status (QVSFS) [26].

Relevant data were collected, including basic demo-
graphic and lifestyle data (ethnicity, native language of 
the subjects and their parents, socioeconomic status, 
dietary patterns, routine physical activity, stress, depres-
sion, cigarette smoking, and alcohol use). Cardiovascu-
lar and anthropometric measurements were obtained 
using standard techniques, and neurologic assessment 
was carried out to assess neurologic deficits and ascer-
tain stroke severity using the National Institute of Health 
Stroke Severity Score. Blood samples were collected from 
all subjects at baseline for determination of parameters 
including fasting lipid profile, blood glucose, and HbA1c. 
Stroke diagnosis and phenotyping were undertaken as 
previously described [20]. Determination of stroke etiol-
ogy (large vessel, small vessel, cardioembolic and unde-
termined) using the Trial of Org 10172 in Acute Stroke 
Treatment (TOAST) criteria (single dominant causative 
classification) was via a rigorous process of investigative 
evaluation including neuroimaging (CT/MRI), 12 – lead 
electrocardiography, echocardiography, and carotid dop-
pler ultrasonography as previously described [20, 24].

Description of risk factors
Hypertension was defined as sustained systolic BP > 140 
mmHg or diastolic BP > 90 mmHg after the onset of 
stroke, a history of hypertension, or taking antihyperten-
sive medications before the stroke [20]. Diabetes mellitus 
was defined based on the previous history of diabetes 
mellitus, use of medications for diabetes mellitus, fasting 
glucose levels > 126 mg/dl, and/or HBA1c > 6.5% [20]. 
Dyslipidemia was defined following the recommenda-
tions of the US National Cholesterol Education Program 
as a high fasting serum total cholesterol > 200 mg/dl or 
high-density lipoprotein (HDL) < 40 mg/dl [6] or low-
density lipoprotein (LDL) > 130 or triglyceride (Trig) ≥ 
150 mg/dl or history of use of statins before the stroke. 

Cardiac disease was defined as a history or current diag-
nosis of atrial fibrillation, cardiomyopathy, heart failure, 
ischemic heart disease, and rheumatic heart disease. 
Obesity was assessed by defining central adiposity using 
waist-hip ratio. A waist-to-hip ratio of ≥ 0.90 (men) and 
≥ 0.85 (women) was reported as Yes, while values below 
this were reported as No [6, 20, 24].

Genotyping and imputation
The samples included in this study were genotyped 
using Illumina’s H3Africa microarray chip. Using Illu-
mina’s GenomeStudio software and its data manage-
ment plugins, the raw genotypes data was converted 
into PLINK formatted datasets to interoperate with the 
downstream quality control (QC) and statistical analysis. 
Sample QC excluded (a) individuals with sex discordance 
between reported and observed from genetic data, (b) 
cases with hemorrhagic stroke, (c) duplicate sample pairs 
after validating similarity in genetic data based on > 90% 
concordance in genotype data, (d) mixed-up samples 
based on genotypic concordance between samples, and 
(e) outlier samples through estimation of genetic princi-
pal components. To address potential population stratifi-
cation, we performed principal component (PC) analysis 
using EIGENSTRAT’s Smartpca module [27, 28]. We also 
excluded participants whose phenotypic and genetic data 
did not pass quality control and had missing variables in 
any covariates.

There were 2,221,421 raw variants processed through 
a series of in-house QC steps, including (a) retention of 
autosomal SNPs only, (b) removal of ambiguous SNPs 
(A/T and C/G), (c) removal of non-biallelic variants (e.g., 
indels, SNPs without a valid alternative allele in the bim 
file for example “0/T”), and (d) handling strand incon-
sistencies. Furthermore, SNPs were removed for viola-
tion of Hardy-Weinberg equilibrium P < 1.0E−05, minor 
allele frequency (MAF) < 1%, and/or a missing rate > 
10%. After implementing these steps, 1,815,856 geno-
typed variants were included for imputation. In addition 
to the above-mentioned QC metrics, McCarthy Group 
Tools (https:// www. well. ox. ac. uk/ ~wrayn er/ tools/) was 
employed to handle strand inconsistencies, ref/alt allele 
assignment, removal of SNPs not in reference panel, 
and filtering out SNPs with out-of-bound differences in 
the minor allele frequency (MAF) when compared with 
1000Genomes African-Americans (i.e., SNPs with > 0.2 
allele frequency difference between the SIREN cohort 
and 1000 genomes). Allele frequency and allele assign-
ment fixes in McCarthy tools were performed based on 
the population-specific reference panels to ensure the 
African cohort of the SIREN study was compared with 
its corresponding sub-population cohort of the 1000 
genomes.

https://www.well.ox.ac.uk/~wrayner/tools/
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Having a well-curated quality reference panel is key to 
discovering true biological signals and minimizing false 
positives or negatives in our genome-wide association 
studies. We used the TOPMed release2 reference panel 
from the BioData Catalyst (https:// imput ation. bioda tacat 
alyst. nhlbi. nih. gov/# !) for imputing the genotypes. The 
TOPMed Version release2 panel comprised 97,256 sam-
ples and 308,107,085 genetic variants distributed across 
the 22 autosomes and the X chromosome inferred from 
jointly called variant set derived from whole-genome 
sequencing of TOPMed samples. TOPMed Imputation 
server was configured to (a) use TOPMed as the reference 
panel, (b) retain variants with an imputation quality filter 
(R2) > 0.3, (c) employed Eagle v2.4 [29](Ref ) for phasing, 
(d) QC frequency check was conducted before imputa-
tion, and (e) Quality Control and Imputation mode was 
enabled for output QC stats along with imputed dosage 
and info datasets. Upon completion of imputation to 
the TOPMed R2 (Freeze8) panel, variants were retained 
if (a) the imputation quality (R2) > 0.3 and (b) the minor 
allele count (MAC) > 20. Variants with imputed geno-
type probabilities < 0.9 were masked as missing to ensure 
high-quality calls.

Before exploring the association between imputed 
SNPs and predictors of interest, imputed variants were 
further quality controlled for genotypic characteristics. 
SNPs were retained for association analysis only when 
they met the criteria of (a) attaining a Minor-Allele Fre-
quency > 1%; (b) being SNPs only, not indels (which were 
removed); and (c) having an Imputation quality, R2 > 0.3. 
Although imputation quality is a composite score that 
would aggregate individual genotype quality across all 
samples and issue a variant level metric, to foster high-
quality genotype calls, we examined the genotype prob-
abilities (GP) associated with each genotype call and 
masked the genotype calls to missing if the probability of 
the inferred call was < 90%. All post-imputation quality 
control steps were conducted using PLINK 1.9 [30] and 
VCFTOOLS 0.19 (https:// vcfto ols. sourc eforge. net/ man_ 
latest. html). After imputation, a total of 50,877,079 vari-
ants were processed through a quality-control pipeline to 
yield a final count of 44,159,966 variants (R2≥0.3) for sta-
tistical association tests in PLINK1.9. Of the 44,159,966 
SNPs used for downstream association analysis, 77% of 
imputed variants had R2≥0.8, and 91% had R2≥0.5.

Association methods and analyzed models
Statistical association analysis was conducted using 
PLINK 1.9. To test for associations between ischemic 
stroke status and variant SNPs, we fitted a logistic 
regression model where SNP was modeled as a predic-
tor variable whose values were equal to the number of 
copies of the minor allele (0, 1, 2) (i.e., additive mode of 

inheritance). In all association analyses, we used the first 
10 principal components (PCs) as covariates to control 
for ancestry. Our primary model (model 0) for associa-
tion included sex, age, 10 PCs, and SNP as a covariate in 
logistic regression. For sensitivity analyses, the stroke risk 
factors were added to the base model in nested regres-
sion models hierarchically to ensure the significant SNPs 
found in the base model are associated with stroke and 
are not mediated by risk factors. The sensitivity analysis 
models are given below:

• Model 1: stroke status ~ sex + age + PCs1 … 10 + SNP 
+ hypertension

• Model 2: stroke status ~ sex + age + PCs1 … 10 + SNP 
+ hypertension + diabetes

• Model 3: stroke status ~ sex + age + PCs1 … 10 + 
SNP + hypertension + diabetes + dyslipidemia

• Model 4: stroke status ~ sex + age + PCs1 … 10 + 
SNP + hypertension + diabetes + dyslipidemia + car-
diac disease status

• Model 5: stroke status ~ sex + age + PCs1 … 10 + 
SNP + hypertension + diabetes + dyslipidemia + 
cardiac disease status + waist-hip ratio

Other cohorts
The COMPASS and MEGASTROKE were also involved 
in the analysis. The constituent studies of both COM-
PASS and MEGASTROKE are described in Additional 
file 2: Other Study Cohorts.

Meta‑analysis
We meta-analyzed association test results using the 
random-effects model of Han and Eskin implemented in 
METASOFT [31] with SIREN and COMPASS data sets. 
Lastly, we used Meta-Analysis of TRansethnic Associa-
tion studies (MANTRA) [32] software to perform meta-
analysis using SIREN (a West-African study), COMPASS 
(an African-American study), and MEGASTROKE (a 
European study). There are several advantages of using 
METASOFT, namely, (1) it provides fixed effects model 
(FE) based on inverse-variance-weighted effect size 
similar to METAL [33], (2) conventional random effects 
model (RE) based on inverse-variance-weighted effect 
size, (3) Han and Eskin’s random effects model (RE2) 
optimized to detect associations under heterogeneity, 
and (4) binary effects model (BE) optimized to detect 
associations when some studies have an effect and some 
do not have any effect.

Fine‑mapping
In our fine-mapping analysis, we used the PAINTOR 
[34] software package to discover potential causal 

https://www.imputation.biodatacatalyst.nhlbi.nih.gov/#!
https://www.imputation.biodatacatalyst.nhlbi.nih.gov/#!
https://vcftools.sourceforge.net/man_latest.html
https://vcftools.sourceforge.net/man_latest.html
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variants. Although fine-mapping regions are defined 
as regions identified using a window (~50 kb) around 
the most significant variant; given the distribution of 
intergenic variants with genome-wide association sig-
nificance of P-value < 1.0E−4, we expanded to a wider 
window where variants’ linkage disequilibrium with 
the lead variant extended outside the window. This was 
achieved by manual inspection of regional association 
plots to ensure the most relevant region was adequately 
captured.

To determine top tissue-based annotation sets for 
each region, we used the approach showcased in 
the PAINTORv3 fine-mapping software distributed 
through the GitHub repository. To determine the anno-
tation relevant to stroke, we ran PAINTOR on each 
annotation independently. The sum of the log-Bayes 
factors (BFs) and effect size estimates for each annota-
tion is further converted to relative probability for an 
SNP to be causal in a certain annotation track. To test 
the significance of annotation, the sum of the log-Bayes 
factors with only baseline annotation was compared 
with both baseline and the annotation of interest. The 
significance of the enrichment was further calculated 
from a standard ratio test comparing null (baseline 
annotation) and alternate (both baseline and annota-
tion of interest) modes. By the likelihood ratio test 
(LRT) approach of testing each annotation, we selected 
the top 10 annotations to calculate the posterior prob-
ability of each SNP within our sliding window contain-
ing top GWAS SNPs.

Functional stratum of significant hits
The working set of top SNPs from our association analy-
sis was further annotated using ANNOVAR to determine 
both gene and SNP level function. dbSNP151 data release 
from UCSC was employed to assign rs# naming conven-
tions to our variants reported in the additional file results 
dataset. To address discrepancies in the genome geogra-
phy between human genome builds hg19 and hg38, func-
tional annotations for both hg19 and hg38 are catalogued 
in all additional file tables. Since the traditional annota-
tion assignment is based on just the genomic transcrip-
tion coordinates of a gene, an additional 50 kb flanking 
distance was allowed for top SNPs to finalize the gene 
assignment to association analysis top SNPs. An arbitrary 
flanking distance of 50 kb around the transcription start 
and end positions allows reporting SNPs with significant 
association with ischemic stroke that could circumscribe 
broader biochemical signatures typically associated with 
non-coding functional elements like gene promoters, 
upstream enhancers, regulators, insulators, and TFBS 
(transcription factor binding sites).

Functional mapping and annotation (FUMA)
FUMA [22] is an online platform for the functional map-
ping of genetic variants. FUMA performs functional 
annotation of GWAS results, prioritization of potential 
causal genetic variants and genes, and interactive visu-
alization by biological data repositories and tools. FUMA 
contains two core functions to annotate input summary 
statistics (both SNPs and genes) to prioritize potential 
causal genetic variants and genes: SNP2GENE and GEN-
E2FUNC modules. In the SNP2GENE module, SNPs are 
annotated with their biological function and mapped to 
genes based on positional and functional information of 
SNPs. Functionally annotated SNPs are mapped to genes 
based on functional consequences on genes (positional 
mapping), expression quantitative trait loci (eQTLs), 
and chromatin interactions of phenotype relevant tis-
sue types. FUMA utilizes three strategies. First is posi-
tional mapping based on the physical distances (within 
a 10-kb window) from known protein coding genes in 
the human reference assembly (GRCh37 or hg19). Sec-
ond is eQTL mapping with capturing information from 
three data repositories (GTEx, Blood eQTL browser, and 
BIOS QTL browser) and mapping SNPs to genes based 
on a significant eQTL association. It should be noted that 
eQTL mapping is based on cis-eQTLs (local regulatory 
effect within 1 Mb). A false discovery rate (FDR) of 0.05 
is used to define significant eQTL association. Third is 
chromatin interaction mapping, involving mapping of 
SNPs to the promoter regions of genes based on signifi-
cant chromatin interactions. FUMA selects chromatin 
interactions for which one region involved in the interac-
tion overlapped with predicted enhancers and the other 
overlapped with predicted promoters 250 bp upstream 
and 500 bp downstream of the transcription start site 
(TSS) of a gene. By combining these three mapping strat-
egies, FUMA prioritizes genes that are most likely to be 
involved in the trait of interest such as ischemic stroke. 
To obtain insight into putative causal mechanisms, the 
GENE2FUNC process annotates the prioritized genes in 
biological context, such as tissue specific gene expression 
pattern, and enrichment of gene sets.

Gene set analysis
Genes implicated by mapping of GWAS SNPs were 
further investigated using the GENE2FUNC proce-
dure in FUMA, which provides hypergeometric tests of 
enrichment of the list of mapped genes in MSigDB gene 
sets, including BioCarta, KEGG, Reactome, and Gene 
Oncology (GO). The adjusted P-value (FDR) for gene 
set enrichment analysis is performed by the Benjamini-
Hochberg procedure. We used the threshold of adjusted 
P-value 0.05 and the two minimum number of input 
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genes overlapping with a tested gene. UCSC Genome 
Browser on Human Feb. 2009 (GRCh37/Hg19) Assembly 
was used to render the omics landscaping around the sig-
nificant SNP regions.

Results
Characteristics of the study sample
To ensure retention of high-quality samples relevant to 
our research study, we followed strict protocol to retain 
only samples that met our quality thresholds (detailed 
descriptions of quality control procedures are provided in 
the “Methods” section). We retained 1683 ischemic stroke 
cases and 1738 stroke-free controls with a sex-stratified 
distribution of 1830 males and 1591 females after the appli-
cation of stringent QC criteria. The demographic and risk 
factor characteristics by case-control status are described 

in Table  1. The mean age of the subjects with ischemic 
stroke was 61.2 (± 13.7) years, while the mean age of stroke-
free control subjects was 59.5 (± 13.5) years (P-value = 
0.0005). Consistent with previous observations, we demon-
strated an abnormal waist-hip ratio as a strong risk factor 
for stroke (P-value < 0.0001). Cases were significantly more 
likely than controls to have a history of hypertension (95% 
vs. 63%) (P-value < 0.0001), diabetes (36% vs 14%) (P-value 
< 0.0001), dyslipidemia (73% vs. 61%) (P-value < 0.0001), 
and cardiac disease (13% vs. 6%) (P-value < 0.0001); we did 
not observe significant differences between cases and con-
trols with respect to sex (P-value = 0.7062). We investigated 
clustering of potential ethnic differences in comparison 
with other 1000G populations using principal component 
analysis (PCA). The SIREN samples clustered together with 
1000G African samples (Additional File 4: Fig. S1).

Table 1 Characteristics of the SIREN case‑control samples after QC

*% is calculated based on dividing by the total number of individuals in the study (n = 3421)

Variable Status/values A: Controls (N = 1738) B: Cases (N = 1683) P‑value 
comparing A 
and B

Baseline age (mean± SD) 59.5 ± 13.5 61.2 ± 13.7 0.0005

Sex (male/female) 924 (27.0%*)/814(23.8%) 906 (26.5%)/777 (22.7%) 0.7062

Hypertension (male/female) No‑risk 369 (10.8%)/274 (8%) 51 (1.5%)/32 (0.9%) <0.0001

Risk 554 (16.2%)/540 (15.8%) 851 (24.9%)/742 (21.7%)

Missing 1/0 4/3

Diabetes (male/female) No‑risk 805 (23.5%)/691 (20.2%) 615 (18.0%)/458 (13.4%) <0.0001

Risk 118 (3.4%)/123 (3.6%) 289 (8.4%)/318 (9.3%)

Missing 1/0 2/1

Dyslipidemia (male/female) No‑risk 374 (10.9%)/301 (8.8%) 252 (7.4%)/200 (5.8%) <0.0001

Risk 549 (16.0%)/513 (15.0%) 650 (19.0%)/575 (16.8%)

Missing 1/0 4/2

Waist‑to‑hip ratio 0.921 ± 0.091 0.945 ± 0.078 <0.0001

Cardiac status (male/female) No‑risk 875 (25.6%)/763 (22.3%) 783 (22.9%)/668 (19.5%) <0.0001

Risk 46 (1.3%)/51 (1.5%) 117 (3.4%)/106 (3.1%)

Missing 3/0 6/3

Ethnicity (male/female) Akan 239/203 207/206

Yoruba 354/304 355/272

Hausa 149/135 138/126

GA/Adangbe 40/41 44/39

Ewe 39/24 34/24

Igbo 34/24 28/20

Other 69/74 95/83

Missing 0/7 5/7

Toast status (male/female) Large artery‑atherosclerosis, embolus/thrombosis 255 (7.5%)/254 (7.4%)

Cardioembolism, high‑risk/medium‑risk 74 (2.2%)/53 (1.5%)

Small‑vessel occlusion, lacune 343 (10%)/247 (7.2%)

Other determined etiology (dissection, vasculitis, 
cerebral venous sinus thrombosis, others)

3 (0.1%)/2 (0.1%)

Undetermined etiology (two or more causes iden‑
tified, negative evaluation, incomplete evaluation)

231 (6.8%)/220 (6.4%)
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Discovery genetic association analysis
Manhattan plots for all six models are depicted in Fig.  1 
starting with the primary/base model adjusted for sex, age, 
10 PCs, and SNP. The base model was adjusted by adding 
one risk factor at a time hierarchically such as hypertension, 
diabetes, dyslipidemia, cardiac status, and waist-hip ratio. 
The quantile-quantile (QQ) plots are shown in Additional 
File 4: Fig. S2. We used the method proposed by Li and Ji 
based on spectral decomposition to estimate the effective 
number of SNPs (i.e., the number of independent SNPs) 
using 1,575,904 SNPs (MAF ≥ 0.01) (14, 15). We found that 
the number of independent SNPs are ~987,177 SNPs, which 
is close to 1M. We used a significance level of 5.06E−08 
(= 0.05/987177) to correct for multiple testing. In Addi-
tional File 1: Table S1, we provide the ischemic stroke asso-
ciation with all SNPs in six models with P-value < 1.0E−6. 
Thirty-two [32] loci in chromosomes 2, 3, 5, 6, 7, 12, and 13 
attained significance (P-value < 1.0E−6) in at least one of the 
six models. Note that there were only 7 independent SNPs. 
The goal was to show that these 7 SNPs had good linkage 
disequilibrium support, given in Additional File 1: Table S1. 
We observed genome-wide significant SNP associations 
near the AADACL2 gene (distance ~50 kb) in chromo-
some 3 with the inclusion of hypertension to the base model 
[rs6440776, odds ratio (OR) of 0.73 with 95% CI: 0.66-0.82, 
P-value = 3.71E−08] (Table 2, Additional File 1: Table S1). 
Adding diabetes to the model in addition to hypertension, 
rs6440776 remained genome-wide significant. Furthermore, 

adding dyslipidemia to the model with hypertension and 
diabetes, the significance level was slightly below the 
genome-wide significance level for rs6440776 (rs6440776, 
OR 0.73 with 95% CI 0.66-0.82, P-value = 5.59E−08). Note 
that adding cardiac status and waist-hip ratio to the model, 
both SNPs remained significant with a significance level 
(P-value < 1.0E−06) (Table 2). Furthermore, a similar asso-
ciation pattern was observed in SNPs near the MIR4458HG 
gene (distance ~33 kb) in chromosome 5 with marginal 
significance (P-value < 1.0E−05) in all models (Table  2, 
Additional File 1: Table S1). Additional File 1: Table S2 con-
tains the association results for any SNPs with a P-value < 
1.0E−04. The Locus Zoom plots for SNPs in chromosomes 
3 and 5 are shown in Fig. 2, and locus zoom plots for SNPs 
in chromosomes 2, 6, 7, 12, and 13 are shown in Additional 
File 1: Fig. S3. Note that the SNPs with suggestive signifi-
cance in chromosome 2 were more than 85 kb from the 
closest gene LINC01854, and SNPs in chromosome 7 were 
more than 116kb to the closest gene LINC01446. In addi-
tion, we observed suggestive significance with SNPs in 
genes CLIC5 (chromosome 6), GALTN9 (chromosome 12), 
and closest gene FAM155A (chromosome 13) (P-value < 
1.0E−5) in all five models ( Additional File 1: Table S1).

Transferability analysis
Due to lack of a replication sample of indigenous Afri-
cans, we investigated the transferability of our findings 
in COMPASS (African-American meta-analysis) and 

Fig. 1 Manhattan plots. a The base model adjusted for sex, age, 10 PCs, and SNP as in model 0. b Hypertension is added to the base model 0. 
c Diabetes is added to the model 1. d Dyslipidemia is added to model 2. e Cardiac status is added to model 3. f Waist‑to‑hip ratio is added to model 
4
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MEGASTROKE (European Ancestry Meta-Analysis). 
Additional File 1: Table S3a shows the statistical signifi-
cance in COMPASS (column BB provides the P-values in 
COMPASS) and MEGASTROKE (column BI for P-values 
in MEGASTROKE) for top SIREN hits corresponding 
to Additional File 1: Table  S1 with P-value < 1.0E−06. 
Additional File 1: Table S3b presents significance levels in 
COMPASS and MEGASTROKE based on SIREN P-value 
< 1.0E−04 corresponding to Additional File 1: Table S2. 
Note that there were only two SNPs rs116683655 and 
rs76250200 within gene ISPD with P-value < 1.0E−04 
in SIREN were marginally significant with P-values 
3.98E−03 and 5.57E−03 in COMPASS, respectively. The 
lowest P-value in MEGASTROKE was 8.38E−03 cor-
responding to SIREN with P-values < 1.0E−04 for the 
SNP rs7239115 in chromosome 18 within gene region 
LINC01898-LOC339298. Conversely, we also investigated 
the transferability status of variants previously associated 
with stroke in COMPASS and MEGASTROKE in SIREN 
(Additional File 1: Table  S4a and S4b). In Additional 
File 1: Table  S4a, S4b, and S13a-d, we have identified 
and listed out specific SNPs associated with stroke risk 
among African-Americans and Europeans as identified in 
the COMPASS and MEGASTROKE studies respectively. 
SNPs labeled as multi-ancestry were also identified. 
We observed a nominal association with multiple SNPs 
in COMPASS including rs116262092 (P-value = 0.02) 
and rs147867382 (P-value = 0.02) in the RUNX1 gene 
in chromosome 21, rs184221467 (P-value = 0.02) near 
the AK092619 gene in chromosome 3, and rs115670077 
(P-value = 0.01) between the RFTN2-MARS2 gene in 
the SIREN cohort with a similar direction of effect as in 
the COMPASS. Additional analysis comparing the effect 
sizes of the variants across the COMPASS and SIREN 
cohorts demonstrated similar effect sizes and direction of 
effect in most of the loci.

We further investigated the transferability status of 
variants previously associated with stroke subtypes in 
COMPASS and MEGASTROKE in SIREN. We repli-
cated the top significant SNPs associations in COM-
PASS and MEGASTROKE in the SIREN for large artery 
disease (cases = 509 vs. controls = 1738), small vessel 
occlusion (cases = 590 vs. controls = 1738), and unde-
termined etiology (cases = 451 vs. controls = 1738). 
None of the top loci in COMPASS or MEGASTROKE 
were significant with Bonferroni correction for any of 
the subtypes. The results for subtypes corresponding to 
COMPASS and MEGASTROKE are provided in Addi-
tional File 1: Table S5a and S5b, respectively, and showed 
marginally significant results in subtypes with P-value 
< 0.05 in SIREN. The effect sizes are in the same direc-
tions as in COMPASS and MEGASTROKE except for 
SNP rs113025543 (FAR) which is a protective factor in 

COMPASS but a risk factor in SIREN for small-vessel 
disease and SNP rs11867415 (PRPF8) which is a risk fac-
tor in MEGASTROKE but protective in SIREN for small-
vessel disease (Additional File 1: Table  S5c contains the 
summary of the marginally significant results of the sub-
types in SIREN).

African ancestry meta‑analysis
Additional File 1: Table  S6 contains the results from 
METASOFT for P-values < 1.0E−04 corresponding to the 
RE2 model. There were 14,053,108 SNPs common to both 
SIREN and COMPASS. Table  3 provides a summary of 
the METASOFT results with P-values less than 1.0E−06 
for Han and Eskin’s random effects model (RE2) and the 
binary effects model (BE) for meta-analysis models, het-
erogeneity value I2, and corresponding SIREN and COM-
PASS P-values and their effect size directions. There were 
15 SNPs in Han and Eskin’s random effects model (RE2) 
and 13 SNPs in the binary effects model (BE) with P-value 
< 1.0E−06. COMPASS SNPs drove most of the SNP sig-
nificance in the RE2 model. However, SIREN SNPs were 
significant for BE model with I2 greater than or equal to 
0.90 with P-value < 1.0E−06. Note that rs6440776 in the 
intergenic region of MIR5186-AADACL2 in chromo-
some 3 and rs2194650 in POM121L12-LINC01446 were 
also significant with a P-value less than 1.0E−06 in the 
BE model corresponding to SIREN P-value < 1.0E−06. 
Moreover, the direction of effect between associations of 
the loci with ischemic stroke in both SIREN and COM-
PASS studies were similar for 2504 SNPs out of 3111 in 
Additional File 1: Table  S6 and SIREN vs. COMPASS 
effect size plot in Additional File 4: Fig. S4.

Transethnic meta‑analysis
Transethnic meta-analysis was performed in MANTRA 
using SIREN, COMPASS and, MEGASTROKE studies. 
There were 6,092,926 SNPs common to all three stud-
ies. The MANTRA results with log10 (Bayes factor) 
> 4 are included in Additional File 1: Table  S7. A sum-
mary of the MANTRA results is given in Table  4 con-
taining  log10 (Bayes factor) ≥10.0. The significance of 
the all SNPs in Table  4 was mainly driven by MEGAS-
TROKE SNP’s P-values and their effect sizes. Note that 
MEGASTROKE was the largest study among all three 
studies, with a sample size of 446,696, while COMPASS 
had 22,051 individuals compared with SIREN with 3434 
individuals. It is not uncommon for a meta-analysis to 
be heavily dominated by a single largest study [35, 36]. 
We observed that allele frequency distributions in 
MEGASTROKE were different compared to COMPASS 
and SIREN (see Additional File 4: Fig. S5). COMPASS 
and SIREN allele frequency distributions were similar 
(see Additional File 4: Fig. S5). There were 231 SNPs 
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with  log10 (Bayes factor) ≥  6.0, and most of the SNPs 
were significant in MEGASTROKE. SIREN study-driven 
MANTRA results are given in Table 5 with Bayes factor 
of at least 4.0 with posterior probability of 1 and SIREN 
P-value < 1.0E−04. Both SNPs rs6440776 and rs2410883 
in MIR5186-AADACL2 in chromosome 3 had Bayes fac-
tor greater than 5 with effects in the same direction in all 
three studies. The SNPs in chromosomes 7, 18, and 20 
had Bayes factor greater than 4.0 with a posterior prob-
ability of 1 corresponding to SIREN P-values < 1.0E−04.

Fine‑mapping
Before performing fine-mapping, localized zoom plots 
in Fig.  2 were consulted for both regional association 
landscape and linkage disequilibrium with the lead vari-
ant in the region of interest. Fine-mapping regions were 
initially identified using a genomic base-pair window size 
of 500 kb on both 5′ and 3′ ends of the significant hits 
near AADACL2 and MIR4458HG genes based on the 
hg19 coordinate system. Fine-mapping in chromosome 
3 indicated 2 variants out of the 627 variants considered 
were potentially causal (rs7611359, position: 151266619, 
posterior probability = 1.0 with 99% credible interval; 
and rs9815407, position: 151269245, posterior probabil-
ity = 1.0 with 99% credible interval) (Fig.  3a). Similarly, 
fine mapping in chromosome 5 indicated 4 out of the 568 
variants considered were potentially causal (rs341875, 
position: 8512751, posterior probability = 0.17 with 
99% credible interval; rs77326269, position: 8499398, 
posterior probability = 0.14 with 99% credible interval; 
rs73740017, position: 8499591, posterior probability = 
0.14 with 99% credible interval; and rs57085808, position: 
8496279, posterior probability = 0.13 with 99% credible 
interval) (Fig.  3b). To select the top five 10 annotation 
sets for each region, we employed the suggested pipeline 

outlined in the PAINTOR software GitHub repository. 
Additional File 1: Table S8a and S9a capture the marginal 
significance estimates for each annotation and the overall 
likelihood ratio test (LRT) estimates, which were used to 
select the top 10 annotations of interest.

Gene sets enrichment analysis
To determine gene expression profile tissue/cell type 
specificity for our genes of interest, we used a gene 
lookup mechanism in GTExPortal V8 (https:// www. 
gtexp ortal. org). The gene expression analysis in GTEx-
Portal V8 for MIR4458HG and AADACL2 genes is 
shown in Additional File 4: Fig. S6a and S6b. The 
highest expression was observed in brain-cerebellar 
hemisphere and brain-cerebellum for the MIR4458HG 
gene. To further understand any functional implica-
tions of significant single variant association analysis, 
we performed functional annotation mapping (FUMA) 
GWAS module SNP2GENE. We used any SNPs in 
any model with a P-value < 1.0E−5 for SNP2GENE 
analysis. MAGMA tissue-specific expression analysis 
results of SNP2GENE module are given in Additional 
File 1: Table  S10a. Tissue-specific expression analysis 
with P-value < 0.05 was observed in thyroid, brain cer-
ebellar hemisphere, and brain cerebellum tissues. In 
addition, we performed GENE2FUNC using a compi-
lation of 191 genes that were aggregated from ANNO-
VAR gene assignment report for SNPs in Additional 
File 1: Table  S2 and genes that showcased chromatin 
and eQTL interactions based on SNP2GENE results. 
The 143 genes with recognized unique Ensembl ID 
were used in annotation and mapping. In specific 
tissue analysis, FUMA GENE2FUNC differentially 
expressed genes were either upregulated or downreg-
ulated. Enrichment for upregulated gene differential 

Fig. 2 Locus zoom plots for SNPs rs6440776 (hg19: chr3:151396081 and hg38:151678293) and rs77326269 (hg19: chr5:8499398 
and hg38:chr5:8499286) based on P‑values using the base model

https://www.gtexportal.org
https://www.gtexportal.org
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expression in the brain was observed in brain spinal 
cord cervical C-1 (padj = 0.043) and downregulated in 
brain frontal cortex BA9 (padj = 0.032) along with brain 
cortex (padj = 0.090). The details regarding upregulated 
and downregulated are provided in Additional File 4: 
Fig. S6a and S6b and Additional File 1: Table S10b. We 
also observed two-sided significant regulation of genes 
in specific tissues, namely brain frontal cortex BA9 
(padj = 0.023).

Genomic landscaping for genes AADACL2 and MIR4458HG
Given the dense distribution of variants in and around 
the lead significant SNP, localized genomic visualiza-
tion models, Figs. 4 and 5, were rendered to investigate 
the (1) presence of methylation hotspots in the form 
of CpG islands/shores, (2) observance of enhancer and 
promoter activity reported by GeneHancer, and (3) 
interaction between GeneHancer regulatory elements 
and neighboring genes. Furthermore, brain DNA meth-
ylation profile was also investigated in and around the 
region of significant SNPs, and the same is showcased 

as independent tracks in the rendered regions (a) 
genome-wide methylation (MeDIP-seq and MRE-
seq) landscape, (b) histone H3 lysine 4 trimethylation 
(H3K4me3), and (c) gene expression (RNA-seq and 
RNA-seq (SMART)) profiles. Figure  4a illustrates the 
chromatin interaction link between significant regions 
proximate to AADACL2 gene and nearby IGSF10 gene 
using SNP2GENE function in FUMA. Additional File 1: 
Table S11 articulates the significant intra-chromosomal 
chromatin interaction and strength of SNP-gene-tis-
sue eQTL mapping for genome-wide significant SNP 
regions along with novel SNPs near AADACL2. Based 
on the GWAS significance statistics for SNPs in that 
region, P2RY13 and P2RY14 are potential eQTLs with 
significant mapping interaction with the novel SNPs 
near AADACL2. UCSC Genome Browser on Human 
Hg38 build was used to render the omics landscaping 
around the significant SNP regions. AADCL2 omics 
landscape in Fig.  4b reports minimal promoter and 
enhancer presence. Interestingly, 5 clustered interac-
tions of gene enhancer regulatory elements and the 

Fig. 3 a Fine‑mapping of AADACL2 gene region. b MIR4458HG gene region. Panel 1 depicts a scatterplot of location versus posterior probabilities 
with a 99% credible interval; panel 2 provides functional annotation tracks
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AADAC gene, which is located only 56 kb downstream 
of AADACL2, were observed around the region of the 
AADACL2 gene. Figure 5a depicts the chromatin inter-
action of rs57085808 with nearby genes. As depicted 
in Fig.  5b, the presence of methylation hotspot, CpG 
Island, at the 5′ end of MIR4458HG demonstrated a 
high level of H3K27Ac epigenetic modification signal. 
H3K27Ac histone mark is known to be a strong marker 
of active promoter and enhancer activity that is strongly 
associated with the transcription factor binding mecha-
nism and gene expression profile. Histone mark’s activ-
ity is further validated by the presence of a cluster of 
strong active promoter regions (red bands) along with 

transcriptional transition and elongation (green bands) 
hotspots, thereby offering some potential interaction 
between DNA methylation and histone modifications 
around the region of MIR4458HG gene. Additional File 
1: Table  S12 contains the significant intra-SNP-gene-
tissue eQTL mapping for gene MIR4458HG.

Genome geography discrepancies
Although there is healthy validation and verification of 
sequence similarity between multiple gene transcripts 
for a certain genomic region, genomic annotations 
are yet to reach robust levels of certainty and stability 
across evolving versions of human reference genomes. 

Fig. 4 a Circos plot showcasing chromatin interaction (orange arcs) and eQTL interactions (green arcs) originating from SNP rs6440776 (AADAC 
gene region). b Genomic landscape for AADACL2 illustrating CpG islands, enhancer/promoter presence, histone modification sites, and regulatory 
interaction activity from UCSC browser
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Although we employed TOPMed imputation reference 
panel with human genome Hg38, much of our replication 
cohorts like COMPASS and MEGASTROKE reported 
their variants based on Hg37. To accommodate poten-
tial inconsistences between these two different versions 
of the human genome, we presented variant annota-
tions in our additional file datasets for both Hg19- and 
Hg38-based coordinate systems. At a glance, the genome 
versioning challenge also helped us unravel few issues 
with annotating SNPs for assigning HUGO approved 

gene names, genomic functions, and SNP annotations. 
One of our top-hit variant rs6440776 was reported on 
chr3:151678293 based on Hg38 genome assembly and 
on chr3:151396081 based on Hg37 assembly. Based on 
the version of the assembly used, SNP rs6440776 was 
mapped to intergenic regions between genes MIR5186-
AADACL2 based on Hg38 and mapped to ncRNA 
intronic region of gene MIR548H2 based on hg19. Also, 
based on the version of the dbSNP data repository used 
to drive the SNP annotations, the same variant on Chr2 

Fig. 5 a Circos plot showcasing chromatin interaction (orange arcs) and eQTL interactions (green arcs) originating from SNP rs57085803 
(MIR4458HG gene region). b Genomic landscape for MIR4458HG illustrating CpG islands, enhancer/promoter presence, histone modification sites, 
and regulatory interaction activity from UCSC browser
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at position 129359443 (Hg38) with mapped position 
130117016 (Hg19) was assigned registered dbSNP name 
rs111452560 and rs116332314 between different data 
releases of dbSNP database.

Discussion
In this first genome-wide association study of ischemic 
stroke among indigenous Africans, we observed genome-
wide significant SNPs associations (rs6440776 and 
rs2410883) near the AADACL2 gene in chromosome 
3, after adjusting for hypertension, diabetes, and dys-
lipidemia in the base model as covariates. Five SNPs 
(rs57085808, rs57033994, rs143745837, rs77326269 and 
rs73740017) near the miRNA (MIR4458HG) gene in 
chromosome 5 were also associated with ischemic stroke 
with suggestive significance (P-value < 1.0E−6)). The loci 
near AADACL2 and MIR4458HG genes are novel and 
protective. The region near gene AADACL2 remained 
marginally significant following African ancestry meta-
analysis and fine mapping. The functional and clinical 
relevance of the identified risk loci is further supported 
by eQTL and chromatin interaction data. The observed 
protectiveness of these loci against stroke has promising 
implications for ancestry-specific risk stratification and 
the search for drug targets that can enhance the primary 
or secondary prevention of stroke (please see Additional 
File 3: Additional Discussion (additional discussion point 
a and additional discussion point b) on other marginally 
significant genetic variants).

The arylacetamide deacetylase like 2 (AADACL2) gene 
is a protein coding gene that is strongly expressed in the 
skin, an organ that shares embryological origins with the 
nervous system. The gene is implicated in epidermal bar-
rier function [37] and has demonstrated previous asso-
ciations with multiple phenotypes including idiopathic 
dilated cardiomyopathy [38]. Loci near AADACL2 in the 
present study demonstrate protection against ischemic 
stroke with top SNPs: rs6440776 with OR 0.74 (0.66–
0.82) and P-value = 3.71E−08 and rs2410883 with OR 
0.74 (0.66–0.82) and P-value = 4.38E−08 when hyperten-
sion was included in the model.

Fine-mapping of the significant genomic regions 
near the AADACL2 gene in chromosome 3 yielded two 
potentially causal variants rs7611359 and rs9815407 
with a posterior probability of 1.0. Gene expression 
profiling results for the AADACL2 gene using GTEx 
v8 yielded maximum expression in the skin while 
genomic landscaping yielded minimal enhancer, his-
tone modification, and regulatory interaction activity. 
In addition, 5 clustered interactions of gene enhancer 
regulatory elements and the AADAC gene located 56 kb 
downstream of AADACL2 were observed around the 
region of the AADACL2 gene. The significant histone 

modification and regulatory activity of the novel loci 
near the AADACL2 gene plausibly explain the protec-
tion against ischemic stroke demonstrated in this study. 
Potential interactions involving the discovery novel 
loci near AADACL2 in this study and other genes, par-
ticularly in proximity within the chromosome 3, may 
also explain the protective function of the novel loci 
in relation to ischemic stroke. Chromatin interaction 
mapping of regions proximate to the AADACL2 gene 
demonstrated significant intra-chromosomal chro-
matin interaction with the IGSF10 (immunoglobulin 
superfamily, member 10) gene with relevant immune 
regulatory functions [39].

The MIR4458HG gene is an intergenic non-coding 
miRNA gene with multiple tissue expression in the brain, 
arteries, and other tissues [40, 41] as well as metabolite 
level and heart rate in heart failure with reduced ejec-
tion fraction [42]. The MIR4458HG gene was previously 
associated with coronary artery calcification in a GWAS 
study among type 2 diabetes in African-American/Afro-
Caribbean subjects [43]. In this study, SNPs near the 
MIR4458HG gene locus demonstrated protection against 
ischemic stroke with ORs < 1 at suggestive significance 
levels.

Fine-mapping of the significant genomic regions near 
the MIR4458HG gene in chromosome 5 yielded 4 vari-
ants considered potentially causal, top of which was 
rs341875 with a posterior probability of 0.17. Gene 
expression analysis was undertaken for the MIR4458HG 
gene in GTExPortal V8 in both general and specific tis-
sues. This demonstrated the highest expression in the 
brain cerebellar hemisphere, cerebellum, and thyroid 
as well as artery tibial and coronary arteries. Functional 
annotation mapping (FUMA) expression analysis in 
MAGMA demonstrated differential gene expression in 
the brain spinal cord cervical C1 and brain frontal cor-
tex BA9. Genomic landscaping for MIR4458HG yielded 
methylation signals, strong enhancer/promoter activ-
ity, histone modification sites, and regulatory interac-
tion activity with the high level of H3K27Ac epigenetic 
modification signaling. These findings demonstrate epi-
genetic interactions including DNA methylation and 
histone modifications around the MIR4458HG gene 
and thus suggest regulatory activity in the variants near 
the MIR4458HG gene as a plausible mechanism for 
the protective effect on ischemic stroke and the conse-
quent potential of the region containing targets for drug 
development for primary or secondary prevention of 
stroke [11].

A recent cell culture study demonstrated that miR-
4458 negatively modulated cardiac hypertrophy, a known 
intermediate phenotype, and an independent risk fac-
tor for ischemic stroke, by activating mitochondrial 
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transcription factor A (TFAM), a well-recognized myo-
cardial protective protein. Indeed, miR-4458 facilitated 
TFAM expression in cardiomyocytes to inhibit cardiac 
hypertrophy [44]. Several other micro-RNA genes have 
also demonstrated protection against ischemic stroke 
such as miR-375 [45], miR-195 [46], miR-221 [47], miR-
338 [48], and exhibiting protection against ischemic 
stroke via multiple mechanisms. Moreover, microRNAs 
constitute an emerging and promising category of bio-
molecules with the promise of enhancing risk prediction, 
diagnosis, prognosis, and treatment of ischemic stroke 
and the subtypes [49–51].

Clinical implications of functional expressions 
and interaction analysis
Expression quantitative trait loci (eQTL) mapping and 
chromatin interaction analysis in FUMA demonstrate 
interaction of variants with either genomic or suggestive 
significance with other multiple variants with significant 
expression in vascular or brain tissue and association 
with cerebrovascular disease phenotypes, other brain dis-
orders, or vascular diseases (Additional File 1: Table S10 
and S11). For instance, novel loci near the AADACL2 
gene yielded potential eQTLs including AADAC, MBNL1, 
TMEM14E, P2RY13, and P2RY14 genes with P2RY13 
and P2RY14 demonstrating significant mapping interac-
tion. The purinergic receptor (P2Y13) plays a major role 
in HDL metabolism by facilitating reverse cholesterol 
transport and promoting the inhibition of atherosclero-
sis progression) [52–54]. Thus, it appears that the protec-
tiveness of the novel locus near AADACL2 against stroke 
may be associated with its epistatic interaction with the 
P2RY13 gene. Systems genetics analysis has also defined 
the importance of transmembrane protein 43 (TMEM43) 
in cardiac- and metabolic-related pathways, suggesting 
that cardiovascular disease-relevant risk factors may also 
increase risk of metabolic and neurodegenerative dis-
eases via TMEM43-mediated pathways [55]. Broad cel-
lular functions and diseases including arrhythmogenic 
right ventricular cardiomyopathy (ARVC5) have been 
associated with transmembrane protein43 (TMEM43).

Taken together, the findings in this study demonstrate 
emerging differential roles for regulatory miRNA, inter-
genic non-coding DNA, and intronic non-coding RNA 
in the pathobiology of ischemic stroke. The protective-
ness of some genetic loci related to miRNAs, which are 
largely regulatory, suggests the possible occurrence of 
downstream biomolecules and processes in dysregulated 
pathways and networks, which require further explora-
tion and characterization. Indeed, multiple loci which 
demonstrate significant interaction with our key discov-
ery variants (with regulatory function) through FUMA 
have shown expression in brain, vascular, cardiac, and 

neuronal tissue apart from direct association with dif-
ferent subtypes of cerebrovascular disorders. These have 
implications for novel fluid biomarkers for stroke, drug 
development, and repurposing, multi-omics analysis 
including genome-wide miRNA analyses, and genera-
tion of polygenic risk score (PRS) that will likely be more 
accurate for African populations [56–58].

Comparison with existing stroke GWAS
Replication is a critical part of the process of study-
ing genome-wide association studies, while the concept 
of transferability is used when the replication cohort is 
drawn from a different population other than the dis-
covery sample [59, 60] (please see additional discussion 
point c in Additional File 3: Additional Discussion). Find-
ings from the SIREN discovery analysis demonstrated 
poor transferability in the COMPASS meta-analyses 
among African-Americans [8, 9] and vice versa possibly 
because of genetic admixture in the African-Americans. 
However, the similarity of direction of effect between 
the associations of the loci with ischemic stroke in both 
SIREN and COMPASS studies strengthens the biologi-
cal validity of the association of these loci with ischemic 
stroke (Additional File 4: Fig. S4) [13]. Similarly, the 
findings from the MEGASTROKE meta-analysis [10] 
showed non-transferability in both SIREN and COM-
PASS GWAS analyses. The MEGASTROKE GWAS was 
in a predominantly European ancestry population with 
only 4.0% African ancestry (African-Americans) which is 
slightly more than the 3.7% African ancestry in GIGAS-
TROKE [19]. Differences in the ancestral backgrounds 
of the SIREN and MEGASTROKE cohorts and the 
dominance of small vessel disease stroke subtype among 
blacks compared to Caucasians are plausible reasons for 
this non-transferability. A recent high-depth study of 
African genomes identified more than 3 million previ-
ously undescribed genetic variants [18]. This observation 
underscores the uniqueness of the genetic architecture of 
indigenous African populations with variants which may 
not be present in other populations. This has implication 
for the non-transferability in this study and other Afri-
can studies (DM, glaucoma and lipid traits) [13, 61, 62] 
(please see additional discussion points d and e in Addi-
tional file 3: Additional Discussion). The existence of such 
ancestry-specific variants has implications for the devel-
opment of polygenic risk scores (PRS) of higher accuracy 
in the stratification of individuals based on disease risks. 
This therefore strengthens the argument for ancestry or 
region-specific PRS.

Strengths, limitations, and future direction
Our study has a major strength in being the first stroke 
GWAS in an indigenous African population with novel 
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functional and clinical implications. The key limitations 
are the absence of a suitable independent replication 
cohort of indigenous African ancestry and the non-
availability of databases enriched with African ances-
try information for in silico functional analysis. These 
could have limited the full understanding of the func-
tional implications of our discoveries. This limitation 
is particularly common to pioneering GWAS studies of 
African ancestry individuals such as the recent GWAS 
of rheumatic heart disease [63]. The current study was 
also not sufficiently powered for stroke sub type-specific 
analysis to identify ischemic stroke sub type-specific risk 
loci. We found marginally significant transferability upon 
investigation of variants associated with ischemic stroke 
subtypes due to small vessel disease and large artery 
atherosclerosis. Future larger stroke GWAS studies are 
required to accurately dissect the genetic and patho-
logical heterogeneity between ischemic stroke subtypes 
among indigenous Africans. We investigated the func-
tional relevance of the identified risk loci using bioinfor-
matic analyses that we plan to confirm via in  vitro and 
in vivo studies in the near future.

Conclusions
In this first-ever GWAS of stroke in indigenous Afri-
cans, novel genomic regions near genes AADACL2 and 
MIR4458HG exhibited significant protective associations 
with ischemic stroke with significant eQTL mapping 
and chromatin interactions with multiple loci associated 
with vascular disorders. Our findings identify potential 
roles of regulatory miRNA, intergenic non-coding DNA, 
and intronic non-coding RNA in the pathobiology of 
ischemic stroke among indigenous Africans.
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