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Mendelian randomization analyses suggest 
a causal role for circulating GIP and IL-1RA levels 
in homeostatic model assessment-derived 
measures of β-cell function and insulin 
sensitivity in Africans without type 2 diabetes
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Abstract 

Background In vitro and in vivo studies have shown that certain cytokines and hormones may play a role 
in the development and progression of type 2 diabetes (T2D). However, studies on their role in T2D in humans are 
scarce. We evaluated associations between 11 circulating cytokines and hormones with T2D among a population 
of sub-Saharan Africans and tested for causal relationships using Mendelian randomization (MR) analyses.

Methods We used logistic regression analysis adjusted for age, sex, body mass index, and recruitment country 
to regress levels of 11 cytokines and hormones (adipsin, leptin, visfatin, PAI-1, GIP, GLP-1, ghrelin, resistin, IL-6, IL-10, 
IL-1RA) on T2D among Ghanaians, Nigerians, and Kenyans from the Africa America Diabetes Mellitus study includ-
ing 2276 individuals with T2D and 2790 non-T2D individuals. Similar linear regression models were fitted with homeo-
static modelling assessments of insulin sensitivity (HOMA-S) and β-cell function (HOMA-B) as dependent variables 
among non-T2D individuals (n = 2790). We used 35 genetic variants previously associated with at least one of these 
11 cytokines and hormones among non-T2D individuals as instrumental variables in univariable and multivariable MR 
analyses. Statistical significance was set at 0.0045 (0.05/11 cytokines and hormones).

Results Circulating GIP and IL-1RA levels were associated with T2D. Nine of the 11 cytokines and hormones (excep-
tions GLP-1 and IL-6) were associated with HOMA-S, HOMA-B, or both among non-T2D individuals. Two-stage least 
squares MR analysis provided evidence for a causal effect of GIP and IL-RA on HOMA-S and HOMA-B  in multivariable 
analyses (GIP ~ HOMA-S β =  − 0.67, P-value = 1.88 ×  10−6 and HOMA-B β = 0.59, P-value = 1.88 ×  10−5; IL-1RA ~ HOMA-
S β =  − 0.51, P-value = 8.49 ×  10−5 and HOMA-B β = 0.48, P-value = 5.71 ×  10−4). IL-RA was partly mediated via BMI (30-
34%), but GIP was not. Inverse variance weighted MR analysis provided evidence for a causal effect of adipsin on T2D 
(multivariable OR = 1.83, P-value = 9.79 ×  10−6), though these associations were not consistent in all sensitivity analyses.
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Background
The global burden of type 2 diabetes (T2D) is high and 
rising and disproportionally affects African-ancestry 
populations. In the USA, African Americans have a 1.6 
times higher prevalence of T2D than European Ameri-
cans [1] and sub-Saharan African migrants in Europe are 
nearly three times more likely to have T2D compared 
with Europeans [2]. Furthermore, a steady rise in T2D 
prevalence is observed in sub-Saharan Africa [3].

The reasons for the disproportionate burden of T2D 
among African-ancestry populations are not completely 
understood. Inflammatory processes have been impli-
cated in the development and progression of T2D [4]. 
Such an inflammatory state is characterized by increased 
circulating levels of pro-inflammatory cytokines and hor-
mones and reduced levels of anti-inflammatory ones [5]. 
Cytokines and hormones relevant to T2D can be classi-
fied into different clusters based on their site of produc-
tion, including those produced by adipose tissue (such 
as adipsin, leptin, visfatin, and plasminogen activator 
inhibitor-1(PAI-1)), those produced by the gut (such as 
glucose-dependent insulinotropic peptide (GIP), gluca-
gon-like peptide-1 (GLP-1), and ghrelin), and those pro-
duced by immune cells (such as resistin, interleukin 6 
(IL-6), interleukin 10 (IL-10), and interleukin 1 receptor 
antagonist (IL-1RA)). Most studies on these circulating 
cytokines and hormones have been performed in  vitro 
and in vivo [6, 7]. The observational studies available have 
associated a limited number of cytokines and hormones 
with insulin sensitivity and T2D in diverse populations 
[8–11], including African Americans and West Africans 
[12–15]. However, these studies have focused on a hand-
ful of cytokines and hormones, such as adiponectin [8, 
13], adipsin [9], PAI-1 [10], IL-6 [11, 12, 14, 15], IL-10 
[12, 14], and IL-1RA [12, 14], while analyses on other 
potentially diabetes-related cytokines and hormones 
such as visfatin, GIP, GLP-1, and ghrelin are scarce. In 
addition, cross-sectional observational studies are unable 
to determine causality, i.e. whether circulating cytokine 
and hormone levels are a cause or consequence of T2D.

Mendelian randomization (MR) analysis leverages 
genetic variants as instrumental variables to improve 
causal inference in observational studies. Specifically, MR 
studies are less affected by limitations such as unmeas-
ured confounding and reverse causation because of the 

random distribution of genotypes at conception. MR 
studies assessing causality for the relationship between 
cytokines and hormones with T2D are limited. Wang 
et  al. found evidence for a causal effect of leptin levels 
on T2D in European-ancestry individuals [16], while 
for IL1-RA, no evidence for a causal effect on glycaemic 
traits was found [17]. MR studies assessing the effect of 
other cytokines on T2D are lacking and MR studies for 
any cytokine or hormone on T2D are absent in sub-Saha-
ran African populations. As levels of diabetes-related 
cytokines and hormones have been found to differ in 
African-ancestry individuals compared with European-
ancestry individuals [18–21], the causal effect of these 
cytokines and hormones on T2D risk could also differ. 
A better understanding of the role of cytokines and hor-
mones in T2D among African-ancestry populations may 
have important preventive and therapeutic implications.

Here, we aimed to (1) evaluate the association between 
11 circulating cytokines and hormones with T2D-related 
phenotypes, and (2)  infer causality in these associa-
tions using MR analyses in a population of sub-Saharan 
Africans.

Methods
Study design and data sources
The Africa America Diabetes Mellitus (AADM) study is 
the longest-running genetic epidemiology study of T2D 
in sub-Saharan Africa. The study enrolled over 6000 sub-
Saharan African adults aged 25  years and above with 
T2D and adults without T2D (non-T2D individuals) from 
university medical centres in Nigeria, Ghana, and Kenya. 
The study design and procedures have been described in 
detail elsewhere [22–24]. In brief, individuals with T2D 
were enrolled through major medical centres in three cit-
ies in Nigeria (Ibadan, Enugu, and Lagos), two cities in 
Ghana (Accra, and Kumasi), and in the city of Eldoret 
in Kenya. Non-T2D individuals were enrolled from sur-
rounding communities of the various participating medi-
cal centres. If individuals in the community expressed 
interest in participating in the study, they were then 
invited to the study clinic where the formal process of 
obtaining informed consent took place. Yoruba and Igbo 
(Nigeria), Akan and Gaa-Adangbe (Ghana), and Luhya, 
Kikuyu, and Kalenjin (Kenya) were the most common 
ethnolinguistic groups among the study participants.

Conclusions The findings of this comprehensive MR analysis indicate that circulating GIP and IL-1RA levels are causal 
for reduced insulin sensitivity and increased β-cell function. GIP’s effect being independent of BMI suggests that cir-
culating levels of GIP could be a promising early biomarker for T2D risk. Our MR analyses do not provide conclusive 
evidence for a causal role of other circulating cytokines in T2D among sub-Saharan Africans.

Keywords Cytokines, Hormones, Type 2 diabetes, Sub-Saharan Africans, Mendelian randomization, Causal inference
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Measurements
Demographic data including age and sex were obtained 
through structured questionnaires. Height and weight 
were measured in light clothing and body mass index 
(BMI) was calculated as weight/height2 (kg/m2).

Fasting serum and plasma samples were obtained by 
trained personnel. Fasting glucose concentration was 
measured in mg/dl using the enzymatic reference method 
with hexokinase on a Roche analyzer. Eleven circulating 
cytokines and hormones, namely adipsin, leptin, visfatin, 
PAI-1, GIP, GLP-1, ghrelin, resistin, IL-6, IL-10, and IL-
1RA were measured using multiplex bead-based flow 
cytometric immunoassays according to the manufactur-
er’s instructions (Bio-Plex Pro human diabetes: 10-plex, 
Cat#171A7001M and 2-plex, Cat#171A7002M, Bio-Rad, 
Inc., Hercules, CA, USA). These commercial kits meas-
ure the levels of cytokines and hormones reported to be 
involved in obesity and diabetes pathophysiology. Data 
were collected using Bio-Plex 200®System (Luminex Cor-
poration, Austin, TX) equipped with Bio-Plex Manager™ 
Software (Bio-Rad, Inc., Hercules, CA, USA). IL-6, IL-10, 
and IL-1RA were analysed in a subset of participants 
using enzyme-linked immunosorbent assay (ELISA) 
(Quantikine ELISA, R&D Systems, Minneapolis, MN, 
USA).

T2D was defined using the American Diabetes Associ-
ation (ADA) criteria, i.e. a fasting glucose of ≥ 126 mg/dl 
(≥ 7.0 mmol/L), or an oral glucose tolerance test (OGTT) 
2-h post load value of ≥ 200  mg/dl (11.1  mmol/L) on 
more than one occasion, or the reported use of glu-
cose-lowering medication as prescribed by a physician 
confirmed by review of clinical records. The updated 
Homeostatic Model Assessment (HOMA) was used 
through the University of Oxford HOMA2 calculator to 
estimate insulin sensitivity (HOMA-S) and β-cell func-
tion (HOMA-B). The updated HOMA model is a com-
puter model that derives HOMA-S and HOMA-B as 
percentages of a normal reference population rather than 
linear approximations (available from: https:// www. dtu. 
ox. ac. uk/ homac alcul ator/). HOMA-S is the reciprocal of 
HOMA-IR (insulin resistance) as calculated using the lin-
ear set of equations. Both HOMA-S and HOMA-B were 
calculated for non-T2D individuals only as the measures 
are deemed not to be valid in the presence of T2D.

Association analyses with T2D and HOMA measures
A total of 5066 participants were available for associa-
tion analysis who had at least one of the 11 cytokines 
and hormones measured as well as data on T2D status 
(Fig. 1). We used G*power to calculate a post hoc power 
of 92.6% for an OR of 1.1 and 99.9% to detect an OR of 
1.2 at an alpha of 0.05 [25]. A total of 2790 non-T2D 

individuals were available for the analyses with HOMA-S 
and HOMA-B. We performed complete-case analyses for 
all three outcomes, i.e. individuals with missing values on 
any variable in the model were excluded from the analy-
ses for that specific outcome. An overview of all analyses 
performed can be found in Fig. 1.

Analyses were performed using the R statistical com-
puting platform (version 4.2.2) and R studio (version 
2022.12.0) [26, 27]. The bestNormalize R package was 
used to find the best-performing transformation for all 
cytokines, hormones, and both HOMA measures [28]. 
The ordered quantile (ORQ) transformation was found to 
be optimal and was applied to the cytokine/hormone and 
HOMA measures. We subsequently fitted linear regres-
sion models adjusted for age, sex, BMI, and recruitment 
country among non-T2D individuals to regress each of 
the cytokines and hormones on HOMA-S and HOMA-
B. Logistic regression models were fitted to assess the 
association between each of the cytokines and hormones 
with T2D status with adjustment for age, sex, BMI, and 
recruitment country.

Instrument selection
For each cytokine  and hormone, instruments were 
derived from previously published genome-wide asso-
ciation analyses among AADM study participants 
without T2D [29]. In brief, participants’ samples were 
genotyped using the Affymetrix Axiom PANAFR 
SNP array or Illumina’s Multi-Ethnic Global Array 
(MEGA) [24]. Quality control resulted in a sample-
level genotype call rate of at least 0.95 for all samples. 
The SNP datasets were filtered for missingness per 
marker (> 0.05), minor allele frequency (< 0.01), and 
Hardy–Weinberg equilibrium (P-value ≤ 1 ×  10 −6) 
and imputed using the African Genome Resources 
Haplotype Reference Panel via the Sanger Imputation 
Service. Genome-wide quantitative linear regression 
analyses were performed for all cytokines and hor-
mones separately with adjustment for age, sex, T2D, 
the first three principal components (PCs), and a 
genetic relatedness matrix [29]. For instrument selec-
tion, we used these summary statistics from which 
we additionally filtered out SNPs with low imputation 
quality by excluding SNPs with INFO scores of < 0.8. 
All SNPs with a genome-wide P-value of < 5 ×  10−7 
were subsequently selected as potential instruments. 
We then grouped these SNPs into genetic loci using 
pairwise linkage disequilibrium (LD) analysis. This 
procedure, commonly known as “LD clumping” was 
performed separately for each cytokine and hormone. 
The PLINK 1.9 software [30] was used for this pur-
pose, setting an  r2 threshold of < 0.1 and all unrelated 
AADM participants as the LD reference. The SNPs 

https://www.dtu.ox.ac.uk/homacalculator/
https://www.dtu.ox.ac.uk/homacalculator/
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with the lowest P-value in each clump were selected as 
independent instruments. We used the mRnd online 
web tool to calculate the power of the MR analyses 
with these selected instruments for an α of 0.05 and a 
true causal effect size of β = 0.2 for the HOMA meas-
ures and OR = 1.5 for T2D [31].

Mendelian randomization analysis
Univariable Mendelian randomization analysis
To estimate the univariable effect of each of the cytokines 
and hormones on the continuous outcomes HOMA-
S and HOMA-B, the two-stage least squares (2SLS) 
method was used through the ivreg function of the AER 

Fig. 1 Overview of analyses performed to identify circulating cytokines and hormones causally associated with HOMA-S, HOMA-B, and/or T2D. 
T2D = type 2 diabetes, HOMA = homeostatic modelling assessment of insulin sensitivity and insulin secretion, GWAS = genome-wide association 
study, LD = linkage disequilibrium, 2SLS = two-stage least squares, IVW = inverse variance weighted, MR = Mendelian randomization, BMI = body 
mass index
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package [32]. In these analyses performed among non-
T2D only (n = 2790), each cytokine was regressed on its 
genetic instruments. The fitted values of these regres-
sions were subsequently used in regression with HOMA-
S and HOMA-B as dependent variables.

For the univariable T2D MR analysis (n = 5066), the 
inverse variance weighted (IVW) method as imple-
mented in the MendelianRandomization R package was 
used for multi-SNP instruments, while for single-SNP 
instruments (i.e. IL-6) the Wald ratio was used [33]. We 
calculated the regression coefficients for the instrument-
cytokine/hormone associations in non-T2D individuals 
using linear regression and the odds ratios (ORs) with 
corresponding 95% confidence intervals (95% CI) for the 
instrument-T2D association using logistic regression 
analysis. This approach was chosen to reduce bias as it 
has been shown that when instruments are selected in 
the controls only for a binary outcome, bias follows the 
same pattern as in a two-sample setting [34]. The IVW 
method assumes that all genetic variants are valid instru-
ments. We performed several sensitivity analyses using 
methods that make alternative assumptions to mini-
mize risk of violating a core MR assumption. We used a 
random effects model for the IVW analyses in addition 
to the default fixed effects model. The random effects 
model allows for heterogeneity between the causal esti-
mates by allowing over-dispersion in the model. We 
also report Cochran’s Q and the I2 statistic for the IVW 
analyses as an assessment of heterogeneity. In addition, 
we performed MR-Egger and weighted median analyses. 
These analyses could only be performed for cytokines 
and hormones with three or more genetic instruments. 
MR-Egger corrects for pleiotropy by assuming that the 
pleiotropic effects of each instrument follow a normal 
distribution with a mean of zero and a variance that can 
be estimated from the data [35]. MR-Egger allows for all 
genetic instruments to have pleiotropic effects but has 
much lower power than other methods. We report the 
MR-Egger intercept as a measure for the presence of 
horizontal pleiotropy. The weighted median method can 
handle up to 50% of invalid instruments or pleiotropic 
instruments, as long as the majority of the instruments 
are valid [36]. We considered concordance across MR 
methods as robust evidence for causality.

Multivariable Mendelian randomization analysis
Several of the eleven circulating cytokines and hormones 
are biologically related and have shared genetic predic-
tors. To address this situation, we performed multi-
variable MR analysis in addition to the univariable MR 
analysis. For the multivariable MR analysis, we consid-
ered three clusters of cytokines and hormones: those 
produced by adipose tissue (adipsin, leptin, visfatin, and 

PAI-1), those produced by the gut (GIP, GLP-1, and ghre-
lin), and those produced by immune cells (resistin, IL-6, 
IL-10, and IL-1RA). While univariable MR analysis esti-
mates the total (i.e. indirect and direct) effect of each 
cytokine on the outcomes, multivariable MR estimates 
the direct effect of each cytokine on the outcomes.

Multivariable 2SLS analyses for HOMA-S and HOMA-
B were also performed using the AER R package, which 
first regressed the cytokines and hormones per group 
(adipose, gut, immune) on the genetic variants in a mul-
tivariate multiple linear regression. In the second stage, 
the HOMA outcome was regressed linearly on the fit-
ted values of each of the cytokines and hormones. We 
additionally performed causal mediation analysis using 
the mediation R package on any statistically significant 
cytokines or hormone to examine whether their effect on 
HOMA-S and HOMA-B is mediated through BMI [37].

We used the mr_mvivw function from the Mendeli-
anRandomization R package to perform multivariable 
MR for the T2D outcome via the IVW method using a 
fixed effects model. We performed similar sensitivity 
analyses as for the univariable MR analyses: the IVW 
method using a random effects model, the multivariable 
MR-Egger method, and the multivariable median-based 
method.

Results
Characteristics of the study population
Out of the total 5066 individuals, 2790 were non-T2D 
individuals and 2276 were affected by T2D (Table  1). 
As expected, those affected by T2D were older on aver-
age and had a higher mean BMI. Median levels of the 
circulating cytokines and hormones were higher in 
those with T2D compared with non-T2D individuals 
for all cytokines and hormones except resistin, which 
had similar levels between T2D and non-T2D individu-
als, and IL-10, which had lower levels in those with T2D. 
This is expected for IL-10 given its anti-inflammatory 
properties.

Association analysis of cytokines and hormones with T2D 
and HOMA measures
Most cytokines and hormones were associated with 
the HOMA measures, the proxies for the hallmarks of 
T2D, insulin sensitivity (HOMA-S), and β-cell func-
tion (HOMA-B). All cytokines and hormones except for 
GLP-1 and IL-6 were associated with HOMA-S (Fig. 2A, 
Table  2). Resistin and IL-10 had a positive association 
with HOMA-S, while other cytokines and hormones 
had an inverse association with HOMA-S. GLP-1, IL-6, 
and IL-10 were not associated with HOMA-B at a Bon-
ferroni-corrected P-value of 0.0045 (0.05/ 11 cytokines 
and hormones). The reverse of HOMA-S was seen for 
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HOMA-B, with inverse associations for IL-10 and resis-
tin and positive associations for all other cytokines and 
hormones.

Two out of the eleven cytokines and hormones were 
associated with T2D, namely GIP and IL-1RA (Fig.  2A, 
Table  2). One unit increase in ORQ transformed GIP 
levels was associated with 1.56 times higher odds for 
T2D (P-value = 6.37 ×  10−38) and one unit higher levels 
of ORQ transformed IL-1RA was associated with 1.34 
higher odds (P-value = 1.03 ×  10−5).

Mendelian randomization analysis
A total of 35 SNPs were identified as genetic instru-
ments for the eleven cytokines and hormones (Addi-
tional file 1; Table S1). All cytokines and hormones had 
multi-SNP instruments, except for IL-6 (Table  3). The 
three core assumptions of instrumental variables in MR 
analyses are the relevance (instrument is associated with 
exposure), exchangeability (instrument is not associated 
with confounders), and exclusion restriction (instrument 
only influences outcome via exposure) assumptions. 
We calculated the F-statistic and adjusted R squared 

per instrument to evaluate the relevance assumption 
(Table  3). The cumulative F-statistic of the instruments 
of each of the cytokines and hormones ranged from 13.6 
(leptin) to 74.8 (adipsin) which are all above the threshold 
of an F-statistic of 10 or higher to be considered accepta-
ble for MR analysis. While the assumptions of exchange-
ability and exclusion restriction cannot be empirically 
tested, we undertook several approaches to minimize 
the risk of pleiotropy violating these assumptions. We 
tested for evidence of potential pleiotropy by regressing 
all genetic instruments on age, sex, and BMI in our data-
set of sub-Saharan Africans. Three out of the 35 genetic 
instruments (rs80117394 [adipsin], rs854781 [adipsin], 
and rs146197730 [leptin]) were found to be associated 
with age, sex, or BMI at a nominal P-value of < 0.01 and 
therefore potentially pleiotropic. While including these 
potentially pleiotropic variants could bias the MR esti-
mates, excluding them could result in a significant loss of 
power. We therefore conducted a sensitivity analysis that 
included only those instruments not associated with any 
of the tested confounders at a nominal P-value of < 0.01, 
as described in the guidelines for performing MR by 

Table 1 Characteristics of the study population

Continuous variables are in means ± SD for normally distributed variables. Non-normally distributed variables are expressed in medians and (25th–75th percentile). 
Categorical variables are in n (percentages). HOMA-S and HOMA-B were only calculated for non-T2D individuals

BMI body mass index, T2D type 2 diabetes

Total N Non-T2D individuals (N = 2790) Individuals with T2D (N = 2276)

Covariates
 Age (years) 5066 45.6 ± 15.4 56.2 ± 11.1

 Sex (female) 5066 1674 (60.0%) 1401 (61.6%)

 BMI (kg/m2) 5066 26.4 ± 6.0 27.7 ± 5.5

 Site 5066

  Ghana 769 (27.6%) 592 (26.0%)

  Nigeria 1656 (59.4%) 1274 (56.0%)

  Kenya 365 (13.1%) 410 (18.0%)

Cytokines and hormones
 Adipsin (ng/ml) 4854 1067.2 (837.2–1584.6) 1207.6 (887.0–1967.4)

 Leptin (ng/ml) 4914 3.5 (0.67–10.8) 4.3 (1.5–10.4)

 Visfatin (ng/ml) 4853 2.3 (1.4–4.0) 2.7 (1.6–4.4)

 PAI-1 (ng/ml) 4914 31.2 (22.6–44.8) 33.6 (23.9–49.9)

 GIP (pg/ml) 4956 183.3 (123.4–285.0) 252.9 (163.1–425.8)

 GLP-1 (pg/ml) 4913 221.4 (177.0–282.6) 236.8 (183.0–317.7)

 Ghrelin (pg/ml) 4923 248.6 (143.1–508.0) 311.2 (159.6–630.8)

 Resistin (ng/ml) 4894 5.0 (3.3–7.7) 5.0 (3.3–8.1)

 IL-6 (pg/ml) 1330 1.06 (0.73–1.67) 10.5 (0.69–1.70)

 IL-10 (pg/ml) 1095 10.1 (8.3–12.7) 8.0 (7.0–11.0)

 IL-1RA (pg/ml) 1416 301.1 (219.5–428.3) 351.4 (254.9–519.3)

Diabetes-related phenotypes
 HOMA-S 2552 136.6 (78.3–248.9) NA

 HOMA-B 2552 90.2 (60.9–130.9) NA

 Glucose (mmol/L) 4994 4.7 (4.1–5.1) 8.2 (5.9–12.4)
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Burgess et al. [38]. Given that eight SNPs were associated 
with other cytokines and hormones in addition to the 
cytokine/hormone they were selected as instruments for 
(Additional file 1; Table S1), we were also able to perform 
multivariable MR analyses in addition to the univariable 
MR analyses. Using the selected instruments, power to 
detect an association in MR analyses was higher for the 
binary outcome T2D (ranging from 0.34 to 1.00) than 

for the HOMA measures which were analysed in non-
T2D individuals only (power ranging from 0.23 to 0.99) 
(Table 3).

Univariable Mendelian randomization analyses
We found evidence for a causal effect of GIP and resistin 
on both HOMA-S and HOMA-B in the same direction as 
in the (traditional) association analysis using univariable 

Fig. 2 Heat map of A associations, B univariable MR causal associations, and C multivariable MR causal associations. The colour gradient reflects 
negative (red) and positive (blue) Z values for T2D and T values for the HOMA measures. HOMA analyses were performed in non-T2D individuals 
only. For T2D in panels B and C, the estimates from the inverse variance weighted (IVW) random effects model are shown. An asterisk indicates 
statistical significance at a Bonferroni-corrected P-value of < 0.0045 (= 0.05/11 cytokines and hormones)

Table 2 Associations of circulating cytokines and hormones with insulin sensitivity (HOMA-S), β-cell function (HOMA-B) and T2D

Models are adjusted for age, sex, BMI, and recruitment country. HOMA analyses were performed in non-T2D individuals only. Bold indicates significance at a 
Bonferroni-corrected P-value of 0.0045 (= 0.05/11 cytokines/hormones)

Cytokine/hormone HOMA-S HOMA-B T2D

β (95% CI) P-value β (95% CI) P-value OR (95% CI) P-value

Adipsin  − 0.16 (− 0.20, − 0.11) 1.07 × 10−13 0.13 (0.09, 0.17) 3.95 × 10−10 0.95 (0.89, 1.02) 0.138

Leptin  − 0.30 (− 0.34, − 0.25) 1.84 × 10−35 0.27 (0.22, 0.31) 7.94 × 10−29 0.95 (0.87, 1.03) 0.245

Visfatin  − 0.06 (− 0.10, − 0.03) 1.04 × 10−3 0.07 (0.03, 0.11) 5.28 × 10−4 1.01 (0.95, 1.08) 0.610

PAI-1  − 0.13 (− 0.17, − 0.09) 1.74 × 10−10 0.12 (0.08, 0.16) 1.39 × 10−9 1.05 (0.99, 1.12) 0.089

GIP  − 0.16 (− 0.20, − 0.12) 2.27 × 10−16 0.13 (0.10, 0.17) 6.61 × 10−12 1.56 (1.46, 1.67) 6.37 × 10−38

GLP-1  − 0.02 (− 0.06, 0.02) 0.421 0.03 (− 0.01, 0.07) 0.140 1.07 (1.01, 1.14) 0.034

Ghrelin  − 0.08 (− 0.12, −0.04) 5.25 × 10−5 0.07 (0.02, 0.10) 2.11 × 10−3 1.02 (0.96, 1.09) 0.471

Resistin 0.07 (0.03, 0.11) 2.71 × 10−4  − 0.08 (− 0.12, − 0.04) 3.23 × 10−5 1.03 (0.97, 1.10) 0.298

IL-6  − 0.04 (− 0.10, 0.021) 0.226 0.03 (− 0.04, 0.09) 0.430 0.91 (0.80, 1.02) 0.115

IL-10 0.11 (0.05, 0.17) 4.26 × 10−4  − 0.08 (− 0.15, − 0.02) 0.011 0.82 (0.70, 0.97) 0.019

IL-1RA  − 0.19 (− 0.26, − 0.13) 1.06 × 10−8 0.15 (0.09, 0.22) 4.92 × 10−6 1.34 (1.17, 1.52) 1.03 × 10−5
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2SLS analyses (Figs.  2B and  3). Genetically predicted 
higher levels of GIP were associated with lower HOMA-
S and with higher HOMA-B, while higher levels of resis-
tin were associated with higher HOMA-S and lower 
HOMA-B (Fig. 3).

Our univariable MR results using the IVW fixed effects 
model with T2D as outcome suggested a causal effect of 

adipsin on T2D (Table 4). While the MR estimate using 
the median-based method was indicative of a causal 
effect as well, the association lost statistical significance 
when using the IVW random effects model and the MR-
Egger method (Table  4, Fig.  2B). The I2 statistic (90.8%) 
and Cochran’s Q (21.8) for the fixed effects IVW adip-
sin model were suggestive of variation across genetic 

Table 3 Genetic instruments for all cytokines and hormones at a 5 ×  10−7 p-value threshold

a Power to detect a β of 0.2 or an OR of 1.5 at an α of 0.05

Cytokine/hormone Number of 
participants

Number of genetic 
instruments

Cumulative 
F-statistic

Variance 
explained  (R2)

Power 
HOMA-Sa

Power 
HOMA-Ba

Power  T2Da

Adipsin 4854 3 74.8 0.090 0.89 0.88 0.99

Leptin 4914 2 13.6 0.011 0.23 0.23 0.34

Visfatin 4853 2 19.9 0.017 0.28 0.28 0.49

PAI-1 4914 3 20.9 0.026 0.39 0.38 0.66

GIP 4956 7 15.4 0.042 0.57 0.58 0.86

GLP-1 4913 3 15.3 0.018 0.28 0.27 0.51

Ghrelin 4923 2 30.5 0.025 0.38 0.38 0.65

Resistin 4894 7 62.4 0.159 0.99 0.99 1.00

IL-6 1330 1 24.3 0.032 0.46 0.45 0.75

IL-10 1095 2 24.0 0.060 0.74 0.74 0.95

IL-1RA 1416 3 20.5 0.069 0.80 0.79 0.97

Fig. 3 Forest plot of univariable (blue) and multivariable (red) MR causal associations of cytokines and hormones on HOMA-S (left) and HOMA-B 
(right). HOMA analyses were performed in non-T2D individuals only. A Bonferroni-corrected P-value of < 0.0045 (= 0.05/11 cytokines and hormones) 
was considered statistically significant
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instruments (Table  4), which can also be seen in Addi-
tional file  1; Figure S1 with variant rs80117394 driving 
the association. We found two of the three genetic instru-
ments for adipsin (rs80117394 and rs854781) associ-
ated with BMI at a nominal P-value of < 0.01. Hence, we 
performed an additional analysis excluding these vari-
ants as instruments. The IVW estimate for these con-
servative MR analyses was not statistically significant 
(OR = 0.61; 95%CI = 0.29, 1.25; P-value = 0.175). No evi-
dence for a causal effect of any of the other cytokines or 
hormones on T2D was found (Table 4). The I2 statistics 
and Cochran’s Q were not indicative of heterogeneity for 
the other cytokines and hormones, except for IL-1RA 
(Table 4). For IL-1RA, we also observed a significant MR-
Egger intercept, suggesting presence of pleiotropy.

Multivariable Mendelian randomization analyses
The causal effect of GIP on HOMA-S and HOMA-B 
that we observed in the univariable analyses was inde-
pendent of other gut-produced hormones (namely, 
GLP-1 and ghrelin) and had a regression coefficient 

of − 0.67 for HOMA-S and 0.59 for HOMA-B (Figs. 2C 
and 3). In comparison with the univariable MR results, 
the multivariable estimate for resistin on both HOMA-
S and HOMA-S was not statistically significant, sug-
gesting that this association was not independent of 
other cytokines and hormones produced by immune 
cells. On the other hand, compared to the univariable 
MR findings, both leptin and IL-1RA gained statistical 
significance in the multivariable analyses for HOMA-
S and HOMA-B (Figs.  2C and  3), suggesting that this 
cytokine and hormone may have a causal effect on 
insulin sensitivity and β-cell function independent of 
other cytokines and hormones. We performed a sen-
sitivity analysis for adipose-produced cytokines and 
hormones by excluding the genetic instruments that 
were suggestive of potential pleiotropy (rs80117394, 
rs854781rs146197730). In this conservative approach,  
the multivariable MR estimates of leptin on HOMA-S  
(β =  − 0.50; 95%CI − 0.91, − 0.09; P-value = 0.016) and 
HOMA-B (β = 0.41; 95%CI − 0.01, 0.82; P-value = 0.045) 
lost Bonferroni-corrected statistical significance. Given 

Table 4 Univariable MR causal associations of cytokines and hormones on T2D

The MR-Egger and MR Median analyses could only be performed for cytokines with > 2 genetic instruments. Bold indicates significance at a Bonferroni-corrected 
P-value of < 0.0045 (= 0.05/11 cytokines/hormones)

Cytokine/hormone IVW Fixed effects IVW Random effects Heterogeneity statistics
OR (95% CI) P-value OR (95% CI) P-value IVW Cochran’s Q (P-value) IVW I2

Adipsin 1.74 (1.44, 2.11) 8.46 × 10−9 1.74 (0.93, 3.26) 0.081 21.81 (< 0.001) 90.8

Leptin 1.20 (0.73, 1.97) 0.470 1.20 (0.73, 1.97) 0.470 0.95 (0.330) 0.0

Visfatin 1.33 (0.87, 2.03) 0.181 1.33 (0.87, 2.03) 0.181 0.92 (0.338) 0.0

PAI-1 0.77 (0.53, 1.13) 0.185 0.77 (0.53, 1.13) 0.185 0.62 (0.735) 0.0

GIP 1.24 (0.96, 1.60) 0.104 1.24 (0.96, 1.60) 0.104 2.54 (0.864) 0.0

GLP-1 0.83 (0.54, 1.27) 0.391 0.83 (0.52, 1.34) 0.444 2.51 (0.285) 20.3

Ghrelin 1.09 (0.77, 1.56) 0.624 1.09 (0.65, 1.84) 0.738 2.15 (0.143) 53.5

Resistin 1.02 (0.89, 1.16) 0.821 1.02 (0.89, 1.16) 0.823 6.13 (0.409) 2.1

IL-6 1.19 (0.86, 1.65) 0.288 1.19 (0.86, 1.65) 0.288 NA NA

IL-10 1.01 (0.82, 1.25) 0.903 1.01 (0.75, 1.37) 0.931 1.98 (0.159) 49.5

IL-1RA 1.00 (0.81, 1.25) 0.965 1.00 (0.63, 1.61) 0.984 9.18 (0.010) 78.2

Median MR-Egger Heterogeneity statistics
OR (95% CI) P-value OR (95% CI) P-value MR-Egger Intercept (P-value) MR-Egger I2

Adipsin 1.74 (1.40, 2.17) 6.81 × 10−7 3.44 (0.81, 14.53) 0.093  − 0.225 (0.306) 97.0

Leptin NA NA

Visfatin NA NA

PAI-1 0.76 (0.48, 1.20) 0.237 0.41 (0.08, 2.06) 0.281 0.193 (0.433) 0.0

GIP 1.37 (0.98, 1.90) 0.062 1.41 (0.92, 2.14) 0.111  − 0.040 (0.446) 0.0

GLP-1 1.04 (0.59, 1.81) 0.894 0.30 (0.07, 1.29) 0.107 0.226 (0.155) 0.0

Ghrelin NA NA

Resistin 1.03 (0.88, 1.20) 0.709 1.27 (0.93, 1.73) 0.131  − 0.108 (0.118) 95.2

IL-6 NA NA

IL-10 NA NA

IL-1RA 1.08 (0.79, 1.49) 0.621 2.52 (1.24, 5.12) 0.010  − 0.384 (0.007) 0.0
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the substantial role of adiposity in the development 
of glycaemic dysfunction and insulin resistance, we 
performed mediation analyses to explore whether 
the causal effect of GIP and IL-1RA may be partially 
mediated through BMI. We did not find evidence for 
BMI mediating the effect of GIP on HOMA-S (5.1%, 
95%CI =  − 0.02, 0.12; P-value = 0.17), but BMI did 
mediate 30.8% of the effect of IL-1RA on HOMA-S 
(95%CI = 0.20, 0.45; P-value < 2 ×  10−16). Similarly, BMI 
was not a mediator in the effect of GIP on HOMA-B 
(5.3%; 95%CI =  − 0.02, 0.13; P-value = 0.18), but it was 
a mediator in the effect of IL1-RA on HOMA-B (34%; 
95%CI = 0.21, 0.53; P-value < 2 ×  10−16).

The multivariable MR analyses for T2D showed that 
the statistically significant estimate of adipsin on T2D 
with the fixed effect IVW and median methods was 
independent of other cytokines and hormones pro-
duced by adipose tissue (Table 5). However, as with the 
univariable analyses, the IVW random effects and MR-
Egger estimates were not significant, suggesting that 
the associations in the IVW fixed effects and median 
methods may be due to pleiotropy. In contrast to the 
univariable analyses, the leptin IVW fixed effects esti-
mate was statistically significant in the multivariable 
analyses (Table 5). However, the lack of association in 
the sensitivity analyses suggests that this estimate is 
not robust. In addition, one of the two leptin genetic 
instruments (rs146197730) was associated with sex at 
a P-value of 0.006. The multivariable IVW estimate 
when excluding this potentially pleiotropic instrument 
was not statistically significant (P-value = 0.226). None 
of the other cytokines or hormones showed evidence of 
a causal effect on T2D independent of other cytokines 
and hormones.

Discussion
We examined the role of 11 circulating cytokines and 
hormones previously implicated in T2D in predomi-
nantly non-human studies. Circulating levels of nine out 
of the 11 cytokines and hormones were associated with 
insulin sensitivity and eight with β-cell function among 
non-T2D individuals. In addition, GIP and IL-1RA were 
associated with T2D. Furthermore, MR analyses pro-
vided evidence for an independent causal effect of circu-
lating GIP levels on insulin sensitivity and β-cell function 
that was not mediated through BMI and an independent 
causal effect of IL-1RA on insulin sensitivity and β-cell 
function that was partially mediated through BMI. For all 
other cytokines and hormones, no robust evidence for a 
causal association with insulin sensitivity, β-cell function, 
or T2D was found.

The plausibility of a causal effect of fasting circulating 
GIP on reducing insulin sensitivity and promoting β-cell 
function is supported by evidence from other studies [39, 
40]. GIP is an incretin secreted post-prandially by enter-
oendocrine K-cells found in the gastrointestinal tract, 
stomach, and pancreas [41]. GIP stimulates the release 
of insulin from pancreatic β-cells, which facilitates the 
storage and clearance of dietary triglycerides as well 
as adipose tissue expansion [41]. High-fat diets in mice 
were found to induce hypersecretion of GIP [42], and 
these increased GIP levels have been proposed to play 
an important role in the reduced insulin sensitivity that 
is observed in the presence of high-fat-diet consumption 
and elevated BMI [40, 41]. Despite GIP’s suggested role in 
insulin sensitivity in healthy individuals, GIP resistance 
has been observed in a T2D state when hyperglycaemia 
reduces GIP receptor expression in β-cells [43, 44]. In 
a prospective study of GIP and T2D incidence, fasting 

Table 5 Multivariable MR causal associations of cytokines and hormones on T2D

Bold indicates significance at a Bonferroni-corrected P-value of < 0.0045 (= 0.05/11 cytokines/hormones)

Group Cytokine/hormone IVW Fixed effects IVW Random effects MR Egger Median

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Adipose Adipsin 1.83 (1.40, 2.39) 9.79 × 10−6 1.83 (1.12, 3.00) 0.017 1.67 (0.56, 4.96) 0.357 2.05 (1.27, 3.31) 0.003
Leptin 0.56 (0.40, 0.78) 6.33 × 10−4 0.56 (0.30, 1.04) 0.065 0.52 (0.18, 1.50) 0.226 0.39 (0.19, 0.81) 0.012

Visfatin 1.01 (0.66, 1.53) 0.968 1.01 (0.46, 2.19) 0.983 0.96 (0.35, 2.61) 0.932 1.32 (0.53, 3.26) 0.546

PAI-1 0.94 (0.62, 1.42) 0.760 0.94 (0.43, 2.03) 0.869 0.95 (0.40, 2.25) 0.909 0.89 (0.39, 2.04) 0.776

Gut GIP 1.37 (1.04, 1.82) 0.026 1.37 (1.04, 1.82) 0.026 1.43 (0.97, 2.10) 0.070 1.41 (0.90, 2.21) 0.139

GLP-1 0.88 (0.50, 1.54) 0.655 0.88 (0.50, 1.54) 0.655 0.89 (0.51, 1.56) 0.684 1.05 (0.49, 2.25) 0.908

Ghrelin 0.97 (0.66, 1.42) 0.865 0.97 (0.66, 1.43) 0.865 0.97 (0.66, 1.42) 0.860 0.83 (0.47, 1.48) 0.527

Immune Resistin 1.03 (0.89, 1.19) 0.724 1.03 (0.84, 1.26) 0.802 1.22 (1.00, 1.49) 0.047 1.03 (0.82, 1.30) 0.776

IL-6 1.13 (0.84, 1.51) 0.423 1.13 (0.75, 1.70) 0.569 0.97 (0.70, 1.35) 0.868 1.33 (0.89, 1.99) 0.169

IL-10 0.99 (0.80, 1.24) 0.953 0.99 (0.73, 1.36) 0.966 0.97 (0.77, 1.23) 0.824 1.11 (0.75, 1.64) 0.612

IL-1RA 0.98 (0.78, 1.22) 0.826 0.98 (0.71, 1.33) 0.875 1.06 (0.83, 1.35) 0.642 0.59 (0.35, 0.99) 0.046
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GIP levels were found elevated among normal glycaemic 
control individuals that developed T2D later [45]. Con-
sistent with these prior observations, we found evidence 
for a causal effect on insulin sensitivity and β-cell func-
tion among non-T2D individuals, but no causal effect on 
T2D status. While GIP was not previously considered 
an attractive drug target, recent studies have started re-
evaluating GIP’s therapeutic potential and have proposed 
GIP receptor signalling and dual GIP/GLP-1 receptor 
agonists as a novel means to reduce insulin resistance 
among T2D cases who have likely developed GIP 
resistance [46–48].

The role of GIP in insulin secretion is closely linked 
with GLP-1 but we found no evidence of a causal effect 
of circulating GLP-1 levels on insulin sensitivity, β-cell 
function, or T2D. In fact, neither circulating nor geneti-
cally predicted GLP-1 was significantly associated with 
any of these traits. This result may be a consequence of 
analysing fasting measures in this study as GLP-1 has a 
more potent action on postprandial insulin secretion in 
healthy individuals [44]. In addition, we note that a sys-
tematic review and meta-analyses of 22 trials found no 
difference in GLP-1 response between individuals with 
and without T2D [49]. Hence, our findings are consist-
ent with the possibility that GLP-1 action is affected in 
T2D rather than GLP-1 circulating levels [49, 50]. Indeed, 
current GLP-1-based therapies for T2D are based on the 
activation of GLP-1 receptors through GLP-1 receptor 
agonists. GLP-1 has a short half-life and is degraded by 
the dipeptidyl peptidase 4 (DPP-4) enzyme. DPP-4 inhib-
itors are used in these GLP-1-based therapies to prevent 
degradation and inactivation of GLP-1 and prolong its 
action in improving glucose metabolism [47, 51].

The effect of IL-1RA on insulin sensitivity and β-cell 
function that we found in our study population of sub-
Saharan Africans is in line with findings from some stud-
ies but in contrast with others. While MR analyses by 
Nowak et al. were in the same direction of effect as our 
findings, they did not find evidence for a causal associa-
tion between IL-1RA and insulin sensitivity [52]. Neither 
did the Interleukin 1 Genetics Consortium [17] find asso-
ciations of genetically elevated IL-1RA with insulin sensi-
tivity or T2D. Both studies used data from predominantly 
European-ancestry populations. On the other hand, a 
SNP in the P2RX7 gene was found to be associated with 
an increase in IL-1RA levels among T2D patients [53], 
which is consistent with our findings. Findings from 
randomized controlled trials that studied the effect of 
the drug Anakinra, which is a recombinant of the natu-
rally occurring IL-1RA and binds to IL-1 receptors, also 
reported conflicting results with some finding IL-1RA to 
improve β-cell function [54], whereas others reporting no 
difference in insulin sensitivity after Anakinra treatment 

in obese non-T2D individuals [55]. In our analyses, we 
were only able to detect the causal association with insu-
lin sensitivity and β-cell function in multivariable MR 
analyses that adjusted for confounding variables includ-
ing other cytokines and hormones produced by immune 
cells, indicating the interplay between these cytokines 
and hormones and their potential to mask independent 
effects. Larger studies are needed to optimize IL-1RA 
genetic instruments for MR studies in diverse popula-
tions allowing for better understanding of whether IL-
1RA plays a causal role in T2D and related traits.

If our findings of a causal effect of GIP and IL-1RA on 
insulin sensitivity and β-cell function are confirmed by 
other studies, there are potential implications for preven-
tion of T2D development. Monitoring of circulating lev-
els could serve as biomarkers for early detection and risk 
assessment as elevated levels of GIP and IL-1RA could 
signal increased risk for reduced insulin sensitivity and 
increased β-cell function. Increased β-cell function often 
precedes β-cell failure in T2D development [56]. In addi-
tion, it could drive further research in the development 
of novel therapies that target GIP and IL-1RA pathways 
[57]. There is a need for studies identifying modifiable 
lifestyle factors driving variation in GIP and IL-1RA lev-
els so that these lifestyle factors can be targeted in inter-
vention strategies among those at elevated risk for T2D.

Our null findings for other circulating cytokines and 
hormones are consistent with other MR studies that have 
investigated some of these cytokines and hormones in 
other populations. Wang et al. did not find evidence for a 
causal effect of leptin levels on T2D or HOMA measures 
using data from European-ancestry participants [16] and 
Song et  al. found no evidence for causality of PAI-1 in 
T2D using SNPs in the SERPINE1 gene as instrumental 
variables [58]. The causal effect of resistin levels in insulin 
sensitivity that our group and others reported previously 
[59, 60] was found to be dependent of other cytokines 
and hormones in our present multivariable MR analy-
ses, which is consistent with other studies that evaluated 
RETN SNPs and did not find evidence for an effect of 
these SNPs on insulin sensitivity [61]. More broadly, Thé-
riault et al. found only six out of 227 studied circulating 
proteins to be causally associated with blood pressure in a 
large MR study [62], suggesting most circulating proteins 
do not have causal roles in cardiometabolic pathologies.

Limitations of our analytic strategy are worth noting. 
Firstly, we employed a one-sample approach for the MR 
analyses with the HOMA measures as outcomes, which 
can lead to increased false positive findings in the pres-
ence of weak instruments. We attempted to mitigate this 
possibility by assessing F-statistics and excluding poten-
tially problematic instruments. We note that no other 
genetic epidemiological cohort with data on the same 
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circulating cytokines and hormones among sub-Saharan 
Africans exists. This situation presents a challenge con-
sidering instrumental variable assumptions are more 
likely to be violated when two samples represent differ-
ent ethnic groups [38]. This also applies to the substantial 
differences in genetic make-up and environmental expo-
sures between sub-Saharan African and African Ameri-
cans. For adipsin, visfatin, and ghrelin, we are unaware 
of any other genetic epidemiological cohorts or GWAS 
summary statistics regardless of ancestry. Secondly, our 
relatively small sample size resulted in limited power to 
detect causal relationships for some cytokines and hor-
mones as the power of an MR study increases with its 
sample size. Thirdly, measurement of the circulating 
cytokines and hormones in fasting blood samples could 
have obscured some associations. For example, GIP 
action differs between a fasting and postprandial state 
with stronger effects on glucagon and insulin secretion 
in a postprandial state [63]. Lastly, the generalizability of 
MR findings across multiple populations warrants care-
ful investigation. There is a need for the inclusion in MR 
studies of diverse populations with diverse environmen-
tal exposures.

Conclusions
In conclusion, this MR study using a sample of sub-
Saharan Africans provides evidence for a causal effect of 
circulating GIP and IL-1RA levels on insulin resistance 
and β-cell function in non-T2D individuals and suggests 
that circulating levels of several other cytokines and hor-
mones that have previously been reported in relation to 
T2D are not causal. While the effect of IL-1RA was par-
tially mediated through BMI, the effect of GIP was not, 
suggesting that circulating GIP levels could be explored 
further as a potential biomarker for the development of 
insulin resistance. Given the few GWAS on circulating 
cytokines and hormones in general and among sub-Saha-
ran African populations in particular, such studies are 
needed to expand and further validate these findings in 
sub-Saharan African and other populations.
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