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Abstract 

Background Type 2 diabetes (T2D) is a heterogeneous and polygenic disease. Previous studies have leveraged 
the highly polygenic and pleiotropic nature of T2D variants to partition the heterogeneity of T2D, in order to strat‑
ify patient risk and gain mechanistic insight. We expanded on these approaches by performing colocalization 
across GWAS traits while assessing the causality and directionality of genetic associations.

Methods We applied colocalization between T2D and 20 related metabolic traits, across 243 loci, to obtain infer‑
ences of shared casual variants. Network‑based unsupervised hierarchical clustering was performed on variant‑trait 
associations. Partitioned polygenic risk scores (PRSs) were generated for each cluster using T2D summary statistics 
and validated in 21,742 individuals with T2D from 3 cohorts. Inferences of directionality and causality were obtained 
by applying Mendelian randomization Steiger’s Z‑test and further validated in a pediatric cohort without diabetes 
(aged 9–12 years old, n = 3866).

Results We identified 146 T2D loci that colocalized with at least one metabolic trait locus. T2D variants within these 
loci were grouped into 5 clusters. The clusters corresponded to the following pathways: obesity, lipodystrophic 
insulin resistance, liver and lipid metabolism, hepatic glucose metabolism, and beta‑cell dysfunction. We observed 
heterogeneity in associations between PRSs and metabolic measures across clusters. For instance, the lipodystrophic 
insulin resistance (Beta − 0.08 SD, 95% CI [− 0.10–0.07], p = 6.50 ×  10−32) and beta‑cell dysfunction (Beta − 0.10 SD, 
95% CI [− 0.12, − 0.08], p = 1.46 ×  10−47) PRSs were associated to lower BMI. Mendelian randomization Steiger analysis 
indicated that increased T2D risk in these pathways was causally associated to lower BMI. However, the obesity PRS 
was conversely associated with increased BMI (Beta 0.08 SD, 95% CI 0.06–0.10, p = 8.0 ×  10−33). Analyses within a pedi‑
atric cohort supported this finding. Additionally, the lipodystrophic insulin resistance PRS was associated with a higher 
odds of chronic kidney disease (OR 1.29, 95% CI 1.02–1.62, p = 0.03).

Conclusions We successfully partitioned T2D genetic variants into phenotypic pathways using a colocalization 
first approach. Partitioned PRSs were associated to unique metabolic and clinical outcomes indicating successful 
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partitioning of disease heterogeneity. Our work expands on previous approaches by providing stronger inferences 
of shared causal variants, causality, and directionality of GWAS variant‑trait associations.

Keywords Polygenic risk score, Type 2 diabetes, Colocalization, Clustering, Personalized medicine

Background
Type 2 diabetes (T2D) is a common heterogeneous dis-
ease, affecting over 400 million individuals worldwide. 
The underlying complexity of T2D goes beyond the sim-
ple measure of blood glucose used for diagnosis. The 
regulation of glucose metabolism has many diverse com-
ponents, contributing to this heterogeneity [1] observed 
in the clinical presentation of the disease. It is of inter-
est to gain a deeper understanding of the heterogeneity 
of T2D to potentially improve patient care through the 
development of targeted treatments and improving diag-
nosis [2, 3]. Genetic variants identified via genome-wide 
association studies (GWAS), in the form of polygenic 
risk scores (PRSs), can serve to disentangle this hetero-
geneity and can provide valuable tools for risk prediction. 
Currently, GWAS have identified hundreds of genetic 
variants associated with T2D risk. These variants map to 
different genes and have been annotated to multiple dis-
tinct pathways linked to T2D [4]. A promising avenue to 
gain biological insights from GWAS signals is to leverage 
the highly pleiotropic nature of genetic variants associ-
ated with T2D and a plethora of other traits [5]. Pleiot-
ropy is the property of genetic variants affecting multiple 
traits and is now recognized to be widespread across the 
genome [5, 6]. Variants that display similar associations 
with intermediary phenotypes can be annotated to the 
same pathway. This approach was first used to establish 
the polygenic effect of common variants acting through 
the lipodystrophic insulin resistance pathway [7, 8]. 
Recent studies using this approach identified five to six 
clusters representing biological pathways of T2D that 
associated with specific clinical measures and outcomes 
in individuals with T2D [4, 9–11]. However, such anno-
tation of variants to pathways and T2D clusters is not 
free of limitations. Investigating whether two or more 
GWAS share the same causal variant is a complex under-
taking [12]. The existence of linkage disequilibrium (LD) 
between potential causal and non-causal marker variants 
introduces a challenge, as even if a variant exhibits a sig-
nificant association with multiple GWAS, distinct causal 
variants might underlie these associations. This problem 
is further exacerbated by the high polygenicity of com-
plex traits, as unraveled by the increasingly larger sample 
sizes of GWAS [13]. Moreover, in order to infer evidence 
regarding potential shared causal variants among two or 
more GWAS, a formal test of a null hypothesis must be 
undertaken. Even if it can be established that two traits 

are influenced by a common causal variant, determining 
the directionality of the association introduces an addi-
tional hurdle. This is due to the ambiguity surrounding 
whether one trait acts as a mediator for the other, or if 
the causal variant independently affects them both. Past 
endeavors fell short in addressing these intricacies while 
evaluating the pleiotropic impacts of T2D variant. In 
this study, we sought to build on previous approaches 
in establishing whether T2D genetic variants can be 
grouped according to their shared pleiotropic associa-
tions. To achieve this, we employed colocalization anal-
ysis as a foundational step, enabling us to derive more 
robust inferences regarding pleiotropic associations. 
Additionally, network analysis was carried out to iden-
tify clusters of genetic variants that exhibit shared plei-
otropic associations. To evaluate whether these clusters 
represent biological pathways underlying T2D risk, we 
constructed partitioned [9, 11, 14] polygenic risk scores 
(PRSs) using T2D genetic risk variants for each cluster. 
PRSs were tested against relevant measures of metabo-
lism and clinical outcomes in 21,742 individuals with 
T2D across three cohorts (UK biobank, the Rotterdam 
Study and the DiaGene Study). To assess the directional-
ity and causality of the generated clusters, we performed 
directionality tests and Mendelian randomization. Lastly, 
we validated these findings in a pediatric cohort aged 
9–12 years old (n = 3866) in relation to glycemic traits in 
children without diabetes.

Methods
Study populations
The UK Biobank
The study design and methods of the UK Biobank (UKB) 
have been reported previously [15]. Shortly, the UKB is 
a prospective cohort study within the United Kingdom 
(UK), recruiting approximately 500,000 individuals aged 
between 40 and 69, across multiple sites throughout 
the UK. For the current study, only T2D cases of Euro-
pean descent were included (n = 17,741). UKB data was 
accessed using application number 67864. Study descrip-
tions can be found in Additional file 1: Table S1.

The DiaGene Study
DiaGene is a case–control study of T2D conducted in 
Eindhoven, the Netherlands, between 2006 and 2011 
[16]. The study consists of 1886 T2D individuals and 854 
non-T2D controls. T2D cases were recruited from both 



Page 3 of 15Ghatan et al. Genome Medicine           (2024) 16:10  

primary and secondary care. For the current study, only 
T2D cases of European descent were included (n = 1760). 
Study descriptives can be found in Additional file  1: 
Table S1 and measurement details in the Additional file 2.

The Rotterdam Study
The Rotterdam Study is a population-based cohort 
study that started in 1990, comprising about 14,926 par-
ticipants aged 55 years or over, with the aim of studying 
chronic diseases in the general population [17]. The Rot-
terdam Study comprises one original cohort (RS-I, initi-
ated in 1990, 7983 participants aged 55  years and over) 
and two other cohorts (RS-II, starting from 2000, 3011 
participants aged 55  years and over; and RS-III, start-
ing from 2006, 3,932 aged 45  years and over). We used 
all available diabetes data collected between 1997 and 
2015 for this study. For the current study, only T2D cases 
of European descent were included (n = 2214). Study 
descriptives can be found in Additional file  1: Table  S1 
and measurement details in the Additional file 2.

The Generation R Study
The Generation R Study is a multi-ethnic prospective 
cohort study in which 9778 pregnant women living in 
Rotterdam and with delivery date from April 2002 until 
January 2006 were enrolled. Study design and data collec-
tion details can be found elsewhere [18]. Genotype and 
imputation of this cohort are described elsewhere [19]. In 
total, 3866 children aged between 9 and 12 years old of 
European descent and with genotype, BMI and fat per-
centage data were included in the study. Study descrip-
tives can be found in Additional file  1: Table  S1 and 
measurement details in the Additional file 2.

Diabetes definition
Within the UKB T2D was defined as individuals who 
self-reported having T2D at study recruitment. Addition-
ally, individuals who received an International Statistical 
Classification of Diseases and Related Health Problems 
(ICD) version 10 code (E11-E14, defined as “non-insu-
lin-dependent diabetes mellitus”) before the recruit-
ment date were included. ICD-10 codes were obtained 
via electronic health records. Individuals with a type 
1 diabetes ICD-10 code (E10) were excluded from the 
analysis. Within the DiaGene Study, information on T2D 
diagnosis was obtained through patient medical records. 
In accordance with the American Diabetes Association 
and World Health Organization guidelines, diabetes was 
defined as fasting plasma glucose ≥ 7.0 mmol/L and/or a 
non-fasting plasma glucose level ≥ 11.1  mmol/L meas-
ured at least at two different time points, treatment with 
oral glucose-lowering medication or insulin, and/or a 
diagnosis of T2D as registered by a medical specialist. 

Individuals diagnosed with type 1 diabetes (as derived 
from medical records and patient-questionnaires) or 
other types of diabetes mellitus were excluded from the 
study. Within the RS T2D status was ascertained through 
active follow-up using general practitioners’ records, glu-
cose in hospital discharge letters, and glucose measure-
ments from the Rotterdam Study visits. T2D was defined 
as fasting blood glucose > 7.0  mmol/L, or the use of 
blood-glucose-lowering medication. Information regard-
ing the use of glucose-lowering medication was derived 
from both structured home interviews and linkage to 
pharmacy records.

Genotyping
Genotyping within the UKB was conducted using a cus-
tom UK Biobank Axiom genotype panel. Genotypes were 
imputed using a combination of the 1000G phase 3 and 
UK10K reference panels, as previously reported [15]. 
Within the DiaGene Study, participants were genotyped 
using the GSA array and imputed haplotype reference 
consortium (HRC) r1.1 reference panel [20]. Within the 
Rotterdam Study, RS1 and RS2 were genotyped using the 
Illuminia HumanHap 550  k genotyping array and RS3 
was genotyped using a combination of Illuminia Human-
Hap 550 k and 610 k. All three RS cohorts were imputed 
using the HRC r1.1 reference panel. Within the Genera-
tion R Study, genotyping was performed using Illumina 
Human 610 k, 660W, and GSA V2 arrays. Genotype data 
were imputed to 1000G phase 3 v5 [21].

GWAS data
T2D GWAS summary statistics and conditionally inde-
pendent lead variants were obtained from Mahajan et al. 
(without the adjustment for BMI and excluding UKB 
samples) [4]. T2D summary statistics can be obtained 
from DIAGRAM consortium website (https:// diagr am- 
conso rtium. org/ downl oads. html). Metabolic trait GWAS 
for colocalization were selected based on the following 
criteria: whether the trait (i) is an established clinical risk 
factor for T2D [22], (ii) is known to be involved in T2D 
pathophysiology [23], and (iii) has a significant genetic 
correlation with T2D [4, 24]. GWAS summary statistics 
with larger sample sizes and/or newer imputation refer-
ence panels were prioritized. Other considerations made 
when selecting traits were favoring those with more well-
established pathophysiological mechanisms to T2D over 
those with ambiguous or bi-directional relationships to 
ensure robust associations [25]. Twenty metabolic traits 
were selected. These included alanine aminotransferase 
(ALT), gamma-glutamyl transferase (GGT) [26], high-
density lipoprotein (HDL) cholesterol, triglycerides, 
low-density lipoprotein (LDL) cholesterol [27], visceral 
adipose tissue [28], arm fat ratio, leg fat ratio, trunk fat 

https://diagram-consortium.org/downloads.html
https://diagram-consortium.org/downloads.html
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ratio [29], waist-to-hip ratio, body mass index [30], pro-
insulin levels [31], HOMA-IR [32], insulin sensitivity 
index [33], leptin (adjusted for BMI) [34], adiponectin 
[35],  HbA1C, fasting glucose, fasting insulin, and 2-h 
glucose tolerance test values [36]. In sensitivity analysis 
oral glucose tolerance test (OGTT) [37] was also tested 
for colocalization with T2D (see Additional file  3). The 
HOMA-IR indicates the extent of insulin resistance, i.e., 
when target tissues do not respond sensitively to insu-
lin and cannot easily take up glucose from the blood; a 
HOMA-IR of greater than 1.0 means that an individual 
is more insulin resistant, which is associated with diabe-
tes. All clinical outcomes in adult cohorts were standard-
ized to have a mean zero and standard deviation of one. 
A detailed table containing the characteristics of the 
metabolic trait GWAS used in this study can be found in 
Additional file 1: Table S2.

Statistical methods
Colocalization
Colocalization is a statistical approach for assessing 
whether pairs of traits share a putative causal variant in 
the same region of the genome [12]. Briefly, the method 
adopts a Bayesian approach to enumerate over all var-
iant-level hypotheses and assess the support for each 
using Bayes factors calculated from SNP effect estimates 
and standard errors. These variant-level hypotheses 
correspond to the following global hypotheses: H0: no 
association to either trait in the region; H1: association 
to only trait 1; H2: association to only trait 2; H3: asso-
ciations to both traits, yet, with different causal variants; 
and H4: associations to both traits and causal variants are 
the shared. Summing the log Bayes factor for each global 
hypothesis and combining with prior probabilities allows 
for the calculation of posterior probabilities. In this 
description, each region is assumed to contain only one 
causal variant. However, this has been expanded to allow 
multiple causal variants by first determining putatively 
causal variants within a region using Bayesian stepwise 
regression [38].  Mahajan reported 243 loci containing 
SNPs at genome-wide significance (5 ×  10−8), containing 
403 conditionally independent lead variants (identified 
via GCTA approximate conditional analysis), associated 
with T2D [4]. A 1Mbp (500  kb on either side) region 
around the lead SNP in each locus was then defined. For 
a detailed explanation of the colocalization workflow see 
Additional file 2. Summary statistics were extracted from 
these regions across all metabolic trait GWAS. If a par-
ticular defined region contained just one T2D condition-
ally independent SNP, the probability of colocalization 
was tested using Hyprcoloc across all traits simultane-
ously [39]. A genomic region across traits was deemed 
to have significant evidence of colocalization when the 

overall posterior probability  (PRPA) > 0.60 [39] and a var-
iant-trait association p-value of < 1 ×  10−5. Hyprcoloc was 
not able to investigate multiple causal variants in a locus; 
therefore, T2D regions containing multiple causal vari-
ants were investigated further using the Sum of Single 
Effects (SuSiE) coloc framework [38, 40]. Regions with 
 PR > 0.8 but without significant evidence of colocaliza-
tion  (PRPA) < 0.60 were investigated using SuSiE. Utilizing 
Hyprcoloc as a first stage of analysis and for prioritizing 
regions for SuSiE reduced the number of pairwise test 
by 3473, compared to if SuSiE alone was used. Variants 
were deemed to have colocalized if the posterior prob-
ability of hypothesis 4 (H4) > 0.6, where H4 relates to the 
hypothesis that the same variant is associated with both 
trait 1 and trait 2. In some situations, SuSiE was unable 
to identify any credible sets for a particular genomic 
region in which case COLOC [12] was applied under the 
single causal variant assumption. In the event of signifi-
cant colocalization between T2D and a metabolic trait, 
the T2D lead casual variant within the colocalized cred-
ible set defined by SuSiE was extracted from the meta-
bolic trait GWAS summary statistics. SNPs were then 
aligned to the effect-increasing allele. Palindromic SNPs 
with ambiguous allele frequencies (0.40 < minor allele fre-
quency < 0.60) were removed and replaced with proxies 
with high LD (r2 > 0.8).

Network clustering
Network-based hierarchical clustering was performed to 
identify homogenous groups of variants in the observed 
pleiotropic associations. This approach has two advan-
tages over soft clustering approaches. It allows the use 
of sparse matrices and avoids the problem of defining an 
arbitrary cluster assignment cut-off value [41]. A sparse 
matrix of colocalized SNP-trait associations (Z-scores) 
was constructed using variant-trait associations. Only 
variant-trait associations with a p-value less than 5 ×  10−8 
(for GWAS sample size greater than 60,000) and 1 ×  10−5 
(for GWAS sample size less than 60,000) were kept. A 
value of 0 was assigned to the remaining variant-trait 
associations that showed no statistically significant evi-
dence of colocalization. This correlation matrix was 
then used to create a network map of the relationships 
between variants. In order to reduce noise when cluster-
ing, network edges with low correlations were removed 
as described hereafter. An appropriate correlation cut-
off was determined by finding the highest cut-off point 
at which all vertexes still had at least one edge between 
them; indicating the network was still connected. A rea-
sonable assumption considering that all variants within 
the network colocalized with at least one other trait and 
the traits are highly correlated. The correlation cut-off 
was determined to be 0.47 at which point all vertexes 
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still had at least one edge. Network were constructed and 
clustered using the igraph package in R [42].

Gene Ontology (GO) annotations
We concentrated on GO biological process terms from 
the GO database [43]. Variants were mapped to their 
closest protein-coding genes. Next, these gene sets were 
tested for enrichment using the g:GOst enrichment test 
from the g:Profiler R package [44]. All protein-coding 
genes were used as a background set for the enrichment 
tests.

Polygenic risk scores
The overall T2D PRS consisted of all T2D variants that 
colocalized with at least one trait and clustered into one 
of 10 clusters (143 SNPs). Five clusters contained three 
genetic variants or less and were excluded from the main 
results (see Additional file  3). PRSs were generated for 
the remaining five clusters (135 SNPs). These five par-
titioned PRSs corresponded to the following clusters: 
beta-cell dysfunction (28 SNPs), hepatic glucose metab-
olism (6 SNPs), lipodystrophic insulin resistance (52 
SNPs), liver and lipid metabolism (9 SNPs), and obesity 
(40 SNPs). The SNP effect sizes used to construct PRSs 
for the Rotterdam Study, DiaGene, and Generation R 
Study cohorts, were obtained from the T2D BMI-unad-
justed summary statistics published by Mahajan et al. [4]. 
In the UKB cohort, SNP effect sizes were obtained from 
meta-analysis results not containing the UK biobank 
cohort and unadjusted by BMI. Both summary statis-
tics are available for download on the Diagram website 
(https:// diagr am- conso rtium. org/). PRSs for each cluster 
of variants were calculated by multiplying the genotype 
dosage of each risk allele for each variant by its respec-
tive effect in the meta-analysis, summing across all 
variants for each participant. For the Rotterdam Study, 
DiaGene and Generation R cohorts PRSs were calculated 
from variant dosages. For the UKB cohort, PRSice2 was 
used to calculate the PRS [45]. All scores were standard-
ized (scaled and centered) using the mean and standard 
deviation of all scores. Palindromic SNPs were removed 
and replaced with proxies. PRSs were tested using a lin-
ear regression (controlling for age, sex, BMI, and cohort, 
or age, sex, and cohort in the case of BMI as the out-
come) for continuous metabolic outcomes and logis-
tic regression for binary clinical outcomes. To test the 
potential effect of medication on metabolic levels, sen-
sitivity analysis was conducted in which lipid-lowering 
and anti-diabetic medication were included as covariates 
in the regression models (Additional file 2). The signifi-
cance level was corrected for the number of PRSs tested 
using the Bonferroni multiple testing correction. In the 

three adult cohorts, this amounted to 0.05/6 = 0.008 and 
for the pediatric cohort 0.05/3 = 0.017.

Mendelian randomization
Two-sample Mendelian randomization (MR) was per-
formed for each exposure and outcome pair using inverse 
variance weighted (IVW) regression. The significance 
level was corrected for multiple testing (0.05/6 = 0.008). 
MR analysis was conducted via the R package TwoSam-
pleMR [46]. Extended documentation on the package can 
be found at: https:// mrcieu. github. io/ TwoSa mpleMR/ 
artic les/ intro ducti on. html; https:// mrcieu. github. io/ 
TwoSa mpleMR/. MR Egger regression was used to detect 
violations of the instrumental variable assumptions, most 
notably, assumption 2 mentioned above. Egger regres-
sion can provide an effect estimate which is not subject 
to the violations of the instrumental variable assumptions 
[47]. To infer the direction of causal associations between 
the genetic variants (g) and exposure(x) and outcome 
(y) MR Steiger’s Z-test was performed [48]. Inference of 
directionality can be achieved by testing the difference in 
absolute correlation between the g-x and g-y. The Steiger 
test presupposes that the two variables have a causal link 
and that the SNP is a viable instrument for at least one of 
them [48]. Rsq were generated for each SNP and trait via 
linear regression within the UKB.

Results
Evidence of colocalization at 146 loci T2D loci
In order to gain inferences of shared genetic variants 
across traits, we performed colocalization between T2D 
and 20 selected metabolic trait loci (Additional file  1: 
Table  S2). Across 243 loci containing T2D genetic risk 
variants associated at a genome-wide significance level, 
we identified 146 loci that colocalized with at least one 
of the 20 selected metabolic trait loci (posterior probabil-
ity of hypothesis 4 (PP.H4) > 0.6 and GWAS p < 1 ×  10−5) 
(Additional file  1: Table  S3 and Table  S4). BMI and tri-
glycerides colocalized across the most T2D regions with 
49 regions each (Fig. 1A), followed by alanine transami-
nase (ALT) (40 regions), high-density lipoprotein (HDL) 
cholesterol (39 regions), and fasting glucose (38 regions). 
We observed evidence of a high degree of pleiotropy 
across most sites, with 67% of regions (98/146) colocal-
izing across more than one other trait. The ANKRD55 
(5:55308475–56308475) locus was the most pleiotropic, 
colocalizing across 13 metabolic traits. Colocalized traits 
at this locus included lipids (triglycerides, HDL choles-
terol), glycemic measures (fasting insulin, fasting glu-
cose), adiposity measures (waist-to-hip ratio, visceral 
adipose tissue, trunk fat ratio, leg fat ratio, arm fat ratio), 
and liver enzymes (gamma-glutamyl transferase (GGT), 
ALT). At the PDGFC locus, colocalization was observed 

https://diagram-consortium.org/
https://mrcieu.github.io/TwoSampleMR/articles/introduction.html
https://mrcieu.github.io/TwoSampleMR/articles/introduction.html
https://mrcieu.github.io/TwoSampleMR/
https://mrcieu.github.io/TwoSampleMR/
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with HDL cholesterol, triglycerides, waist-to-hip ratio, 
and fasting insulin (Fig. 1B). The presence of these traits 
collectively indicates a potential association with lipodys-
trophic insulin resistance.

Identifying biologically meaningful clusters 
from pleiotropic associations
To gain insight into the shared biology between 
T2D genetic risk variants, we extracted variant-trait 

associations from the summary statistics of traits at colo-
calized loci. Network-based clustering was performed on 
a matrix of variant-trait associations (Fig. 1C) to identify 
groups of T2D genetic risk variants with similar effects 
across intermediary traits. A network of 1761 edges and 
143 nodes was constructed. Next, hierarchical clustering 
was performed using a spinglass algorithm to detect clus-
ters within the network. In an unsupervised approach, 
the algorithm determines the optimal number of clusters 

Fig. 1 Genome‑wide multi‑trait colocalization analysis of T2D and 20 related traits. A Summary of the number of regions across the genome 
in which T2D colocalizes with at least one related trait. Traits are labelled by overarching phenotype family, e.g., lipids. B A stacked locus plot 
with an example of the colocalized genetic variant (4:157683685) across T2D, high‑density lipoprotein (HDL) cholesterol, triglycerides, waist‑to‑hip 
ratio (WHR), and fasting insulin at the PDGFC locus. C Network analysis of T2D genetic variants. Variants were clustered according to their pleiotropic 
associations with related traits plotted into the network, with nodes representing SNPs and the edges the correlations between SNPs based on trait 
Z‑scores. SNPs that shared similar associations with metabolic traits clustered together. Five clusters were identified relating to insulin resistance, 
beta‑cell deficiency, obesity, hepatic glucose metabolism, and liver and lipid metabolism. List of abbreviations: body mass index (BMI), alanine 
transaminase (ALT), high‑density lipoprotein (HDL), waist‑to‑hip ratio (WHR), visceral adipose tissue, gamma‑glutamyl Transferase (GGT), arm fat 
ratio, hemoglobin  A1C, leg fat ratio, trunk fat ratio, 2‑h glucose tolerance test (2hGlu), low‑density lipoprotein (LDL), Homeostatic Model Assessment 
for Insulin Resistance (HOMA‑IR)
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(k). K = 10 was determined to be optimal, with a modu-
larity score of 0.66. However, 5 clusters contained fewer 
than 4 variants making pathway interpretation diffi-
cult and thus were removed (see Additional file 3). This 
left 135 out of 143 SNPs that grouped into 5 clusters 
(Fig.  1C). The variant-trait associations of each com-
munity were assessed using heatmaps (Additional file 1: 
Table  S5 and S6) to discern the key underlying pheno-
types driving the grouping of variants. In addition, infor-
mation about the known biology of the closest genes to 
variants was also used. The clusters corresponded to the 
following pathways: (1) obesity, (2) lipodystrophic-like 
insulin resistance, (3) liver enzymes and lipid metabo-
lism, (4) hepatic glucose metabolism, and (5) beta-cell 
dysfunction. The obesity cluster contained 40 genetic 
variants and was defined by positive effects on exclusively 
BMI, visceral adipose tissue, and arm fat ratio (Addi-
tional file  1: Table  S6). These variants mapped to well-
established obesity-related genes and loci, such as POC5, 
MC4R, TMEM18, and the FTO locus [49–51]. The lipo-
dystrophic-like insulin resistance cluster consisted of 
52 genetic variants. This cluster was defined by positive 
effects on fasting insulin levels, waist-to-hip ratio, and 
triglycerides; yet, there were negative effects on BMI, 
fat ratio phenotypes, adiponectin, and HDL cholesterol 
(Additional file 1: Table S6). Variants within this cluster 
mapped to genes with known effects on insulin resist-
ance, including IGF2, INSR, KLF14 [52], and PPARG  in 
adipose tissue [7, 53]. Enriched GO biological processes 
included phosphatidylinositol 3-kinase signaling, glucose 
homeostasis, and cellular response to peptide hormone 
stimulus. The liver and lipid metabolism cluster included 
9 genetic variants and was defined by unique associations 
with three key traits: increased ALT, decreased triglycer-
ides, and decreased low-density lipoprotein (LDL) cho-
lesterol levels (Additional file  1: Table  S6). In addition, 
variants within this cluster mapped to known risk genes 
influencing liver and lipid metabolism, including GCKR, 
PNPLA3, TM6SF2, and APOE [54–57]. Enriched GO 
pathways included lipid homeostasis, triglyceride homeo-
stasis, and acylglycerol homeostasis. The hepatic glucose 
metabolism cluster contained 6 variants and was defined 
by positive associations with gamma-glutamyl trans-
ferase (GGT) (Additional file 1: Table S6). These variants 

mapped to genes related to hepatic glucose metabolism. 
HNF1A regulates the expression of SLC2A2 (or GLUT2) 
in the liver [58]. NDUFS4 and NDUFAF6 encode nuclear-
encoded accessory subunits of the mitochondrial mem-
brane respiratory chain NADH dehydrogenase (complex 
I). The inhibitory effect of the metformin drug on the 
mitochondrial respiratory chain Complex I is one of the 
leading molecular mechanisms of the drug mechanism 
of action [59]. The beta-cell deficiency cluster featured 
28 genetic variants and was defined by positive effects on 
exclusively glucose-related traits, including fasting glu-
cose,  HbA1C, 2-h glucose tolerance tests, and proinsulin 
levels (Additional file  1: Table  S6). Variants within this 
cluster mapped to T2D risk genes influence insulin secre-
tion, including TCF7L2, SLC30A8, MTNR1B, ADCY5, 
and CAMKD1 [60–64]. GO pathways include the regula-
tion of insulin secretion and glucose homeostasis.

Pathway polygenic risk scores were associated 
with anticipated metabolic measures
PRSs were constructed using T2D genetic risk variants 
for each cluster and tested against relevant metabolic 
measures for 21,742 individuals with T2D across three 
cohorts (Additional file  1: Table  S7). PRSs were tested 
for associations with BMI,  HbA1C, Homeostatic Model 
Assessment for Insulin Resistance (HOMA-IR), triglyc-
erides, HDL cholesterol, alanine transaminase (ALT), 
and gamma-glutamyl transferase (GGT). Principally, we 
observed that individuals with a high genetic burden of 
a particular T2D risk pathway have distinct clinical char-
acteristics expected for that pathway (Fig.  2A–G, Addi-
tional file 1: Table S8). For instance, a high genetic burden 
for lipodystrophic insulin resistance (Beta 0.04 SD, 95% 
CI 0.02–0.06, p = 2.82 ×  10−07) or beta-cell dysfunction 
(Beta 0.05 SD, 95% CI 0.03–0.07, p = 2.32 ×  10−12) was 
associated with high  HbA1C possibly reflecting worse 
glycemic control in individuals with T2D (Fig.  2A). 
However, variants within the lipodystrophic-like insulin 
resistance cluster were associated with high HOMA-IR 
(Beta 0.07 SD, 95% CI 0.01–0.13, p = 8.12 ×  10−03) and 
beta-cell deficiency cluster to low HOMA-IR (Beta − 0.06 
SD, 95% CI [− 0.12, − 0.01], p = 2.85 ×  10−02) (Fig.  2B), 
whereas a high-obesity pathway genetic burden did 
not present significant differences in  HbA1C levels but 

(See figure on next page.)
Fig. 2 Forest plots of the associations of pathway PRSs with metabolic measures in individuals with type 2 diabetes from three cohorts. A  HbA1C 
(n = 18,517). B BMI (n = 21,281). C HOMA‑IR (Homeostatic Model Assessment for Insulin Resistance) (n = 2241). D HDL cholesterol (n = 19,370). E 
Triglycerides (n = 20,797). F Alanine transaminase (n = 19,134). G gamma‑glutamyl transferase (n = 16,900). H Chronic kidney disease (n = 19,171). I 
Cardiovascular disease (n = 20,504). Linear regression was conducted for continuous outcomes (A,C,D,E,F,G) and logistic regression for binary (H,I) 
controlling for age, sex, BMI, and cohort, besides BMI (B) which was controlled for sex and cohort. See Additional file 1: Table S8 for the numbers 
underlying this figure
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Fig. 2 (See legend on previous page.)
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displayed higher BMI (Beta 0.08 SD, 95% CI 0.06–0.10, 
p = 8.0 ×  10−33) (Fig. 2B). Furthermore, individuals with a 
high genetic risk in the lipodystrophic insulin resistance 
pathway were strongly associated with adverse metabolic 
features of increased triglycerides and decreased HDL 
cholesterol and BMI (Fig. 2C–E). Finally, individuals with 
T2D and a high liver and lipid metabolism PRSs consist-
ently had increased BMI and ALT (Fig. 2F), whereas the 
individuals with the highest hepatic glucose metabolism 
cluster PRS mostly had higher GGT and triglycerides. For 
comparison, a PRS was constructed from all T2D genetic 
risk variants before colocalization (401 SNPs). Pathways 
often displayed distinct associations with those observed 
for the overall T2D genetic risk. Interestingly, in some 
instances the overall T2D risk effect on a trait was nul-
lified, in some instances, due to opposing effects across 
different genetic pathways, as is the case with triglycer-
ides. Associations between PRSs and metabolic measures 
remained significant after adjusting for glucose and/or 
lipid-lowering medications (Additional file  1: Table  S9). 
Comparing individuals in the 90th to 10th percentile of 
PRSs resulted in similar associations across the entire 
PRS distribution but with larger effect sizes (Additional 
file 1: Table S10).

Determining the directionality and causality 
between adiposity and T2D
Given the observed heterogeneity in effect estimates, we 
assessed whether a causal relationship exists in the asso-
ciation between T2D risk pathways scores and BMI. We 
assessed the evidence for causality using two approaches. 
First, we compared the correlation between variant effect 
sizes for T2D and BMI. Correlated proportional increases 
between the effect sizes of both traits would suggest evi-
dence for a causal association. We extracted T2D genetic 
risk variants mapping to the obesity, beta-cell deficiency, 
and insulin resistance pathways from BMI summary 
statistics. Primarily, we noticed that T2D genetic risk 
variants mapping to the obesity pathway had consist-
ent, correlated effects with BMI (Fig.  3A). We observed 
a dose–response relationship between the effects (Pear-
son r = 0.86). However, T2D genetic risk variants map-
ping to the insulin resistance and beta-cell pathways 
overall did not have correlated effects (Fig. 3B, C). Next, 
we assessed causality using an MR Steiger approach to 
obtain a causal effect estimate for each T2D risk path-
way and BMI while also assessing the directionality of the 
association. In summary, we observed a significant causal 
effect between increased T2D risk and increased BMI for 
genetic variants within the obesity pathway (IVW Beta 
0.55, 95% CI 0.45–66, p = 8.01 ×  10−44). Egger regres-
sion displayed a consistent causal estimate (Egger Beta 
0.79, 95% CI 0.39–1.19, p = 3.12 ×  10−05) independent 

of horizontal pleiotropy. Variants with the obesity path-
way explained more variance of BMI (r2 = 0.02) than 
T2D (r2 = 0.001). Steiger Z-test indicated that the causal 
direction of the association was in the expected direc-
tion with BMI affecting T2D risk (Z-test, p < 1 ×  10−200) 
(Fig. 3D). Evidence for a negative effect between T2D and 
BMI was observed for both beta-cell (IVW Beta − 0.04, 
95% CI − 0.06: − 0.01, p = 2.06 ×  10−02) and insulin resist-
ance pathways (IVW Beta − 0.05, 95% CI − 0.09: − 0.01, 
p = 1.52 ×  10−02), with no evidence of horizontal plei-
otropy (Fig.  3D) (Additional file  1: Table  S11 and S12). 
However, the results of the Steiger Z-tests suggested 
a reverse causal relationship, indicating that T2D may 
influence BMI, contrary to our initial expectation of BMI 
affecting T2D risk (Fig. 3D) (Additional file 1: Table S11 
and S12). We observed stronger evidence for a causal 
effect of visceral adiposity on T2D using genetic vari-
ants within the obesity pathway (IVW Beta 0.53, 95% 
CI 0.45–0.60, p = 1.89 ×  10−71, Egger: Beta 0.69, 95% 
CI 0.40–98, p = 6.81 ×  10−07) than that of BMI, indicat-
ing that increased visceral adiposity is driving T2D risk 
within this pathway.

Children with a high‑obesity‑mediated T2D risk have 
increased adiposity
To further assess directionality, evidence of causality, 
and the magnitude of effect at different life stages, we 
tested whether the obesity, lipodystrophic insulin resist-
ance, and beta-cell pathway PRSs were associated with 
BMI and fat mass percentage in children aged between 
9 and 12 years old. PRSs were generated in 3866 children 
from the Generation R (GenR) Study. Children with a 
high genetic burden of the obesity pathway had increased 
BMI (Beta 0.55 SDS, 95% CI 0.35–0.77, p = 4.3 ×  10−10) 
and had increased fat mass percentage (Beta 0.03, 95% CI 
0.02–0.04, p = 3.9 ×  10−07) in comparison to those with a 
low genetic burden. However, we observed no significant 
association with BMI, or fat mass percent for the lipod-
ystrophic insulin resistance and beta-cell pathway PRSs 
(Additional file 1: Table S13).

The association of polygenic risk scores to clinical 
outcomes
Lastly, to assess whether partitioned PRSs were associ-
ated to hard clinical outcomes, we tested their associa-
tion to chronic kidney disease (CKD) and cardiovascular 
disease (CVD). Across the three cohorts, 2559 individu-
als were diagnosed with CKD and 6357 with CVD.

The lipid and liver metabolism PRS was significantly 
associated with lower odds of CVD (OR 0.64, 95% CI 
0.46–0.88, p = 0.002). The lipodystrophic insulin resist-
ance PRS was significantly associated with higher odds 
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of CKD (OR 1.29, 95% CI 1.02–1.62, p = 0.03). No other 
PRSs were significantly associated to CVD or CKD, 
including the unpartitioned overall PRS (Fig.  2G, I, 
Additional file 1: Table S14). Results remained consist-
ent after adjustment for lipid-lowering and anti-dia-
betic medication (Additional file 1: Table S15).

Discussion
In this study, we assessed the genetic overlap between 
T2D and 20 intermediary metabolic traits. Our analyses 
inferred evidence of colocalization across 146 out of 243 
T2D loci. We identified five clusters representing T2D 
pathways, corresponding to beta-cell deficiency, lipodys-
trophic-like insulin resistance, obesity-mediated, hepatic 

Fig. 3 We assessed the causal association between BMI and T2D by comparing the effect sizes of genetic variants mapping to insulin resistance, 
beta‑cell deficiency, and obesity pathway. Regression lines represent causal estimates from Mendelian randomization (MR) methods inverse 
variance weighted (IVW) regression and Egger regression. Lines represent one standard error. A The effect of genetic variants within the obesity 
pathway with BMI as exposure and T2D as outcome. B The effect of variants within the IR (insulin resistance) pathway with T2D as exposure and BMI 
as outcome. C The effect of variants within the beta‑cell deficiency pathway with T2D as exposure and BMI as outcome. D Bar plots depicting 
r‑squared of genetic variants on both BMI and T2D with the resulting Steiger Z‑test p‑values
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glucose metabolism, and liver and lipid metabolism. 
Our findings are consistent with previous studies, high-
lighting the effectiveness of colocalization in generating 
meaningful clusters and providing a reliable assessment 
of pleiotropy [4, 9–11]. We observed distinct degrees 
of heterogeneity in the effect estimates with metabolic 
measures across the different T2D pathways, as well as, 
clinical outcomes such as CVD and CKD. The observed 
heterogeneity in effects across PRSs and metabolic meas-
ures demonstrates the efficacy of partitioning of genetic 
variants to effectively categorize individuals with distinct 
clinical characteristics that likely contribute to their type 
2 diabetes and distinct clinical complications. Identifying 
these phenotypically diverse sub-groups of T2D became 
possible only after stratifying the overall T2D PRS. This 
highlights the potential pitfalls in applying unstratified 
PRSs for preventative strategies within heterogeneous 
diseases [65]. Our study distinguishes itself from previ-
ous research by utilizing colocalization to obtain infer-
ences of shared causal variants across GWAS before 
clustering variants. Moreover, we expanded upon earlier 
methodologies by assessing the causality and directional-
ity of specific clusters.

We compared our clusters to those generated by Kim 
et  al. [10] and observed broadly similar associations to 
metabolic measurements (Additional file  3). In relation 
to clinical outcomes the lipodystrophic PRS was associ-
ated to an increased in the odds of CKD in our cluster 
but not in the Kim et al. lipodystrophic cluster. In sum-
mary, the colocalization first approach is a more stringent 
approach, which boasts the additional advantage: the 
capability to infer shared causal variants across GWAS. 
However, the approach of Kim et  al. is more computa-
tionally trackable with a larger number of GWAS and 
produces similar associations.

An interesting finding was the heterogeneity in the 
associations between PRSs and BMI. We observed asso-
ciations between PRSs and lower BMI for the lipodys-
trophy, beta-cell, and overall clusters. It is essential to 
consider that the negative associations with BMI are 
relative to other individuals with diabetes in our study 
cohort. Consequently, the observed negative association 
between T2D PRS and BMI could be explained by the 
fact that individuals with a higher genetic predisposition 
to T2D may have a lower proportion of their T2D risk 
attributed to environmental factors, such as increased 
BMI.

Despite this causality and directionality analyses also 
revealed that individuals with a high genetic risk for 
type 2 diabetes (T2D) within the lipodystrophic insu-
lin resistance or beta-cell pathway were paradoxically 
associated with lower body mass index (BMI). We vali-
dated these causal inferences by applying the PRSs to a 

pediatric cohort with the reasoning that in these indi-
viduals the variants had not yet incremented the risk of 
T2D, because T2D typically becomes overt in adulthood. 
If our causal inferences held, we expected to observe 
increased adiposity for those children with a high-obesity 
pathway genetic risk, since adiposity directionally effects 
T2D. On the other hand, for the lipodystrophic insu-
lin resistance and beta-cell pathways, we did not expect 
to observe any differences in BMI, as T2D risk variants 
have not exerted any effect at such an earlier life stage. 
Indeed, this is exactly what we observe. These observa-
tions are consistent with the hypothesis that BMI causally 
influences T2D risk through the obesity pathway but not 
the beta-cell and insulin resistance pathways. This find-
ing is supported by the similar power and effect sizes of 
the PRSs in the adult cohort populations with regard to 
BMI (F-statistics: 49–55). We demonstrated the potential 
of utilizing pediatric cohorts for determining the direc-
tion of genetic effects across different traits. The connec-
tion between increased T2D risk and lower BMI might 
be influenced by worse glycemic control, as evidenced 
by the PRSs that shows the most robust association with 
both lower BMI and higher  HbA1C. Possible explanations 
for this weight loss in relation to worse glycemic control 
could be other disease complications, such as glycosuria 
[66] or muscle wasting [67].

From these findings, we hypothesize that individuals 
with high genetic risk in the lipodystrophic insulin resist-
ance and beta-cell pathways may not experience signifi-
cant benefits from weight loss interventions due to their 
already lower BMI compared to other individuals with 
diabetes. Although weight gain, in these leaner individu-
als at higher risk of T2D, may still exacerbate the dysfunc-
tional glycemic pathway, treatments focusing on glycemic 
control rather than weight loss-specific interventions 
may be more beneficial for individuals with high genetic 
risk in these pathways. Additionally, the relationship 
between decreased BMI in these sub-groups provides 
support for the lean diabetes phenomena often observed 
in certain ethnic groups [68]. Nevertheless, clinical tri-
als will be necessary to see if weight loss may still have 
a certain extent of insulin sensitizing effect which could 
improve glycemia or not.

Curiously, genetic variants associated with T2D com-
prised by the obesity pathway conferred a relatively 
“healthy” metabolic profile, as they lack significant asso-
ciations with other metabolic traits such as  HbA1C, lipid 
levels and liver function markers, or HOMA-IR and show 
no association to higher odds of CVD or CKD. Therefore, 
these individuals could be considered as “metabolically 
healthy obese” as previously characterized [69]. However, 
they do not precisely correspond to the conventional 
notion of “metabolically healthy obese” individuals, as 
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they are associated with an elevated risk of T2D and 
therefore cannot be considered “healthy.” It seems that 
these variants are connected to increased risks for both 
T2D and obesity, operating independently of traditional 
metabolic pathways. Exploring the functions of the vari-
ants within this pathway could provide insights into the 
mechanism by which these individuals remain relatively 
healthier.

Clusters containing a small number of variants present 
a challenge since they do not contain enough trait associ-
ations to make inferences of the pathway they are acting 
on. To address this, we excluded clusters containing three 
or less variants from our main analysis. To avoid selection 
bias, we tested these cluster in the same manner as in the 
main results. We observed distinct heterogeneity in three 
of the clusters. However, these clusters contained only 
one variant; consequently, interpretation of the pathway 
for these clusters was not possible. PRSs of the remain-
ing two clusters showed no evidence of an association to 
metabolic measures. Clustering can also be impacted by 
the intermediary GWAS traits selected. In this specific 
instance, the selected traits were more heavily weighted 
toward characteristics associated with insulin resist-
ance. Thus, the cluster containing the largest number 
of genetic variants was the lipodystrophic cluster. We 
conducted sensitivity analysis to assess how clustering 
changed when an insulin secretion phenotype, oral glu-
cose tolerance test (OGTT) of low sample size (n = 5318) 
was included (see Additional file 3). We observe that the 
addition of OGTT can affected the clustering of variants. 
However, the resolution for distinguishing other clusters 
was diminished as a consequence of including a GWAS 
with so few variants associated.

It is important to highlight that in certain aspects, the 
PRS generated using all 401 genetic variants demon-
strated superior performance compared to the stratified 
PRSs. The overall PRS exhibited a stronger association 
with HbA1C compared to any other PRS. However, the 
use of the stratified PRS allows the elucidation of the 
underlying mechanisms of associations, which is lack-
ing in the unstratified PRS. For instance, the beta-cell or 
insulin resistance PRSs revealed links to low and high 
HOMA-IR levels, respectively. This suggests that higher 
HbA1C levels are influenced by both insufficient insulin 
production and insulin resistance. These findings sug-
gest that while a comprehensive score might yield a more 
potent prediction of HbA1C levels, the partitioned scores 
provide nuanced etiological insights that the comprehen-
sive PRS score may not fully encapsulate.

Our study is not free of limitations. First, not all 
clinical variables were available for all the participants 
across all cohorts. Notably, HOMA-IR measures were 
only available for one of the cohorts limiting our power 

to detect associations in related to this parameter. Sec-
ond, our inferences of genetic overlap are based solely 
on loci with detectable variants (p < 1 ×  −  10−5). Third, 
although only GWAS summary statistics of European 
ancestry were used in our study, they still have a range 
of sample sizes and underlying differences in genetic 
architectures, reducing the probability of observing 
colocalization. Fourth, previous studies have noted that 
obtaining LD information from a population different 
from that used to conduct the GWAS can influence 
fine-mapping. This can influence the variants identi-
fied in credible sets and thus the multi causal variant 
colocalization results [70]. Fifth, our results can also 
be biased by the metabolic trait GWAS we selected to 
test for colocalization. We also opted to use a hard clus-
tering method over a soft one, which does not allow a 
variant to belong to more than one cluster. Therefore, 
we may obviate the impact of variants that act on mul-
tiple pathways. Additionally, our decision to use a hard 
clustering approach led to a high number of unassigned 
variants (n = 8). The inability to assign certain variants 
to any specific cluster may lead to less robust PRSs, 
which could influence the overall performance of our 
method. Lastly, while we adjusted for medication use in 
a sensitivity analysis, glycemic phenotyping of partici-
pants with established T2D can be subject to artifacts 
introduced by pharmacological treatment. We were 
able to identify a vast number of pleiotropic loci acting 
across multiple traits. Despite this, we could not find 
colocalization at 97/243 T2D loci (40%) across any of 
the 20 metabolic traits tested. This highlights the utility 
of applying a statistical framework to test the genetic 
overlap of GWAS signals, considering that we observed 
no evidence of colocalization across many regions. 
Attempting to gain inferences from these non-overlap-
ping genetic variants can introduce false positives and 
erroneous associations. Further, it suggests that many 
T2D loci are driven by non-common metabolic traits; 
or, that colocalization methodologies are too conserva-
tive; or, that many metabolic GWAS are still under-
powered. A hypothesis-free and large-scale approach 
to testing traits would provide more insights into the 
biology of each locus; however, at the expense of phe-
notypic interpretability of the pathways [71]. Further 
still, a more progressive approach would be to integrate 
additional intermediary phenotypes across multiple 
molecular layers, such as mQTLs, pQTLs, and eQTLs 
to provide more comprehensive biological information 
[72]. GWAS sample sizes will continue to grow mak-
ing pleiotropic inferences more common across most 
loci, consequently reducing the biological interpret-
ability at such loci. Our findings may have implications 
for individuals with uncontrolled T2D. We might better 
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characterize these persons with T2D to tailor specific 
treatments. We hypothesize that individuals with T2D 
and a high-obesity cluster PRS might benefit best from 
weight loss and medical treatments with concomitant 
weight loss, such as glucagon-like peptide-1 (GLP-1) 
receptor agonists or sodium-glucose co-transporter 2 
(SGLT2) inhibitors; and those with a high PRS for beta-
cell dysfunction may display insulin deficiency and may 
initially try sulfonylureas derivates or need insulin ther-
apy already early on. While most individuals’ risk will 
be driven by moderate genetic burden across multiple 
pathways, those with high risk in a particular pathway 
could be targeted for more specific treatments. Here 
we should acknowledge the caveat that people with 
the same static polygenic score for a certain T2D sub-
type might find themselves in different metabolic states 
depending on age, stage in disease progression, envi-
ronmental factors, treatment history, etc. This could 
be evaluated in a randomized control trial in which tai-
lored treatments are applied to individuals in the high-
est risk of a particular partitioned PRS.

Conclusions
In summary, we successfully applied colocalization and 
network clustering analyses to the heterogeneous and 
polygenic complex disease of T2D. Using a colocalization 
first approach allowed us to infer shared causal variants 
across multiple GWAS. Partitioned PRSs were associated 
to unique metabolic and clinical outcomes indicating 
successful partitioning of heterogeneity. Directionality 
and causality analyses allowed us to infer evidence of an 
association between T2D risk on lower BMI for lipod-
ystrophic insulin resistance and beta-cell dysfunction 
pathways. Our work expands on previous approaches 
by providing stronger inferences of pleiotropy, causality, 
and directionality of GWAS variant-trait associations. 
We infer biologically meaningful interpretations of pleio-
tropic genomic loci and demonstrate the potential of par-
titioned PRSs for personalized medicine.
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