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Abstract 

Background Genotypes are strongly associated with disease phenotypes, particularly in brain disorders. How-
ever, the molecular and cellular mechanisms behind this association remain elusive. With emerging multimodal 
data for these mechanisms, machine learning methods can be applied for phenotype prediction at different scales, 
but due to the black-box nature of machine learning, integrating these modalities and interpreting biological mecha-
nisms can be challenging. Additionally, the partial availability of these multimodal data presents a challenge in devel-
oping these predictive models.

Method To address these challenges, we developed DeepGAMI, an interpretable neural network model to improve 
genotype–phenotype prediction from multimodal data. DeepGAMI leverages functional genomic information, such 
as eQTLs and gene regulation, to guide neural network connections. Additionally, it includes an auxiliary learning 
layer for cross-modal imputation allowing the imputation of latent features of missing modalities and thus predict-
ing phenotypes from a single modality. Finally, DeepGAMI uses integrated gradient to prioritize multimodal features 
for various phenotypes.

Results We applied DeepGAMI to several multimodal datasets including genotype and bulk and cell-type gene 
expression data in brain diseases, and gene expression and electrophysiology data of mouse neuronal cells. Using 
cross-validation and independent validation, DeepGAMI outperformed existing methods for classifying disease types, 
and cellular and clinical phenotypes, even using single modalities (e.g., AUC score of 0.79 for Schizophrenia and 0.73 
for cognitive impairment in Alzheimer’s disease).

Conclusion We demonstrated that DeepGAMI improves phenotype prediction and prioritizes phenotypic features 
and networks in multiple multimodal datasets in complex brains and brain diseases. Also, it prioritized disease-associ-
ated variants, genes, and regulatory networks linked to different phenotypes, providing novel insights into the inter-
pretation of gene regulatory mechanisms. DeepGAMI is open-source and available for general use.
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Background
The genotype–phenotype association has been found in 
many biological systems, such as brain-related diseases 
and behavioral traits. This association is very impor-
tant as it will help us understand underlying cellular and 
molecular mechanisms like genes and pathways that 
causally affect the phenotypes [1, 2]. Many genome-wide 
association studies (GWAS) determine the association 
of genetic variants with many heritable diseases [3, 4], 
including neurodegenerative and psychiatric diseases like 
Alzheimer’s disease (AD) [5–8] and schizophrenia (SCZ) 
[9, 10]. Despite the ground-breaking findings from these 
GWAS studies, they have some limitations. Firstly, asso-
ciation studies do not imply causation and require further 
downstream analysis and validations. Secondly, GWAS 
studies are independent studies that try to find the rela-
tionship between variants and disease individually and 
ignore the combined effect. Finally, the SNPs having 
small effect sizes go undetected as they do not meet the 
threshold criteria of the existing studies [11]. There have 
been several computational attempts outside the GWAS 
studies to discover genotype–phenotype association. 
Most of these attempts involve regression [12, 13]. Poly-
genic Risk Scores (PRS) [14] is the widely used method 
that looks at the linear combined effect of several variants 
on the phenotype. Modern machine learning techniques 
have been applied to predict the functionality of these 
phenotypes. For example, Zhang et al. [15] grouped sev-
eral SNPs based on LD structure and used it as an input 
to the CNN model to predict AD progression. However, 
predicting phenotypes from genotypes remains challeng-
ing, primarily due to complex underlying molecular and 
cellular mechanisms. These methods perform genotype-
to-phenotype prediction without considering various 
underlying intermediate phenotypes and mechanisms 
like gene expression and epigenome regulation.

For a mechanistic understanding from genotype to 
phenotype, several studies have shown that these vari-
ants influence disease risks by altering cell-type regula-
tory elements that affect the underlying gene expressions, 
which in-turn affect the disease phenotype [16, 17]. This 
resulted in studying the effects of genotypes on gene 
expression. Expression quantitative trait loci (eQTL) 
studies focus on associating genetic variants to gene 
expression instead of disease phenotypes [18–23]. They 
have proved to be a critical step in investigating gene reg-
ulation and have identified numerous eQTLs modulat-
ing the expression of disease genes. Transcriptome-wide 
association studies (TWAS) aim at identifying gene-trait 
interaction by combining GWAS and gene expression. 
The effect of genetic variation on gene expression is first 
studied, and then these expression profiles are statisti-
cally associated with the traits [24–31]. PrediXcan [32] is 

another approach imputing gene expression from eQTLs 
and mapping trait-associated loci based on the imputed 
gene expression data. A possible drawback in such asso-
ciation studies is that co-expressed gene patterns often 
lead to prioritizing non-causal genes [33].

It is also necessary to analyze genes and other regula-
tory elements that impact disease phenotypes. Several 
methods have attempted to associate genes with disease 
risks using gene expression profiles directly. For example, 
one study collected gene expression profiles from three 
publicly available AD datasets to predict the onset of AD 
disease using a variational autoencoder [34]. DeepWAS 
[35] predicted epigenomic functions of the genetic vari-
ants using DeepSEA [36] and then applied regression to 
predict the phenotype. A different approach is using gene 
regulatory networks (GRNs). GRNs represent a group of 
genes and various regulatory elements working together 
to control the expression of other genes and are cell-type 
specific. They facilitate understanding of various cell 
operations which allows better understanding of disease 
initiation and progression [37]. They have proven helpful 
in mapping molecular interactions [38, 39] and biomark-
ers for brain diseases [40–42]. However, a major draw-
back of these methods is that they consider each omics 
individually and thus miss the relationship between mul-
tiple omics.

As biological processes involve a complex interaction 
with multi-omics, emerging multimodal data enables 
studying such mechanisms at different scales. Several 
studies have attempted to integrate multi-omics data 
for brain disease predictions like SCZ [43–45] and AD 
[46–48]. Some studies have used known biological find-
ings (e.g., GRNs, eQTLs) to guide feature selection or 
integrate several omics for disease prediction. For exam-
ple, Wang et  al. [49] used a deep Boltzmann machine 
(DBM) with GRNs guiding the internal connections to 
improve predicting neuropsychiatric diseases. Varmole 
[50] integrated gene expression and genotype (SNPs) 
using a deep neural network architecture where GRN 
and eQTLs guide the relationship between the input and 
the first hidden layer. While most studies consider dis-
ease outcomes (case versus control) as the phenotypes, 
more complex phenotypes, e.g., neuropathological, and 
cognitive phenotypes for AD, remain understudied. Stud-
ying the genetic effects of those disease phenotypes has 
great potential to deeper understand underlying cellular, 
molecular, and pathological mechanisms. Also, GRNs 
and eQTLs provide functional genomic relationship 
information. Most existing machine learning methods 
use raw -omics data as inputs but cannot handle these 
relationship data. Recent advancements in graph learn-
ing have led to the use of graph neural networks (GNNs) 
for integrating multi-omics data and use relationships 
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like MOGONET [51] and moGCN [52]. The relation-
ship data is converted into graphs and given to GNNs as 
inputs. GNNs apply different neural network methods 
on the graphs to extract useful latent features which are 
then used for various supervised and unsupervised tasks. 
However, these methods mainly focus on similarity net-
works (like patient similarity networks) and are not suit-
able for functional genomic networks as these networks 
are directed, sometimes bipartite (e.g., eQTL networks) 
and relationship topology is complicated.

Another challenge for genotype–phenotype studies is 
multimodal data integration. Due to several factors (e.g., 
experimental costs, sample availability), multi-omics 
data will often be partially available for individuals [53], 
e.g., available genotypes versus limited gene expression, 
chromatin, or imaging data [54, 55]. Including partially 
available multimodal datasets in a predictive model will 
be challenging due to the lack of matched samples and 
missing modalities. This calls for cross-modal imputa-
tion. Cross-modal imputation involves estimating data 
modalities from available multiple modalities. This will 
help us infer missing modalities and aid in phenotype 
predictions. Several computational methods have been 
developed for cross-modal inference. MOFA [56] uses 
Bayesian approach for cross-modality estimation by 
projecting the modalities onto a low-dimensional space. 
BABEL [57] trains a joint autoencoder on paired mul-
timodal data to impute one modality from another by 
minimizing a reconstruction and cross-modality loss. 
scVAEIT [58] proposed a method for mosaic integration 
that uses a masking procedure to learn a joint representa-
tion of cells sequenced across technologies and the dis-
tribution of missing modalities. scJoint [59] integrates 
scRNA-seq and scATAC-seq data using cell-type label 
information from scRNA-seq through transfer learning 
and embedding the annotated cells in a lower-dimen-
sional space. There are no existing methods that perform 
cross-modal imputation alongside predicting disease 
phenotypes to the best of our knowledge.

Auxiliary learning is a type of learning technique aimed 
at improving the generalization of the primary task by 
learning secondary tasks along with the primary task 
[60–63]. The secondary task also called the auxiliary task 
is a subtask to be trained along with the primary task 
where the features are shared between the tasks result-
ing in additional relevant feature extraction useful for 
the primary task, and thus is usually defined in terms of 
estimating entities relevant to solving the primary task 
[64]. Implementing auxiliary learning involves adding 
supplementary cost functions to the primary cost of the 
neural network model [65]. Auxiliary learning has been 
very successful in reinforcement learning [60, 66, 67], 
computer vision [62, 68, 69], and autonomous driving 

assistance [70, 71]. Recently, it has been used in the bio-
medical domain with applications in screening skin can-
cer from microscopy images [72], and covid-19 detection 
from CT images [73]. Although auxiliary learning has 
not been applied for imputing multimodal data for gen-
otype–phenotype prediction, the closest approach is 
SCENA [74] which estimates the gene–gene correlation 
matrix using ensemble learning and auxiliary information 
for single-cell RNA-seq (scRNA-seq) data where the aux-
iliary information is used in the form of gene networks 
and other relevant RNA-seq data. Similarly, DeepDiff 
[75] predicts cell-type-specific differential gene expres-
sion from epigenetics by using cell-type gene expression 
predictions as auxiliary tasks.

In summary, genotype–phenotype predictions are 
very important in understanding molecular and cellular 
mechanisms, but existing genotype–phenotype meth-
ods have the following limitations: (I) Statistical methods 
such as Polygenic Risk Score (PRS) predict phenotypes 
directly from genotype. They are mostly linear models 
that cannot tackle genomic variants’ nonlinear effects 
and involve association studies that predict the correla-
tion between genotype and phenotype but cannot explain 
how the inherited mutations are associated with the phe-
notype [76, 77]. Moreover, these methods do not con-
sider intermediate phenotypes like molecular activities 
that significantly contribute to phenotypes; (II) Emerging 
multi-omics data at the population level enables machine 
learning which studies such mechanisms at different 
scales from genotype to phenotype. However, due to the 
black-box nature of many machine learning techniques, 
it is challenging to integrate these multiple modalities 
and interpret the biological mechanisms after predic-
tion, especially when some modality is missing; (III) 
Functional genomic relationships like GRNs and eQTLs 
guide us in understanding these molecular mechanisms. 
However, most existing machine learning methods, 
including GNNs, cannot handle this kind of relation-
ship data as they do not have a spatial relationship like 
graphs, and significant effort is required to convert them 
into a graph-like structure. (IV) Several methods focus 
on cross-modality estimation for single-cell multi-omics 
data (e.g., MOFA [56], MultiVI [78], Polarbear [79]) but 
not in the realm of disease types and clinical phenotypes.

To address these limitations, we propose DeepGAMI: 
Deep biologically guided auxiliary learning for multi-
modal integration and imputation to improve phenotype 
prediction. DeepGAMI is a novel deep learning model 
that enables cross-modal imputation, predicts clinical 
phenotypes, and prioritizes phenotypic tissue- or cell-
type functional genomics. Our contributions are three-
fold. Firstly, DeepGAMI provides a biologically guided 
neural network framework for genotype–phenotype 
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prediction using biology-guided dropconnect [80]. It 
integrates genotype and gene expression data guided 
by prior biological knowledge of QTLs and GRNs. Sec-
ondly, it introduces an auxiliary learning layer that per-
forms cross-modal estimation by learning relationships 
between modalities. This enables the model to take a 
single modality and use the estimated values of the other 
modality for disease prediction. Thirdly, DeepGAMI 
deciphers the black-box nature of the neural networks to 
prioritize genes and SNPs contributing to disease phe-
notypes. We applied DeepGAMI to multiple emerging 
multimodal datasets, including population-level geno-
type and bulk and cell-type gene expression data for SCZ 
cohort [49], genotype and gene expression data for AD 
cohort [55], and single-cell multimodal data comprising 
transcriptomics and electrophysiology for neurons in 
the mouse visual cortex [81]. We found that DeepGAMI 
outperforms existing methods in predicting phenotypes 
among these datasets and prioritizes genes, SNPs, and 
electrophysiological features showing biological inter-
pretability. DeepGAMI is open-source and available at 
https:// github. com/ daife ngwan glab/ DeepG AMI.

Methods and materials
DeepGAMI overview
DeepGAMI is a multi-view deep learning model that inte-
grates multimodal data for predicting phenotypes (Fig. 1, 
Methods and materials). Importantly, it uses auxiliary 
learning to learn the latent space of one modality from 
another, thereby enabling us to predict phenotypes from 
the available modalities by cross-modality imputation. We 
denote the primary task as f priθ (X1,X2) that takes available 
multimodal inputs X1 and X2 with parameters θ to predict 
phenotypes, e.g., X1 and X2 can be SNP genotypes and 
gene expression levels of individuals. The auxiliary task is 
denoted by f auxθ (X1,X2) to learn CX2(latent space of input 
X2 ) from CX1(latent space of input X1 ). Using the trained 
model with auxiliary task, DeepGAMI can predict the 
phenotypes of samples with a missing modality. Specifi-
cally, it first imputes other modal latent spaces using the 
auxiliary learning function and then feeds both imputed 
and input latent spaces into the primary task for pheno-
type prediction. DeepGAMI uses feed-forward neural 
networks as it incorporates biological knowledge in terms 
of directed functional relationship networks like GRNs 
and eQTLs which aid in deciphering the black box and 
help us prioritize genes, SNPs, and other biological fea-
tures for phenotypes. A list of all hyperparameters with its 
search space is available in Additional file 2: Table S1 and 
the total number of trainable parameters of DeepGAMI 
for each dataset is shown in Additional file 2: Table S2.

We compared the classification performance of Deep-
GAMI with three traditional classifiers: (1) Random For-
est classifier (RF), (2) Support Vector Machine SVM), 
(3) Fully connected neural network classifier (MLP), and 
four state-of-the-art methods: (4) Logistic Regression 
(LR) [12], (5) Lasso Regression (Lasso) [13], (6) Varmole 
[50], (7) Mogonet [51], on several multi-omics datasets. 
RF, NB, and MLP were trained on the concatenation of 
multi-omics data.

Model design
The DeepGAMI model consists of four main layers.

Input layer
The input layer consists of two data modalities, e.g., gene 
expression and SNP genotypes. Each row of the input 
matrix represents feature vector of a sample. For exam-
ple, the gene expression matrix contains gene expres-
sion profiles of K samples and n TFs and is represented 
by XGEX

∈ RK∗n . Similarly, the genotype matrix con-
sists of dosage information of K  samples and l SNPs, 
XSNP

∈ RK∗l.

Biological DropConnect layer
DropConnect is a regularization mechanism that sets 
random activation units to zero in each layer. It differs 
from dropout, which sets the random output units to 
zero while the former sets the connection weights to zero 
[80]. For our purpose, instead of randomly setting activa-
tions to zero, we guide the activations using prior biologi-
cal knowledge, as shown in Eqs. 1 and 2.

and

where CSNP
k and CGEX

k  represent intermediate layer with 
nodes for kth sample, XGEX

k and XSNP
k   are the kth column 

of XGEX and XSNP and represent gene expression and dos-
age data for kth sample, w1 and w2  are  weight matrices 
with dimension Rl*p and Rn*p respectively, b1 and b2 are 
the bias vectors of length p, and ⊙ is the Hadamard prod-
uct (element-wise multiplication). We do not encode self-
loops and inter-connections among the input features 
(TFs, SNPs, etc.). If there are multiple levels of connec-
tions (e.g., S1 → S2 → T1 ), we treat them as two separate 
connections ( S1 → S2 and S2 → T1 ). In such cases, the 
genes ( S2 from the above example) appear under both 
the input layer and the intermediate layer. The biological 
DropConnect is applied separately for genotype and gene 

(1)CSNP
k = σ XSNP

k w1 ⊙meQTL
+ b1

(2)CGEX
k = σ(XGEX

k

(
w2 ⊙mGRN

)
+ b2),

https://github.com/daifengwanglab/DeepGAMI
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expression. Masking filter ( m) encodes biological drop 
connections (Eqs. 3 and 4).

(3)m
eQTL

{i,j}
=

{
1 if SNP i is associated with gene j

0 othewise
where meQTL ∈  Rl*p and mGRN  ∈  Rn*p.  The underlying 
idea of this layer is to model the regulatory relationships 

(4)mGRN
{i,j}

=

{
1 if TF i regulates gene j

0 othewise
,

Fig. 1 Architecture of DeepGAMI. A DeepGAMI first uses available multimodal features for training the predictive model, e.g., SNP genotypes 
(orange) and gene expression (blue) of individuals from the major applications in this study. In particular, it learns the latent space of each modality 
(e.g., consisting of latent features at the first transparent hidden layer). This learning step is also regularized by prior knowledge enabling biological 
interpretability after prediction, i.e., the input and latent features are connected by biological networks (biological DropConnect). For instance, 
the input transcription factor genes can be connected to target genes as their latent features (e.g., CGEX) by a gene regulatory network (GRN). The 
input SNPs can be connected to associated genes as their latent features (e.g., CSNP) by Expression quantitative trait loci (eQTLs). Notably, an auxiliary 
learning layer is used to infer the latent space of one modality to another, i.e., cross-modality imputation. For instance, DeepGAMI learns a transfer 
function f(.) to estimate CGEX from CSNP. Finally, the latent features are concatenated and fed to the feed-forward neural networks for phenotype 
predictions, e.g., classifying disease vs. control individuals. B Using the learned predictive model from multimodal input along, DeepGAMI can 
predict phenotypes from a single modality, e.g., SNP genotypes of new individuals. Specifically, it first imputes other modal latent spaces using 
the optimal transfer function f*(.) and then feeds both imputed and input latent features into downstream neural network predictions, e.g., C*GEX 
from CSNP
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among genes such as TFs to genes and SNPs to genes. The 
input XGEX represents all TFs as features and the inter-
mediate layer nodes ( CGEX ) which represent genes  for 
all samples, are the output of the biological DropCon-
nect layer. The connections between these TFs and genes 
are established using GRNs ( mGRN ) . Similarly, the con-
nections between SNPs and genes are established using 
eQTLs ( meQTL ). The model is trained to learn the weights 
for these connections. This will help us prioritize impor-
tant features (SNPs, genes, enhancers, etc.) and impor-
tant interactions (SNP-gene and gene–gene) contributing 
to the phenotype. The output of this layer is referred to as 
the latent space of the input matrix.

Auxiliary learning layer
Each data modality from the input layer goes through the 
biological DropConnect layer producing a set of output 
nodes of equal dimension ( CGEX ,CSNP ). This layer aims 
to learn the latent space of one modality from the other. 
We consider a linear relationship between the two latent 
spaces, computed using Eq. 5.

where α and β are scalar units representing weight and 
bias. We then concatenate the two latent space vectors 
and send them to a feed-forward neural network. One 
can get an average signal of the latent space vectors, but 
we decide not to pursue it as each latent node can be acti-
vated from either both the inputs or only one input.

Feed‑forward classification layer
The concatenated gene layer is given to a fully connected 
feed-forward neural network with multiple hidden lay-
ers where each neuron in the hidden layers receives 
inputs from all previous layer outputs. ReLU activation 
is applied that forces negative weights to zero and han-
dles non-linearity. ReLU activation is defined as shown in 
Eq. 6.

The final hidden layer is given to a softmax function to 
predict the output classes from the input provided by Eq. 7.

where z represents the neuron values from the previous 
layer.

Training of DeepGAMI model
We split the input data into training (80%) and testing 
(20%) sets and performed fivefold cross-validation (CV) 

(5)CGEX⋆

= f
aux

θ

(
CSNP

)
= αCSNP

+ β ,

(6)ReLU(X) = max (0,X)

(7)softmax(zi) =
ezi∑
je
zj

on the training set for feature selection and identifying 
the optimal parameter combination. We then pick the 
best performing model based on the five-fold CV and 
evaluate the final performance on the test set. Training 
DeepGAMI model involves minimizing the overall loss 
function which is a combination of primary task (pheno-
type prediction) loss and secondary task (cross-modality 
estimation) loss. The loss function used for the primary 
task is the cross-entropy loss (Eq. 8) and mean squared 
error (MSE) loss is used for the secondary task (Eq. 9).

The overall objective loss function for the model is 
computed using Eq. 10.

where i represents the ith training sample, θ is a set of 
parameters. y and ŷ represents the ground truth and the 
predicted labels respectively.

Evaluation metrics
As traditional accuracy measure can be misleading on 
skewed datasets, we used balanced accuracy (BACC, 
Eq.  11) and area under the receiver operating charac-
teristic curve (AUC) to evaluate the performance of our 
model and other baseline comparison models.

where TP represents true positive, FP represents false 
positive, TN represents true negative, and FN is false 
negative. While the loss function includes both primary 
and auxiliary task losses, the performance of the model is 
based on BACC and AUC computed on the primary task.

Hyperparameter tuning for training DeepGAMI
DeepGAMI is trained using Adam Optimizer [82] with 
default parameters of β1 = 0.9 and β2 = 0.999 . The model 
runs for a maximum of 100 epochs with early stopping 
enabled to avoid overfitting. Tuning of several hyper-
parameters (like number of latent dimensions, number 

(8)
L
pri
(
y, ŷ

)
= L

(
f
pri
θ

(
XSNP ,XGEX

)
, y
)
= −

1

K

∑K

k=1
yk log(ŷk )

(9)L
aux

(
C
GEX

,C
SNP

)
=

1

K

∑K

k=1

(
C
GEX

k
− f

aux
θ

(
C
SNP

k

))2

(10)argmin
θ

(Lpri
+ �L

aux)

(11)BACC =
sensitivity+ specificity

2

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP
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of hidden layers in the feed forward network, dropout 
rate) is required as it has a huge impact on the predic-
tion performance. All hyperparameters with the search 
space implemented in DeepGAMI model are present in 
Additional file 2: Table S1. The optimal hyperparameter 
combination was selected using a grid search based on 
the fivefold CV results on the training set. DeepGAMI is 
coded in python using Pytorch [83] library.

Feature prioritization
Integrated gradient (IG) [84] is a widely used technique for 
feature prioritization, IG attributes the model’s prediction 
for its input features by computing gradients for each input 
and measures the change in the output response based on 
the small changes in the input using Eq.  12. IG is imple-
mented using Captum [85] package in python.

where i is the ith feature, x and x′ are input and baseline, 
and ∂F(x)

∂xi
 is the gradient of F(x) along the ith feature.

IG provides feature importance scores where a higher 
score indicates higher importance of the feature. We first 
applied IG on the trained model (model with the best 
performance on the training set with the optimal hyper-
parameter setting) for generating feature importance 
scores for the input nodes (SNPs, TFs) and latent space 
nodes (genes) for the test samples. This will help us iden-
tify important SNPs and TFs attributed to the pheno-
type’s outcomes. We then applied IG on the same model 
to extract link importance scores for the test samples. 
The link importance score gives us the importance score 
for the links between the input and the intermediate layer 
(Biological DropConnect layer). This will provide poten-
tial clues in understanding the underlying relationships 
(SNPs to genes and TFs to genes) for the given pheno-
type. Using this link importance score, we can fine-tune 
prioritized regulatory networks for phenotypes.

Enrichment analysis
From the prioritized functional links between SNPs 
and TFs to genes, we extract the genes having the most 
important links (top 10% of the link importance scores). 
We then perform enrichment analysis on these genes 
using Metascape [86]. The enrichments with binomial 
FDR p-value < 0.05 were reported in the prioritized genes.

Multimodal datasets and processing
Data preprocessing
The datasets vary between different cohort as they are 
extracted in different platforms using different proto-
cols. We use the same preprocessing pipeline to process 

(12)IGi(x) =
(
xi − x′i

)∫ 1

α=0

∂F
(
x′ + α

(
x − x′

))

∂xi
∂α

these inputs to the deep learning model and to reduce 
the effect of curse of dimensionality. We first use Stu-
dent’s t test (for binary phenotypes) and ANOVA (for 
multi-class phenotypes) for feature selection on the 
training set. As our intermediate layer consists of genes, 
we filter and keep the common genes between the two 
biological networks (e.g., GRNs, eQTLs). We only keep 
selected features (SNPs, TFs) present in these two net-
works. Next, we applied StandardScaler() function from 
scikit-learn [87] for the two modalities separately which 
scales the data such that they have zero mean and unit 
variance. StandardScaler() is computed using the follow-
ing equation:

where x is the input, µ is the mean, and σ is the standard 
deviation. We also provide the users an option to choose 
the standardization of their choice (currently DeepGAMI 
supports minmax, log, and standard normalization).

Schizophrenia
We used the population-level bulk RNA-seq and geno-
type data for the human dorsolateral prefrontal cor-
tex (DLPFC) from PsychENCODE [49] for predicting 
SCZ versus healthy individuals. RNA-seq data consists 
of normalized gene expression of 14,906 genes for 1818 
individuals. We extracted 146,763 eQTLs from GTEx 
consortium [88] for the human brain frontal cortex 
(BA9), and used GRNs from the PsychENCODE con-
sortium. We first use Student’s t test for feature selection 
(keep significant SNPs and genes). We do not consider 
LD structure of the SNPs. We then include SNPs and 
genes which are present in eQTLs and GRN. Based on 
this pipeline (see Input Data Preprocessing), we ended 
up with 2080 SNPs, 126 TFs, and 84 intermediate layer 
genes as features.

We also tested DeepGAMI on the genotype and cell-
type specific gene expression data from the Common-
Mind Consortium imputed using bMIND [89] and a 
reference panel of 4 cell populations: GABAergic (i.e., 
inhibitory) neurons, glutamatergic (i.e., excitatory) neu-
rons, oligodendrocytes, and a remaining group com-
posed mainly of microglia and astrocytes. The reference 
panel for each cell population was constructed by taking 
the mean log2 counts per million for each gene across 32 
brain donors [90]. With the prior information from this 
reference panel, bMIND adopts a Bayesian approach to 
impute the cell-type-specific expression of each gene in 
each bulk sample from gene expression assayed from 
brain homogenate. We used cell-type-specific eQTLs [23] 
and applied scGRNom [91] to predict cell-type GRNs.

(13)z =
(x − µ)

σ
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Alzheimer’s disease
We used the bulk RNA-seq data in DLPFC and genotype 
data from the ROSMAP cohort [55] for our analysis in 
Alzheimer’s disease. We used preprocessed bulk RNA-
seq data (quantile normalized and batch effect removed) 
which contains the FPKM gene expression values.

For genotype data, we extracted SNP array (gener-
ated using Affymetrix GeneChip 6.0) dosage informa-
tion for 1709 individuals. We extracted 146,763 eQTLs 
from GTEx consortium [88] for the human brain frontal 
cortex (BA9), and used GRNs from the PsychENCODE 
consortium [49]. Clinical phenotypes include cogni-
tive diagnosis (COGDX) score ranging between 0 and 
6, CERAD score (semi-quantitative measurement of the 
neuritic plaques useful for determining AD) ranged 0–4, 
and BRAAK score (semi-quantitative measurement for 
neurofibrillary tangle pathology) containing six stages. 
We coded the BRAAK phenotype into two classes (early-
stage AD which contains BRAAK stages of 0–3 and late-
stage AD containing BRAAK stages of 4–6), CERAD 
scores into three classes (No AD with scores 3–4, AD 
probable with score 2, and AD definite with score 0–1), 
and COGDX into three categories (No cognitive impair-
ment (CI) with scores 0–1, mild CI with scores 2–3, and 
CI(AD/Dementia) with scores 4–6) using the coding 
available in ROSMAP. We used analysis of variance test 
(ANOVA) to filter out SNPs and genes with high vari-
ance except for BRAAK, where we used a t-test instead. 
We then intersected the SNPs and genes with eQTLs 
and GRN. We ended up with 229 early-stage AD indi-
viduals and 275 late-stage AD individuals for the BRAAK 
score phenotype. For the COGDX phenotype, we had 
no CI (n = 166), mild CI (n = 130), and CI (AD/Demen-
tia, n = 208) individuals. Finally, for the CERAD pheno-
type, we ended up with no AD (n = 184), AD probable 
(n = 171), and AD definite (n = 149) individuals.

Mouse visual cortex
Patch-seq dataset includes transcriptomics and elec-
trophysiological (ephys) data for 4435 neuronal cells in 
mouse visual cortex [81]. We used the cell cortical layers 
(cell location in the visual cortex) as the cellular pheno-
type: L1, L2/3, L4, L5, L6. We followed the data extrac-
tion and preprocessing in DeepManReg [92] and ended 
up with 41 ephys features and 1000 genes for 3654 cells. 
We also used 112 layer4 (L4) neuronal cells Patch-seq 
data for independent testing [93]. For this application, 
the inputs contain the gene expression data XGEX

∈ RK∗n 
of n genes and K samples, and the electrophysiological 
features Xephys

∈ RK∗l of K  samples and l electrophysi-
ological features. The model is trained to optimize the 

parameters based on the modified loss functions from 
Eqs. 8 and 9, and the updated loss function is shown in 
Eqs. 14 and 15.

The overall objective loss function for the model is 
computed using Eq. 16.

Results
Classification of schizophrenia individuals from genotype 
and bulk gene expression data
We first evaluated the performance of DeepGAMI using 
population-level genotype and bulk-tissue gene expres-
sion data of schizophrenia individuals in the dorsolateral 
prefrontal cortex (DLPFC). We utilized PsychENCODE 
consortium [49] data for predicting schizophrenia (SCZ) 
versus healthy individuals. PsychENCODE contains 1866 
individuals from several cohorts with different neuropsy-
chiatric diseases. After filtering for schizophrenia and 
control samples with multimodal data, we ended up with 
1168 samples from three cohorts: CommonMind (CMC, 
565 samples), Lieber Institute for Brain Development 
(LIBD, 511 samples), and BrainGVEX (92 samples). We 
used the CMC cohort consisting of 343 control and 275 
SCZ individuals for tuning and training the model. The 
CMC data was first split into train and held-out test sets 
with a ratio of 90:10. We then performed filtering, pre-
processing, and feature selection (Methods and mate-
rials) on the training samples and ended up with 7433 
SNPs, 208 transcription factors (TFs), and 2870 interme-
diate layer genes.

We performed fivefold cross-validation for select-
ing the optimal hyper parameters. Figure  2A shows the 
fivefold cross-validation balanced accuracies of Deep-
GAMI using both genotype and gene expression as 
inputs (Dual) and only genotype as input (Single) in 
comparison to other state-of-the-art classifiers along 
with DeepGAMI with no biological priors. DeepGAMI 
dual ( BACC = 0.867± 0.016 ) and DeepGAMI single 
( BACC = 0.845± 0.042 ) achieved the highest perfor-
mance in comparison with other methods. DeepGAMI 
with no biological prior ( BACC = 0.835± 0.031 for dual 
modalities and BACC = 0.796± 0.024 for single modal-
ity) was the closest in performance.

(14)
L
pri
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)
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After selecting the optimal hyperparameters 
through fivefold cross-validation, we built a model 
using these settings on the training samples and 
evaluated its performance on the held-out test sam-
ples within the same CMC cohort. DeepGAMI 
( BACCDUAL = 0.796 and BACCSINGLE = 0.759 ) outperformed 
other state-of-the-art methods ( BACCVarmole = 0.7296 , 
BACCMOGONET = 0.593 , BACCLASSO = 0.537 , and 
BACCLR = 0.5556 , Additional file  1: Fig S1A). To fur-
ther test the generalizability of DeepGAMI, we used 
combined SCZ samples from LIBD and BrainGVEX 
cohorts for independent validation. These cohorts con-
tained 257 SCZ samples and 377 control samples. We 
trained our model on the CommonMind cohort and 
evaluated the performance on the LIBD and BrainG-
VEX samples. DeepGAMI was able to classify with 
BACCDUAL = 0.625 and BACCSINGLE = 0.623 out-
performing other models: Varmole ( BACC = 0.602 ), 
Mogonet ( BACC = 0.518 ), MLP ( BACC = 0.545 ), LR 
( BACC = 0.519 ), and Lasso ( BACC = 0.547 ) as shown 
in Additional file  1: Fig S1A. ROC curves of various 
models on held-out test samples and independent SCZ 
samples are shown in Fig.  2B and C respectively, where 
DeepGAMI has the best performance. Additionally, we 

evaluated the performance of DeepGAMI on 47 bipo-
lar disorder (BPD) samples from the CMC cohort where 
we trained DeepGAMI on SCZ samples and tested on 
BPD samples. As we had only BPD samples, sensitiv-
ity measure was used as the performance metric. We 
found that DeepGAMI ( SENSITIVTYDUAL = 0.6596 and 
SENSITIVTY SINGLE = 0.5957 ) performed better than 
Varmole ( SENSITIVTYVarmole = 0.4681 ) and MOGO-
NET ( SENSITIVTYMOGONET = 0.4255 ) as shown in 
Additional file 1: Fig S1B. This demonstrates the applica-
tion of DeepGAMI for cross-disorder prediction.

We then used integrated gradient approach (Methods 
and materials) to prioritize SNPs, genes, and functional 
links on the held-out SCZ samples. Figure 2D shows a few 
examples of these DeepGAMI’s prioritized SNPs, genes, 
and links. Our model was able to prioritize SCZ-related 
genes like CBS [94, 95], THEM6 [96], and CD6 [97, 98] 
among others shown as pink circles in Fig. 2D. CBS (cys-
tathionine beta-synthase) gene plays a significant role 
in reducing the level of homocysteine which is etiologi-
cally linked to SCZ. However, mutations in CBS leads to 
glia/astrocyte dysfunction which is associated with SCZ 
pathogenesis [94]. THEM6 gene has shown associa-
tion with SCZ individual. Similarly, CD6 gene is related 

Fig. 2 Schizophrenia classification and functional genomic prioritization using genotype and bulk-tissue gene expression data. The population 
data was from the PsychENCODE project (Methods and materials). A Balanced accuracies from 5-fold cross-validation and B receiver operating 
characteristic (ROC) curves of DeepGAMI dual-modality model (dark blue), DeepGAMI single modality model (orange), Lasso (brown), LR (light 
blue), Random Forest (yellow), SVM (purple), Multilayer perceptron (MLP, pink), Varmole (red), and MOGONET (green) for classifying schizophrenia vs. 
control individuals on the held-out test samples. C ROC curves of various methods on cross-cohort SCZ prediction. D Select examples of prioritized 
transcription factors, SNPs, target genes (latent features, and functional links (GRNs, eQTLs) for schizophrenia. Purple: known schizophrenia genes. E 
Function and pathway enrichments of prioritized schizophrenia SNPs
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to immune system which in turn is associated with SCZ 
[97]. A complete list of prioritized SNPs and genes with 
the importance score is available in Additional files 3 and 
4. We then used the prioritized functional links to extract 
the genes present in these links (213 genes, top-ranked 
10% of the link importance scores). We performed enrich-
ment analysis on these 213 genes with 3064 genes (total 
number of input features) as background using Metas-
cape. We found several known functions and pathways 
related to SCZ, like signaling by FGFR3 [99, 100], negative 
regulation of MAPK pathway [101, 102], and senescence-
associated secretory phenotype [103] (Fig. 2E).

Clinical phenotype prediction and gene regulatory 
network prioritization in Alzheimer’s disease
To demonstrate the application of DeepGAMI for pre-
dicting complex clinical phenotypes, we ran DeepGAMI 
on Alzheimer’s disease (AD) cohort, ROSMAP [55], 

which contains multi-omics data from the brain DLPFC 
region. We used its bulk-tissue gene expression and geno-
type data for this analysis (Methods and materials). As the 
cohort contains data from the DLPFC brain region, we 
extracted the eQTL information from the GTEx consor-
tium [88] from the same brain region (human brain fron-
tal cortex, BA9), which contains 146,763 eQTL SNPs, and 
used the GRN from the PsychENCODE consortium [49]. 
Clinical phenotypes included in our analysis are cognitive 
diagnosis (COGDX), CERAD, and BRAAK scores (Meth-
ods and materials). Additional file 2: Table S3 summarizes 
the number of features and class labels for this analysis.

We split the data into training and held-out test sets 
using an 80:20 ratio. We used a fivefold CV on the train-
ing set for tuning the hyperparameters and obtaining 
the best performance. DeepGAMI outperforms state-
of-the-art classifiers ( BACC = 0.806 for BRAAK, 0.689 
for COGDX, and 0681 for CERAD, Fig.  3A, Additional 

Fig. 3 Multi-class clinical phenotype prediction and regulatory network prioritization in Alzheimer’s disease. A Fivefold cross-validation performance 
of DeepGAMI (Dual modality: dark blue, Single modality: orange) on three different phenotypes: neuritic plaque measure (CERAD score, multi-class), 
cognitive impairment (COGDX score, multi-class) and neurofibrillary tangle pathology (BRAAK stage, binary) in comparison with Lasso (brown), LR 
(light blue), Random Forest (yellow), SVM (purple), MLP (pink), and MOGONET (green). B ROC curves of held-out test samples for cognitive COGDX 
phenotype (blue) and late BRAAK stage (green). C Classification accuracies of the independent dataset for COGDX phenotype and BRAAK stage. 
D Enrichment analysis of prioritized genes for no cognitive impairment, mild cognitive impairment, and cognitive impairment (AD/Dementia) 
classes of COGDX phenotype. E Select an example of a prioritized regulatory network for the cognitive impairment phenotype. The edge thickness 
between any two nodes corresponds to the prioritized link importance score of the associated nodes. The edge color represents the three classes
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file  2: Table  S4). For BRAAK phenotype, DeepGAMI 
( BACC = 0.806± 0.03 for dual, BACC = 0.79± 0.02 
for single) outperforms random guess (BACC = 0.50), 
Random Forest classifier(BACC = 0.538± 0.01 ), SVM 
( BACC = 0.5808± 0.13 ), MLP ( BACC = 0.742± 0.02 ), LR 
( BACC = 0.594 ± 0.018 ), Lasso ( BACC = 0.647± 0.057 ), 
and MOGONET ( BACC = 0.678± 0.025 ). Looking 
at a more complex phenotype with multi-class, Deep-
GAMI with two modalities improved the classification 
accuracy of COGDX ( BACC = 0.688± 0.07 ) compared 
to the highest accuracy of the best model (MOGONET, 
BACC = 0.4938± 0.05 ). Also, DeepGAMI with single 
modality input improved the multi-class classification 
accuracy ( BACC = 0.6826± 0.07 ) compared to MOGO-
NET(BACC = 0.4938± 0.05 ). Following this, we tested 
the performance of the classifiers with optimal hyperpa-
rameters on 100 randomly generated training and valida-
tion sets. Based on the k.s. test, both DeepGAMI dual 
and DeepGAMI single has the best performance (Addi-
tional file 1: Fig S2A and Fig S2B).

We tested DeepGAMI on additional samples from 
ROSMAP cohort with missing modalities where these 
individuals had only genotype information (single 
modality as input). These samples belonged to late-stage 
BRAAK individuals and CI (cognitive impairment in AD/
Dementia). DeepGAMI was able to achieve AUC scores 
of 0.92 for late-stage BRAAK and 0.73 for CI (Fig.  3B). 
We were able to classify these late-stage BRAAK indi-
viduals with an accuracy of 0.687 and CI individuals with 
an accuracy of 0.713 (Fig.  3C). We observed that our 
model had higher AUC scores in comparison with accu-
racy scores for late-stage BRAAK samples. This might be 
due to the imbalance in the training samples. Also, AUC 
works best in the binary classification setting and has 
inconsistencies in the multi-class problem [104, 105].

We then performed enrichment analysis on the top-
ranked genes that were regulated by the SNPs and TFs for 
each group (no CI, mild CI, CI) of the COGDX pheno-
type (Fig. 3D, Additional file 5) and generated a network 
containing the prioritized SNPs and TFs with prioritized 
links to the genes (Fig. 3E, Additional file 6). These pri-
oritized genes were enriched with many known cognitive 
impairment functions and pathways. For example, con-
trols were enriched for adenylate cyclase-modulating G 
protein-coupled receptors that are known to have a role 
in the pathological prognosis of AD [106, 107]. Mild CI 
was associated with protein dephosphorylation [108], 
response to endoplasmic reticulum stress [109–111] and 
proteolysis in cellular protein catabolic process [112]. We 
observed that CI was associated with sensory percep-
tion and splicing factor NOVA regulated synaptic pro-
teins. Sensory perception impairment is known to affect 
cognition [113–115]. NOVA regulates genes critical for 

neuronal function [116] and known to affect patients 
with inhibitory motor control dysfunctions [117].

Cortical layer classification for single‑cell neuronal cells 
in mouse visual cortex
We also tested DeepGAMI on additional non-omics 
modalities using an emerging Patch-seq dataset [81] 
containing single-cell multimodal data for the visual 
cortex brain region in neuronal cells of mouse species. 
This dataset includes transcriptomics and electrophysi-
ological (ephys) data. We used the cell cortical layers (L1, 
L2/3, L4, L5, L6) that reveal the location of the cells in the 
visual cortex as the cellular phenotype. We followed the 
data extraction and preprocessing as done in DeepMan-
Reg [92] and ended up with 41 ephys features and 1000 
genes for 3654 neuronal cells. Figure 4A depicts the over-
all architecture of DeepGAMI for this dataset. It demon-
strates that DeepGAMI can handle multiple modalities 
besides genotype and gene expression and can also per-
form multi-class classification. While Fig. 2C and Fig. 4A 
looks similar, they serve different purposes, with Fig. 4A 
showing the model architecture and Fig. 2C highlighting 
the prioritization results.

To evaluate DeepGAMI’s performance on Patch-seq 
data, we adopted the validation technique used in previ-
ous studies [92] and randomly split the cells into train-
ing/testing sets with a ratio of 80:20 and obtained 100 
different sets. As there was a huge imbalance in the num-
ber of cells for each layer (L1: 262 cells; L2/3: 1097 cells; 
L4: 385 cells; L5: 1176 cells; L6: 734 cells), we applied 
SMOTE [121] oversampling technique on the training set 
to have a balanced number of cells for each layer in the 
training label and ended up with 941 cells in each layer. 
SMOTE identifies k-nearest neighbors of each sample in 
the minority class and creates synthetic samples along 
the line segments joining these neighbors. Biological 
Dropconnect was not used as there was no prior biologi-
cal data available. Thus, we instead used full connectiv-
ity, where each gene and ephys feature had an association 
with the intermediate latent space layer. After various 
parameter tuning, the latent space dimension was set to 
500.

We compared the prediction accuracy of DeepGAMI 
with different methods using pairwise Kolmogorov–
Smirnov test (k.s test) on the accuracy distribution over 
100 runs. DeepGAMI has higher prediction accuracy for 
classifying cell cortical layers than other methods (k.s 
test statistic = 1, p− value < 2.2e−16 for dual-modality 
input, k.s test statistic = 1, p− value < 1.9e−16 for single 
modality gene expression input, Fig.  4B and Additional 
file  2: Table  S5). Furthermore, the average accuracy of 
DeepGAMI dual-modality mode (0.6571 with a 95% con-
fidence interval (CI) of [0.6249, 0.6892]) and DeepGAMI 
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single modality mode (0.6463 [0.6129, 0.6797]) is higher 
than the random guess baseline of 0.2 (five labels), LMA 
[118]  (0.43 [0.322, 0.496]), CCA [119] (0.462, [0.401, 
0.513]), MATCHER [120] (0.465, [0.409,  0.528]), and 
DeepManReg [92] (0.514, [0.479, 0.548])).

We then compared the performance of DeepGAMI 
with- and without- oversampling on multi-class classi-
fication. We hypothesized that oversampling helps per-
form better on imbalanced dataset. DeepGAMI with 
oversampling had higher accuracies for classes L1, L4, 
and L6 while if performed slightly lesser on layers L2/3 
and L5 (Additional file  1: Fig S3A). DeepGAMI with 
oversampling has two times better accuracy for cell layer 
L4 which had the least number of samples. We also con-
verted the multi-class labels into binary classification 
problem. We then developed DeepGAMI for each cell 
layer without oversampling. As expected, DeepGAMI 
had higher accuracy on binary classification problem 
(Additional file  1: Fig S3B). While binary classification 
has higher accuracies, multiclass classification is useful 
when classifying new cells into the cell layers.

We extracted 112 (L4) neuronal cells patch-seq data 
[122] containing gene expression data but only a small 
set of electrophysiological data for independent testing. 
We applied DeepGAMI for classifying these 112 cells by 

giving only gene expression (single modality mode) and 
allowing the model to estimate the latent space of ephys 
features. For the negative samples required for perfor-
mance estimation, we used the predictions on the motor 
cortex data [81]. The motor cortex dataset contains 1286 
genes and 29 electrophysiological features of neuronal 
cells without the L4 layer: L1, L2/3, L5, and L6. After pre-
dicting these cells, we used the predicted values for the 
L4 layer as the negative samples, combined them with 
the predictions for the L4 layer for the 112 samples, and 
computed the AUC score. DeepGAMI classified the cells 
into L4 layer with an AUC score of 0.73.

Following the prediction, we extracted the top 10% of 
the prioritized genes and importance scores of the 41 
ephys features for each cell layer (Additional file 7). Fig-
ure 4C shows the gene set enriched terms [86] for each 
layer. Enriched terms like cell–cell adhesion and neuron 
projection development appear in all layers [123]. Layer 
4 is enriched with excitatory neurons and their activities 
[93, 124]. Many groups were enriched for behavior (espe-
cially L2 and L6), and synapse organization. L1 and L2/3 
groups were enriched for negative regulation of neuron 
projection development and long-term neuronal synap-
tic plasticity regulation. The upper layers of the cortex 
(groups L2/3 and L4) were enriched for amine transport 

Fig. 4 Classifying cellular phenotype in single neuronal cells of mouse visual cortex. A DeepGAMI model for cell layer classification. B Balanced 
accuracies for classifying cell layers in the mouse visual cortex by DeepGAMI dual-modality (orange), DeepgGAMI single-modality (green) 
versus DeepManReg [92] (dark pink), neural network classification without any regularization (light pink), LMA [118] (violet), CCA [119] (blue), 
and MATCHEr [120] (brown). C Gene enrichment analysis showing the enriched terms for layer-specific prioritized genes
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regulation and adult behavior; the primary input from 
the thalamus goes to Layer 4, whose input then goes to 
Layers 2 and 3. Additional file  1: Fig S4 compares the 
importance scores of the 41 ephys features across six cell 
layers.

Classification of schizophrenia individuals using genotype 
and cell‑type gene expression data
We also tested if DeepGAMI can prioritize cell-type 
disease genes and SNPs in major brain cell types for 
schizophrenia: excitatory neurons, inhibitory neurons, 
oligodendrocytes, and other glia (microglia and astro-
cytes). Notably, we used genotype and cell-type-specific 
gene expression imputed using bMIND [89] from a ref-
erence panel of four cell types: GABAergic (i.e., inhibi-
tory) neurons, glutamatergic (i.e., excitatory) neurons, 
oligodendrocytes, and a remaining group composed 
mainly of microglia and astrocytes. Additional file  2: 
Table  S6 summarizes the number of features used as 
input for the model for these four cell types. DeepGAMI 
classified SCZ individuals with a balanced accuracy of 

0.795± 0.035 for dual-modality and 0.784 ± 0.024 for 
single modality for microglia and astrocyte cell type in 
comparison to 0.563± 0.049 for RF, 0.6585± 0.079 for 
SVM, 0.7429± 0.058 for MLP, 0.729± 0.033 for LR, 
0.717± 0.031 for Lasso, 0.765± 0.026 for Varmole, and 
0.6919± 0.037 for MOGONET. Similarly, DeepGAMI 
performs better fivefold classification than other models 
for the other three cell types (Fig.  5A, Additional file  2: 
Table S7). Additional file 1: Fig S5A compares the robust-
ness of DeepGAMI with other state-of-the-art methods. 
DeepGAMI consistently outperformed Varmole, Mogo-
net, and other machine learning methods in all cell types. 
DeepGAMI was also able to produce a better classifica-
tion of schizophrenia samples against control on held-out 
test data in comparison to existing methods (Additional 
file 1: Fig S5B).

We then performed enrichment analysis for the prior-
itized SNPs for each cell type. We found various known 
cell-type pathways and functions associated with SCZ 
(Fig.  5B) like organelle localization in inhibitory neu-
rons [125], structural molecule activity in microglia and 

Fig. 5 Classification of schizophrenia individuals and prioritization of genes, SNPs, and regulatory network using genotype and gene expressions 
of four cell types (microglia and astrocytes, oligodendrocytes, inhibitory neurons, and excitatory neurons). A Balanced accuracies from 5-fold 
cross-validation of DeepGAMI dual-modality model (dark blue), DeepGAMI single modality model (orange) in comparison with Lasso (brown), 
LR (light blue), Random Forest (yellow), SVM (purple), MLP (pink), Varmole (red), and MOGONET (green). B Pathway enrichment of prioritized 
schizophrenia SNPs for four cell types. The blue shade gives the − log(p-values) of the term. C Prioritized cell-type gene regulatory networks 
with pink circles representing schizophrenia genes. The size of the target gene is defined by the number of prioritized links between the SNPs 
and the associated gene
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astrocytes [126], RHO GTPase cycle in oligodendrocytes 
[127], and regulation of macroautophagy in excitatory 
neurons [128]. We also found common SCZ-associated 
functional pathways across cell types like asparagine 
N-linked glycosylation [129, 130], membrane trafficking 
[131], and signaling by GPCR [132].

Figure  5C visualizes subnetworks of prioritized cell-
type regulatory networks showcasing the ability of 
DeepGAMI to prioritize cell-type genes like APBB2 and 
TOMIL2 for oligodendrocytes, FOSL2 and MEF22C for 
microglia and astrocytes, and XBP1 for inhibitory neu-
rons, and some common genes like REV3L (oligoden-
drocytes and microglia and astrocytes) and CTNNA1 
(excitatory and inhibitory neurons). A complete list of 
importance scores of genes and SNPs for each cell type is 
available in Additional files 8 and 9.

Assessing the impact of different networks as input 
on the classification performance
One of the major contributions of this study is the use 
of prior biological knowledge to guide the neural net-
work model for phenotype prediction. To test the effec-
tiveness of these prior networks (GRNs and eQTLs), we 
performed an ablation study of DeepGAMI, where we 
compared our proposed model with two additional vari-
ants: (1) DeepGAMI Random—We generated random 
networks in place of prior biological networks and used 
these as the basis for DropConnect and (2) DeepGAMI 
Bernoulli—Based on the number of edges in the GRNs 
and eQTLs, we used Bernoulli distribution to generate 
networks with the same distribution as the original net-
works where existing edges has an 80% chance of being 
selected where other links have 20% chance of being 
selected. We compared the performance of these three 
variations on the bulk tissue SCZ cohort, inhibitory neu-
ron cell type SCZ cohort, and AD cohort with CERAD 
score phenotype. We performed 5-fold cross-validation 
to assess the performance of all the variations. As shown 
in Additional file  1: Fig S6, DeepGAMI, with prior bio-
logical knowledge, outperformed its variations in all clas-
sification tasks. DeepGAMI Bernoulli variations had a 
better performance than DeepGAMI random, indicating 
that a biology-guided neural network helps improve phe-
notype prediction and aids in prioritizing molecular and 
cellular features.

Discussion
DeepGAMI is a novel interpretable deep learning model 
for improving genotype–phenotype prediction from 
multimodal data. Its auxiliary learning layer enables 
cross-modal imputation to predict phenotypes still when 
some modalities are unavailable. The model also takes 
prior biological information for aiding in prioritizing 

multimodal features (e.g., SNPs, genes) and feature net-
works (e.g., gene regulatory networks) related to the 
phenotypes.

As brain phenotypes involve complex cellular and 
molecular mechanisms, genotype and gene expression 
are a few of the many factors associated with mecha-
nisms. We have demonstrated that DeepGAMI can han-
dle various multimodal data as input in two scenarios. 
In the first scenario, DeepGAMI was able to accurately 
predict cortical layers using gene expression and elec-
trophysiological features in mouse visual cortex (Fig. 4). 
In the second scenario, we used DNA methylation and 
gene expression as inputs to DeepGAMI to predict AD 
phenotype (COGDX scores: No CI vs Mild CI vs CI-AD/
Dementia) from the ROSMAP cohort. After preproc-
essing and filtering, we used 1198 CpG sites as features 
from the methylation data and 183 TF gene expressions 
as inputs. The intermediate gene layers consist of 1013 
target genes. We used CpG island sites for each gene and 
GRN as biological priors. Notably, DeepGAMI achieved 
the best multi-class accuracy of 0.524 on the held-out test 
samples and 0.557 on the independent samples that only 
had methylation data (Additional file 1: Fig S7). Integrat-
ing additional modalities into DeepGAMI enables a more 
profound understanding of such mechanisms. For exam-
ple, several studies have tried integrating copy number 
variations with DNA methylation [133], gene expression 
[134], and clinical data [135]. Trevino et  al. [136] inte-
grated RNA-seq and ATAC-seq over a period of time, 
studying various genetic activities and disease suscepti-
bility in various neuropsychiatric disorders. MVIB [137] 
integrated gut microbial markers and abundance scores 
to classify various diseases. Furthermore, DeepGAMI 
currently integrates two data modalities. We plan to 
extend DeepGAMI to integrate more than two modali-
ties in the future.

DeepGAMI uses fivefold cross-validation balanced 
accuracies and AUC scores to compare the performance 
of the model on various datasets. While cross-validation 
can be misleading when used for model selection, it can 
still be a useful technique for estimating the expected 
performance of the model on the test set and compar-
ing results when the sample size is not large enough to 
split the data into separate train and test sets [138, 139]. 
Moreover, despite the relatively lower sample sizes, 
DeepGAMI has demonstrated accurate performance 
on held-out test samples for three cohort datasets: SCZ 
(Fig.  2B, C), AD (Fig.  3B, C), and mouse visual cortex 
(Fig. 4C) that only contain genotype information.

We evaluated the scalability of DeepGAMI by varying 
the number of input features to the model and recording 
the runtime. For this analysis, we used PsychENCODE 
consortium [49] data for predicting schizophrenia (SCZ) 
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versus healthy individuals. Additional file 1: Fig S8 gives 
a detailed comparison of three models: DeepGAMI, Var-
mole, and MOGONET. We varied the number of input 
features from 100 to 100,000 and recorded the total 
runtime. We see that the runtime (training time) scales 
as the number of features increases. While the runtime 
performance is similar among all three models, MOGO-
NET has the least runtime. We believe the cross-modal 
imputation layer of DeepGAMI might be the cause for 
relatively slower runtime.

One of the major contributions of DeepGAMI is its 
ability to make accurate phenotype predictions even 
when some modalities are missing, which is achieved 
using cross-modal imputation. DeepGAMI differs from 
traditional cross-modal imputation methods. Firstly, it 
aims to integrate multimodal data for improving phe-
notype prediction, rather than focusing solely on cross-
modal imputation. Secondly, it can handle both lower 
sample size population-level datasets and single-cell 
multimodal datasets while the latter methods are mainly 
based on single-cell datasets. Lastly, existing cross-modal 
imputation techniques can be extended to perform vari-
ous supervised and unsupervised learning tasks. How-
ever, it is important to note that this process involves 
building two separate models: one for modality estima-
tion and another for prediction. As a result, there is a risk 
of missing phenotype-related shared features between 
modalities, which can potentially impact the accuracy 
of the predictions. Furthermore, traditional cross-modal 
imputation methods often do not allow for the incorpo-
ration of prior biological knowledge into the models. This 
can limit the interpretability of the results. DeepGAMI 
uses linear regression for cross-modal imputation. Even 
though our applications have shown the imputations 
work well, DeepGAMI can use nonlinear functions for 
cross-modality imputation, aiming to have nonlinear 
auxiliary learning. It is also possible to integrate exist-
ing cross-modal imputation methods into DeepGAMI’s 
auxiliary task of cross-modality imputation. This could 
potentially lead to further improvements in performance. 
The results from our analysis on AMP-AD data may be 
susceptible to batch effects and data-source-specific 
effects as we were able to only extract the ROSMAP 
cohort. Additional cohorts from the same study can fur-
ther enhance the generalizability of our model.

Disease variation is affected by both genetic and non-
genetic factors which can include covariates like age, 
batch, sex, and ethnicity. In many cases, the covari-
ate information is either missing or partially available. 
The genotype data can be adjusted by these covariates 
by the users. We test the effect of three covariates (age, 
gender, and ethnicity) on the CMC cohort. For each 
SNP, we regress out its genotype data across individuals 

by covariates and then input the residuals to Deep-
GAMI and the classification performance decreased 
( AUCdual = 0.748 and AUCsingle = 0.723 ). DeepGAMI 
has higher performance with original genotype data, sug-
gesting that the nodes in the hidden layers of DeepGAMI 
can capture the hidden effects of these covariates.

We showcase the ability of DeepGAMI in predicting 
phenotypes with genotype data alone. PRS is a popular 
regression-based method to quantify genotype to pheno-
type association. Thus, we calculated PRS for SCZ 
(binary trait) using three different methods: PLINK [140], 
LDpred2 [141], and PRSice [142] on our data. We used 
7433 SNPs along with age, gender, and ethnicity as covar-
iates for this analysis. PRS was able to explain moderate 
percentages of variations ( R2

PLINK  = 0.584, R2
LDpred2 = 

0.567, and R2
PRSice2 = 0.762). As AUC is typically used for 

evaluating classification problems, out result show that 
DeepGAMI dual ( AUC = 0.895 ) and DeepGAMI single 
( AUC = 0.867 ) perform better in comparison to the 
recently reported PRS score for SCZ ( AUC = 0.61 ) [76] 
and heritability of SCZ (0.8) [143]. In future, DeepGAMI 
can be extended to integrate regression and predict con-
tinuous phonotypes like PRS.

Conclusions
In this study, we presented DeepGAMI, an interpretable 
biology-guided deep learning framework for phenotype 
prediction using multi-modal data. We demonstrated 
that DeepGAMI improves prediction of disease types 
and clinical phenotypes and prioritizes phenotypic 
genomic features and regulatory networks in AD and 
SCZ, especially at the cell-type level. We envision Deep-
GAMI can be used to decipher functional genomics and 
gene regulation for other complex diseases.
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