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Abstract 

Background Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) 
of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome 
sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling 
of co‑infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection 
control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rap‑
idly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly 
from WGS data.

Results The online and command line versions of Malaria-Profiler detect ~ 250 markers from genome sequences 
covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine‑pyrimeth‑
amine (SP), and other anti‑malarial drugs for P. falciparum, but also providing mutations for orthologous resistance 
genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical iso‑
lates with WGS and geographical data, with most being single‑species infections (P. falciparum 7152/7462, P. vivax 
1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co‑infections were identified (456/9321; 
4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels 
(94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), 
sulfadoxine (83.3%; 35.4– 90.5%), pyrimethamine (85.4%; 80.0–100%) and combined SP (77.4%). Markers associated 
with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%).

Conclusions Malaria-Profiler is a user‑friendly tool that can rapidly and accurately predict the geographical regional 
source and anti‑malarial drug resistance profiles across large numbers of samples with WGS data. The software is flex‑
ible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display 
specific variants, and customise the format of outputs. With the increasing application of next‑generation sequencing 
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platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point‑of‑care and surveillance 
settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria‑pro‑
filer) and as standalone software (https:// github. com/ jodyp helan/ malar ia‑ profi ler).

Keywords Drug resistance, Malaria, Plasmodium parasites, Genomics, Diagnostics, Whole genome sequencing

Background
Malaria is a life-threatening disease caused by Plas-
modium parasites that are transmitted to humans by 
infected female Anopheles mosquitoes [1]. There were 
247 million cases of malaria and 619 thousand deaths in 
2021 alone, with the vast majority affecting children and 
pregnant women in Sub-Saharan Africa [1]. There are 
six parasite species that cause malaria in humans (P. fal-
ciparum, P. vivax, P. ovale ssp., P. malariae, P. knowlesi; 
genome sizes 23–36 Mbp). P. falciparum is the deadliest 
malaria parasite and the most prevalent on the African 
continent. P. vivax is the most geographically widespread 
malaria parasite [2], found in Europe, Asia, South Amer-
ica, and Africa due to its adaptation for temperate cli-
matic conditions. Whilst zoonotic P. knowlesi is found 
primarily in Southeast Asia due to the presence of the 
macaque population, which acts as a reservoir for the 
parasite. P. ovale ssp. and P. malariae malaria cases have 
been predominantly reported in Africa and can occur 
with co-infections with P. falciparum, potentially affect-
ing elimination strategies that target prevalent species 
[3].

Malaria treatment is guided by the knowledge of the 
infecting Plasmodium species and clinical severity. There 
are currently fourteen medicines for the treatment of 
malaria and four for preventative treatment listed by the 
World Health Organization (WHO) [4]. Global efforts to 
control and eliminate malaria are hampered by the emer-
gence of P. falciparum parasites resistant to antimalarial 
drugs. There is a high prevalence of chloroquine and 
sulfadoxine-pyrimethamine (SP) resistance across conti-
nents [5], and partial resistance or slow parasite clearance 
to artemisinin, used in current treatment combinations, 
spreading in Southeast Asia [6], with some recent cases 
appearing in Africa [7]. Similarly, P. vivax isolates resist-
ant to chloroquine have been reported in parts of Asia 
and South America [2].

Prompt malaria diagnosis either by microscopy or 
rapid diagnostic tests (RDTs) is recommended by the 
WHO for all patients with suspected malaria before they 
are given treatment [4]. Early and accurate diagnosis is 
essential both for effective management of the disease 
and for strong malaria surveillance. Measures targeting 
the treatment of persistent malaria infections, such as P. 
ovale ssp. and P. vivax with dormant liver stages and P. 
malariae with possible latent blood infections, will need 

to comprise all human malaria species. Neither micros-
copy nor RDTs can detect low-density malaria infections, 
common in both low and high transmission settings, but 
nucleic acid amplification tests (NAATs) such as Poly-
merase chain reaction (PCR), real-time PCR (rt-PCR), 
loop-mediated isothermal amplification (LAMP), and 
quantitative nucleic acid sequence-based amplification 
(QT-NASBA) assays can overcome this limitation. The 
18S ribosomal RNA gene has unique sequences that ena-
ble the identification of all six malaria species infecting 
humans and is therefore commonly targeted for amplifi-
cation. Similarly, the mitochondrial genome (6 kbp) has 
species-specific markers, and has the added advantage 
of being present in high copy numbers in Plasmodium 
cells [8]. A number of studies have revealed P. falcipa-
rum genetic markers linked to antimalarial drugs, such as 
chloroquine, SP and artemisinin [9–11], which are being 
included within NAATS, but the underlying mechanisms 
for P. vivax chloroquine resistance are unclear [2].

The increasing accessibility of advanced high through-
put technologies that are cost-effective and with low 
sequencing error rates, can inform clinical decision mak-
ing and tracking of infections. Recently, whole genome 
sequencing (WGS) has gained traction as a diagnostic 
tool for infections, with the ability to determine strain 
types of pathogens, characterise transmission patterns, 
and identify markers linked to antimicrobial resistance 
[12]. Portable platforms, such as Oxford Nanopore Tech-
nology (ONT), are facilitating the real-time generation 
of sequencing data in the field and clinic. Such platforms 
can also be used to sequence large numbers of amplicons 
(~ 500 bp) that cover candidate genes, across many sam-
ples, leading to a high throughput low-cost diagnostic 
tool that can capture new variants in targeted loci [13, 
14]. However, one of the main challenges in performing 
WGS or amplicon-based sequencing studies for clinical 
malaria parasites is the difficulty in obtaining sufficient 
high-quality parasite DNA from infected individuals. 
This difficulty is due to low parasitaemias in infections 
and human DNA “contamination”. However, recently a 
selective whole genome amplification (SWGA) strategy 
has been used to sequence P. falciparum [15], P. vivax [2, 
16], P. knowlesi [17] and P. malariae [18] genomes from 
non-filtered blood and from dried blood spots of clinical 
samples, leading to the characterisation of single nucleo-
tide polymorphisms (SNPs) and insertions and deletions 
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(indels) for population genomic analyses. More gener-
ally, genomic diversity studies using WGS from P. fal-
ciparum, P. knowlesi and P. vivax endemic field isolates 
have provided significant insights into the structure and 
ancestry of the geographical-based parasite populations, 
intra- and inter-population genomic diversity, and led 
to the development of molecular barcodes to determine 
the geographical source of infections [8, 17, 19–21]. Fur-
thermore, population genetic analyses have identified 
genomic regions under selective pressure, some in drug 
resistance-associated genes [2, 15, 22–24].

As the generation of WGS and amplicon-based 
sequencing data for Plasmodium parasites continues 
to increase at a swift pace, including from the port-
able ONT platform, there is a need for informatics tools 
for researchers and applied bioinformaticians to rap-
idly analyse WGS data. Such tools are needed to obtain 
profiles of (co-)infections and drug resistance markers, 
thereby supporting clinical decision-making. Further, by 
additionally identifying likely geographical origin (e.g. 
country), it could reveal imported parasites, thereby sup-
porting surveillance decision-making too. By monitor-
ing the changes in informative mutations temporally, it 
will allow an assessment of transmission patterns and 
the effectiveness of infection control activities. Here, 
building on the core library used in a similar software 
for tuberculosis (“TB-Profiler” [25, 26]), we describe the 
Malaria-profiler standalone and web-based tool, with 
accompanying dashboard interfaces, for rapid profiling of 
Plasmodium parasites species, and characterising genetic 
variants for follow-up studies.

Implementation
Profiling mutation library
The mutation library consists of ~ 100 mitochondrion 
markers for speciation of P. falciparum, P. vivax, P. malar-
iae, P. knowlesi and P. ovale ssp. (20 per species; Table 1), 

which also differentiate human from non-human affect-
ing Plasmodium species. In brief, alignments of 75 
mitochondrial genomes (51 human and 24 non-human 
Plasmodium; Fig.  1a) were used to construct a maxi-
mum likelihood phylogenetic tree. By annotating the tree 
branches with ancestral mutations [26], it was possible 
to define k-mers (31  bp) using kmc software [27], from 
which 20 SNPs exclusive to each human species were 
determined. Using the mitochondrial genome has the 
advantage of ~ 20 more copies than the nuclear genome 
in cells [8]. In addition, we included a set of established 
markers (n = 137) that differentiate geographical regions 
for P. falciparum (61; Eastern, Western and Horn of 
Africa, Southeast Asia, South America, Oceania), P. 
vivax (56; East Africa, South Asia, Southeast Asia, South-
ern Southeast Asia, South America) and P. knowlesi (20; 
Non-Borneo (Peninsular); Borneo – Macaca fascularis 
(Borneo-Mf), Borneo – Macaca nemestrina (Borneo-
Mn)) [8, 17, 19, 20] (Table  2). In brief, these barcoding 
markers have been previously determined using the pop-
ulation differentiation  FST statistic, and identifying scores 
of one, which indicate that the SNP allele is fixed in the 
region of interest and not present outside that location. 
Lastly, known drug resistance mutations (n = 37) across 
P. falciparum candidate genes [15] were also included in 
the library (Table  3) as well as genetic variants in puta-
tive drug-associated loci reported for other malaria spe-
cies (e.g. orthologues of Pfcrt, Pfdhfr, Pfdhps, Pfkelch13 
and Pfmdr1) [2, 18, 21]. The mutation libraries are avail-
able and hosted on the GitHub open-source site, with 
versioning capability (https:// github. com/ jodyp helan/ 
malar ia- db). Future changes in the species, geolocation 
and drug resistance mutation libraries can be discussed, 
tracked, and visualised as part of the GitHub hosting. 
This method of hosting also enables multiple users and 
developers across the malaria genomics community to 
contribute to the project.

Table 1 Predictions of Plasmodium species using Malaria-Profiler library (n = 9312)

*  https:// github. com/ jodyp helan/ malar ia- db
**  Mixed co-infections with source
***  Non-human, including P. inui, P. cynomologi, P. reichenowi (see Fig. 1a)

Pf, P. falciparum; Pv, P. vivax; Po, P. ovale ssp.; Pm, P. malariae; Pbr, P. brasilianum; Pk, P. knowlesi

Source label No. markers* Pf Pv Pk Pm/Pbr Poc/Pow Other Mixed** Total

Pf 20 7152 11 1 ‑ ‑ ‑ 298 7462

Pv/Psim 20 ‑ 1502 ‑ ‑ ‑ 9 150 1661

Pk 20 ‑ ‑ 143 ‑ ‑ ‑ 8 151

Pm/Pbr 20 ‑ ‑ ‑ 18 ‑ ‑ ‑ 18

Poc/Pow 20 ‑ ‑ ‑ ‑ 5 ‑ ‑ 5

Other*** ‑ ‑ ‑ ‑ ‑ ‑ 24 ‑ 24

Total 100 7152 1513 144 18 5 24 456 9312

https://github.com/jodyphelan/malaria-db
https://github.com/jodyphelan/malaria-db
https://github.com/jodyphelan/malaria-db
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In silico profiling
The Malaria-Profiler tool for the in silico analysis of 
species, geolocation and drug-resistant mutations was 
developed using the Python language (v3.8) with the 
pathogen-profiler library [12] and well-established bioin-
formatic tools such as trimmomatic  [28], BWA  [29] and 
SAMtools  [30]. The pipeline can be customised (Addi-
tional file  1: Fig. S1), but in its default mode, reads are 
trimmed using trimmomatic (parameters: LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:36) 
then mapped to the appropriate Plasmodium reference 
(e.g. P. falciparum 3D7, P. vivax PvPO1) using bwa (with 
default parameters). The raw data can be in an Illumina 
or ONT format (Additional file  1: Fig. S2). With the 

default settings, variants are called using freebayes  [31] 
(parameters: -F 0.05) and annotated using snpEff  [32] 
(parameters: -noLog -noStats), with the processing par-
allelised using GNU parallel [33]. Annotated variants are 
compared to the list of mutations in the Malaria-Profiler 
libraries. Variants can be filtered using coverage depth, 
allele frequency and per-strand depth parameters that 
can be set by the user. Additionally, other variant calling 
tools can be used instead of freebayes with bcftools  [30] 
and gatk  [34] also implemented. A minimum depth of 
tenfold coverage to call variants is set as the default (con-
sistent with [5, 12]), but this can be changed by the user. 
Positions below this cut-off will be recorded and pre-
sented in the final report. The Malaria-Profiler pipeline 

a b

c d

Fig. 1 Population structure of Plasmodium. a Circular maximum likelihood tree of 51 human and 24 non‑human Plasmodium isolates using 
mitochondrial sequences shows perfect clustering of species as expected. This indicates the presence of a species‑specific sequence which 
is exploited in the k‑mer‑based speciation function. Pf P. falciparum, Pv P. vivax, Pk P. knowlesi, Pcyn P. cynomolgi, Pm P. malariae, Poc P. ovale curtesi. b 
P. falciparum principal component analysis showing clustering by geographic region specifically separation between Southeast Asia and Oceania 
and Africa. c P. vivax principal component analysis showing clustering by geographic region. d P. knowlesi principal component analysis showing 
clustering by region (Peninsular (Pen‑Pk) vs. Borneo Malaysia), and within Borneo based on host (Macaca fascularis (Mf‑Pk) and Macaca nemestrina 
(Mn‑Pk))
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calculates the proportion of the reads supporting each 
allele and reports this information, which can serve as a 
proxy for multi-infections. The Malaria-Profiler pipeline 
is available on GitHub (from https:// github. com/ jodyp 
helan/ malar ia- profi ler) and can be installed through the 
bioconda channel [35]. Malaria-Profiler report outputs 
are written in json, txt and pdf formats, with options to 
collate data into multi-sample reports in a dashboard 
(Additional file 1: Fig. S2).

Sequencing data and variants
To test the Malaria-Profiler tool, a dataset of 9321 strains 
was collated from Illumina WGS raw data in the public 
domain (see https:// www. ebi. ac. uk/ ena). This database 

includes P. falciparum (n = 7462; https:// www. malar iagen. 
net/ apps/ pf6  [36]; PRJEB2136, PRJEB2143, PRJEB4348, 
PRJEB4410, PRJEB4580, PRJEB4589, PRJEB4611, 
PRJEB4725, PRJEB5045, PRJNA108699 and PRJNA51255), 
P. vivax (n = 1661, https:// www. malar iagen. net/ data/ open- 
datas et- plasm odium- vivax- v4.0; PRJEB10888, PRJEB2136, 
PRJEB2140, PRJEB4409, PRJEB4410, PRJEB44419, 
PRJEB4580, PRJEB56411, PRJNA175266, PRJNA240366-
240531, PRJNA271480, PRJNA284437, PRJNA295233, 
PRJNA420510, PRJNA432819, PRJNA603279, 
PRJNA643698, PRJNA65119, PRJNA655141, PRJNA67065, 
PRJNA67237, and PRJNA67239) [2, 21], P. knowlesi (n = 151; 
PRJEB10288, PRJEB1405, PRJEB23813, PRJEB28192, 
PRJEB33025, and PRJNA294104) [17, 20], P. malariae 

Table 2 Accuracy of the Malaria-Profiler library for geographical predictions

* https:// github. com/ jodyp helan/ malar ia- db
** Without Horn of Africa
*** Assuming that the meta data location is the gold standard

Peninsular, Non-Borneo; Borneo-Mf, Borneo – Macaca fascularis; Borneo-Mn, Borneo – Macaca nemestrina; N, sample size

Parasite No. markers* Region No. samples No. predicted % Sensitivity*** % Specificity***

P. falciparum 8 Africa** 4181 4138 99.0 98.3

P. falciparum 10 Eastern Africa 1153 1051 91.2 99.9

P. falciparum 10 Western Africa 3028 2964 97.9 99.1

P. falciparum 10 Horn of Africa 16 16 100 100

P. falciparum 8 Oceania 144 132 91.7 100

P. falciparum 6 South America 48 45 93.8 100

P. falciparum 9 Southeast Asia 2741 2626 95.8 99.9

P. vivax 9 East Africa 158 154 97.5 100

P. vivax 11 South America 455 382 84.0 100

P. vivax 36 Asia 889 799 89.9 99.8

P. vivax 14 South Asia 195 157 80.5 99.9

P. vivax 13 Southeast Asia (SEA) 537 488 91.0 99.6

P. vivax 9 Southern SEA 157 141 89.8 99.3

P. knowlesi 7 Borneo‑Mf 53 52 98.1 98.9

P. knowlesi 6 Borneo‑Mn 40 39 97.5 100

P. knowlesi 7 Peninsular 50 50 100 100

Table 3 Drug resistance based on known mutations in P. falciparum* 

* World Health Organization mutations in https:// github. com/ jodyp helan/ malar ia- db
** Excludes 22 laboratory strains without a known source location

Region N** Chloroquine Pyrimethamine Sulphadoxine Artemisinin

East Africa 1153 0.245 0.932 0.905 0

West Africa 3028 0.372 0.800 0.839 0

Horn of Africa 16 1 1 0.875 0

Oceania 144 0.667 0.910 0.306 0

South America 48 0.854 0.917 0.354 0

Southeast Asia 2741 0.711 0.876 0.831 0.306

Overall 7152 0.492 0.854 0.833 0.118

https://github.com/jodyphelan/malaria-profiler
https://github.com/jodyphelan/malaria-profiler
https://www.ebi.ac.uk/ena
https://www.malariagen.net/apps/pf6
https://www.malariagen.net/apps/pf6
https://www.malariagen.net/data/open-dataset-plasmodium-vivax-v4.0
https://www.malariagen.net/data/open-dataset-plasmodium-vivax-v4.0
https://github.com/jodyphelan/malaria-db
https://github.com/jodyphelan/malaria-db
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(n = 18; PRJEB33837) [18] and P. ovale (n = 5; PRJEB51041) 
[18]. Meta data, including the geographical site of sampling, 
was available from the same sources (e.g. www. malar iagen. 
net/ resou rces/ open- data- resou rces). In addition, the mito-
chondrion reference genomes were obtained from GenBank 
for the neglected non-human malaria parasites (n = 24; e.g. 
P. cynomologi, P. inui, P. reichenowi and P. simiovale) were 
also included in the analysis. Alignments of mitochondrial 
genomes to the species library allow for the identification 
of primary Plasmodium infection and potential co-infec-
tions. Species were assigned if half of the 20 specific mark-
ers were identified in the data. For intra-species analysis, 
genome-wide SNPs and indels were called using established 
bioinformatic pipelines [2, 15, 17, 18]. In brief, the raw Illu-
mina WGS data (fastQ format) were aligned to their respec-
tive reference genomes using BWA-mem software (default 
parameters). SNPs and short indels were called using the 
SAMtools and GATK software suites (see [19]). For ONT 
data, a similar pipeline was adopted, except sequence align-
ment was performed using minimap2 [37] software.

Using genomic data to inform on Plasmodium parasite 
speciation and geographical clustering
A maximum likelihood phylogenetic tree for Plasmodium 
species was constructed using RAxML-NG (v 0.9.0; 1000 
bootstraps) software applied to mitochondrial genomes 
(n = 75; 5592 nucleotides), which were aligned using 
MUSCLE software [38] and filtered with the Gblocks tool 
[39] (default settings). The optimal substitution model of 
nucleotide or amino acid evolution for phylogenetic con-
struction was determined by MEGAX software [40]. Par-
asite clustering within species (e.g. P. falciparum, P. vivax; 
total n = 9321), which is typically geographically based, 
was explored by performing a principal component anal-
ysis (PCA) on the isolates using pairwise Manhattan dis-
tances based on biallelic SNPs.

Malaria‑Profiler performance
To test the performance of the library, the WGS raw 
data for the 9321 strains were processed through the 
Malaria-Profiler pipeline to predict species, geolocation, 
and resistance status (for P. falciparum). The predictions 
were then compared to primary Plasmodium species and 
geographical recorded meta information (see www. malar 
iagen. net/ resou rces/ open- data- resou rces), which were 
assumed to be the gold standard, and thereby allowed 
the calculation of the predictive accuracy of the Malaria-
Profiler library. Phenotypic drug resistance status was 
not available for most isolates. Samples identified by 
Malaria-Profiler with potential co-infections were also 
analysed with Centrifuge software [41] to confirm the 
main Plasmodium species. When applying Centrifuge, 
the threshold for potential co-infection was based on 

the whole genome abundance (minimum 5%) and sam-
ples with > 1 Plasmodium species exceeding the thresh-
old were assigned as mixed. To demonstrate the utility 
of WGS in the clinic, processed DNA (see [42] for pro-
tocols) from two isolates (isolate1, isolate2) sourced from 
two malaria patients at the Radboud University Medical 
Center were sequenced on the ONT MinION platform 
(v10) at The Applied Genomics Centre, LSHTM (acces-
sion numbers ERR11254081 and ERR11254083).

Results
Species prediction
Using the mitochondrion alignments of 51 human and 
24 non-human Plasmodium parasites, a phylogenetic 
analysis revealed clustering by species (Fig.  1a), as well 
as the robustness of the species-level barcoding mark-
ers used within the Malaria-Profiler library. Across 
the 9321 isolates with WGS data, the Malaria-Profiler 
tool predicted the labelled primary species in almost all 
samples (9300/9321; 99.8%). Mixed co-infections were 
also detected (456/9321; 4.9%), with P. falciparum (298; 
63.4%) and P. vivax (150; 32.9%) being the dominant par-
asites (Table  1), and most co-infections were supported 
by a parallel analysis using Centrifuge software (P. falcipa-
rum 165/298, 55.4%; P. vivax 116/150, 77.3%). Discrepan-
cies arise due to Centrifuge software excluding genomes 
with very minor frequencies (< 5%). The 24 non-human 
related Plasmodium mitochondrion sequences were 
also processed by the tool, leading to the predicted (and 
expected) absence of any of the six human-affecting Plas-
modium species (Table 1).

Geographical predictions
The geographical-based population structure of P. falcipa-
rum, P. vivax, and P. knowlesi was confirmed using a princi-
pal component analysis of SNPs which revealed clustering 
by geographic region (Fig. 1b–d). Using the geographical 
barcodes on isolates with recorded location (n = 8775), the 
Malaria-profiler tool predictions were accurate to conti-
nental (96.1%) and regional (94.6%) levels (Table  2). The 
best performance was for P. knowlesi (141/143; 98.6%), 
known to display high variability between clusters [20]. 
The accuracy for P. falciparum predictions was high 
(6834/7130; 95.8%), across all regions (> 91%). The accu-
racy for P. vivax was lower (1322/1502; 88.0%), especially 
for the South Asia region (80.5%), due to high similarity 
between neighbouring countries across regions.

Genotypic drug resistance
Using the known P. falciparum markers for chloro-
quine, SP and artemisinin, the patterns of predicted 
genotypic resistance were similar to established pat-
terns. Resistance to pyrimethamine was high across all 

http://www.malariagen.net/resources/open-data-resources
http://www.malariagen.net/resources/open-data-resources
http://www.malariagen.net/resources/open-data-resources
http://www.malariagen.net/resources/open-data-resources
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regions (> 87%), leading to high SP prevalence (> 80%), 
except in Oceania and South America. Chloroquine 
resistance was lowest in East and West Africa (< 38%), 
where the drug was withdrawn as a treatment more 
than 20  years ago, and there has been some reversion 
back to wild-type alleles [5, 43]. Mutations linked to 
(partial) resistance to artemisinin in P. falciparum were 
found in Southeast Asia (30.6%), in keeping with their 
known emergence and spread from the Greater Mekong 
region [6, 11]. For one such P. falciparum isolate with 
partial resistance to artemisinin, we show the informa-
tive nature of the Malaria-Profiler Dashboard output 
(Fig. 2a). The Thai isolate was sequenced on an Illumina 
platform (accession no. ERR248945), and Malaria-Pro-
filer predicts that it is from Southeast Asia, and has a 
complex drug resistance profile involving genotypic 
resistance to chloroquine, SP, and artemisinin (Fig. 2a).

Profiling using ONT platform data
Isolates were sourced from two travellers attending the 
Radboud University Medical Center who tested posi-
tive for malaria. Isolate DNA (isolate1: ERR11254081, 
isolate2: ERR11254083) was sequenced on the ONT 
platform to establish their likely geographical source 
and genotypic drug resistance. Isolate1 was sequenced 
twice with 410,115 and 1,168,719 reads mapped in 
total, leading to a median coverage of 31- and 94-fold, 
respectively. Across both sequencing runs, all posi-
tions in candidate genes used for profiling were cov-
ered by at least 10 reads. The profiles resulting from 
each sequencing run were identical. Resistance to chlo-
roquine was predicted through mutations in pfmdr1 
(Asn86Tyr, Asp1246Tyr) and pfcrt (Lys76Thr, Ala-
220Ser, Gln271Glu, Arg371Ile). Resistance to SP was 
predicted through mutations in pfdhfr (Asn51Ile, Cys-
59Arg, Ser108Asn) and pfdhps (Ala437Gly, Lys540Glu, 
Ala581Gly). The geographic origin was predicted to 
be East Africa (Fig. 2b), and consistent with the travel-
ler staying in Uganda. Isolate2 had 1,271,185 mapped 
reads, leading to 109-fold median coverage and all 
candidate gene positions covered by at least 10 reads. 
Resistance to SP was predicted through mutations in 
pfdhfr (Asn51Ile, Ser108Asn) and pfdhps (Ala437Gly, 
Lys540Glu). The traveller had been in Rwanda and 
India, and the predicted geographic origin was Africa 
(Additional file 1: Fig. S2b), suggesting that the source 
of infection was the former.

Discussion
Advances in WGS technology have expanded a role for 
genome analysis in the clinical laboratory and field set-
tings. Determining the profile of Plasmodium species 
using WGS will guide elimination strategies, including 

through the monitoring of important mutations tempo-
rally and assessing  the extent of mixed infections. The 
sequencing of DNA from malaria infections with low 
parasite density will be crucial in pre-elimination settings 
and is possible through low-cost selective whole genome 
amplification protocols [18]. We have previously shown 
the robustness of variant calling tools to detect SNPs, 
small indels and large deletions from WGS data [9, 26, 
44]. As WGS is adopted more widely as a diagnostic tool, 
there is a need for robust and reliable software tools to 
rapidly process the vast amounts of data generated. Fur-
ther, the growing application of third and fourth-gen-
eration sequencing platforms (e.g. ONT MinION) and 
linked cost-effective amplicon-based approaches have 
driven the need to integrate analysis options for these 
technologies into profiling tools to support their use in a 
more automated format than currently available.

The Malaria-Profiler framework allows for an adap-
tive mutation library, where the set of  barcoding mark-
ers can be extended to cover gaps in our knowledge. As 
our knowledge of Plasmodium drug resistance mecha-
nisms (e.g. P. vivax chloroquine resistant loci) and geo-
graphical-specific markers (e.g. for P. malariae and P. 
ovale ssp.) grows, prediction software must be flexible 
and allow for customisation of barcoding databases. The 
generation of informative genomic data will be facili-
tated through advances in sequencing platforms, includ-
ing low-cost applications of amplicon-based assays that 
target candidate genes. Further, ONT platforms can 
implement “adaptive” sequencing, where it is possible 
enrich on-target reads through real-time alignment to 
specified genomes of interest and eject uninteresting 
reads, thereby minimising the generation of contami-
nant sequences in a clinical sample. Whilst human con-
taminants in blood are typically removed through sample 
processing protocols (e.g. SWGA, leucocyte depletion), 
Malaria-Profiler also filters non-Plasmodium sequences 
using bioinformatic methods. Ultimately, if there is insuf-
ficient sequence coverage of Plasmodium parasite DNA, 
then Malaria-Profiler cannot call variants  robustly. A 
future extension of the software could be to identify 
potentially informative markers in the human genome 
[45], such as sickle cell HbS, but this would require exten-
sive evaluation of sequencing protocols and data gener-
ated across a range of asymptomatic and clinical blood 
samples. The increased deployment and availability of 
such technologies could lead to assessments of Plasmo-
dium genetic diversity in sites with currently limited data 
and studies. There is a constant need to update, re-eval-
uate and improve mutation libraries in response to new 
genomic data and functional evidence, including through 
the implementation of artificial intelligence approaches 
[36, 46]. To minimise the risk that mutation libraries 



Page 8 of 11Phelan et al. Genome Medicine           (2023) 15:96 

become unmaintained and remain static versions of evi-
dence at the time, we have hosted the library on a reposi-
tory that facilitates user input (https:// github. com/ jodyp 

helan/ malar ia- db). Further improvements can involve 
the exploration of structural changes, such as copy num-
ber variants, as some have been linked with the drug 

Fig. 2 Example of Malaria‑Profiler report outputs. a Thai isolate confirmed to be P. falciparum from Southeast Asia, with a complex drug resistance 
profile (accession no. ERR248945). b A traveller isolate sequenced on Oxford Nanopore Technology and determined to be from East Africa 
and with chloroquine, Sulfadoxine and Pyrimethamine resistance (accession no. ERR11254081)

https://github.com/jodyphelan/malaria-db
https://github.com/jodyphelan/malaria-db
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resistance. For example, markers of resistance to meflo-
quine and piperaquine, include amplifications of Pfmdr1 
and PfPlasmepsin2/3, respectively. Similarly, low-density 
infections, and deletions of the P. falciparum hrp2/3 
genes (encoding the HRP2 and HRP3 proteins) [47] pre-
sent challenges for some rapid diagnostic tests, therefore 
such deletions could also be included [48]. Whilst analy-
ses of gene coverage are possible through sequencing-
based approaches, leading to insights into amplifications 
and deletions, there may also be SNPs that tag structural 
variants to facilitate implementation.

In summary, monitoring genetic markers of resistance 
can help guide antimalarial therapy and surveillance 
activities. The introduction of drug resistance mark-
ers to new geographical areas may be detected through 
the WGS of clinical samples and analysis of data using 
Malaria-Profiler. Routine WGS across time and geo-
graphical regions can detect the presence and spread of 
established or new markers, and inform infection control 
practice. WGS has the potential to improve the resolu-
tion and timeliness of Plasmodium profiling and, in com-
bination with clinical trials and robust experimental work 
using Plasmodium culture and CRISPR-Cas9 systems 
[49], can lead to new insights into drug resistance mecha-
nisms. Malaria-Profiler is a flexible software tool that 
allows users to rapidly obtain useful information from 
WGS (and amplicon) data generated by Illumina and 
MinION platforms to predict species, drug resistance 
and geographical profiles with high accuracy.

Conclusions
We have developed an online software tool and method-
ology that provides rapid analysis of genome sequence 
data to describe Plasmodium species and geographical 
source and predict resistance to antimalarial drugs. The 
tool utilises a library consisting of ~ 250 mutations that is 
the most comprehensive and accurate such data source 
yet reported. The ability to rapidly analyse raw sequence 
data and extract information of clinical relevance has 
advantages over current in  vitro drug assays, which 
require parasite culture-based systems [50]. Accelerated 
access to tailored treatment could improve cure rates and 
reduce exposure to ineffective drugs, thereby  improv-
ing the patient experience and facilitating compliance. 
The analytical methodology described is customisable 
to allow moderation of the library to encompass novel 
mutations and incorporate new drugs should the need 
arise. Overall, we have shown that Malaria-Profiler can 
be used to reliably predict Plasmodium species, geo-
graphical source, and drug resistance from WGS. This 
pipeline can be applied to data from multiple sequencing 
platforms and can support informatically the application 
of WGS as a diagnostic and surveillance tool.
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