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Abstract 

Early identification of genetic risk factors for complex diseases can enable timely interventions and prevent serious 
outcomes, including mortality. While the genetics underlying many Mendelian diseases have been elucidated, it 
is harder to predict risk for complex diseases arising from the combined effects of many genetic variants with smaller 
individual effects on disease aetiology. Polygenic risk scores (PRS), which combine multiple contributing vari-
ants to predict disease risk, have the potential to influence the implementation for precision medicine. However, 
the majority of existing PRS were developed from European data with limited transferability to African populations. 
Notably, African populations have diverse genetic backgrounds, and a genomic architecture with smaller haplotype 
blocks compared to European genomes. Subsequently, growing evidence shows that using large-scale African ances-
try cohorts as discovery for PRS development may generate more generalizable findings. Here, we (1) discuss the fac-
tors contributing to the poor transferability of PRS in African populations, (2) showcase the novel Africa genomic 
datasets for PRS development, (3) explore the potential clinical utility of PRS in African populations, and (4) provide 
insight into the future of PRS in Africa.
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Background
Disease prevalence varies largely across the world, and 
some diseases are often specific to certain geographic 
locations. Lifestyle, diet, and environmental determi-
nants, as well as genetic factors, explain pathological con-
ditions in diverse settings and are likely to impact on the 
severity in different individuals and populations (https:// 
www. who. int/ data/ gho,18/ 10/ 2022). Clinical risk can be 
evaluated from the analysis of blood biomarkers, symp-
toms, and prevailing family history. However, recent 
work has suggested that risk prediction for common 
chronic diseases can be improved using genetic data [1].

Genome-wide association studies (GWAS) have signifi-
cantly contributed to identifying a huge number of loci 
associated to a variety of complex diseases and traits. 
However, most genetic association discoveries have 
been made in European ancestry individuals [2–5]. The 
strength of the genetic association with phenotypes is 
enhanced when phenotypic data is available from large-
scale studies linked with relevant phenotypic data and 
electronic health records. Recently, polygenic risk scores 
(PRSs), which weigh the genetic effect of numerous 
common variations associated to disease or traits, have 
gained popularity to quantify an individual’s genetic risk 
for a disease or trait. The pace of research in this area has 

recently improved, and PRS scores are now available for 
a variety of traits and diseases, mostly in the European 
population (Figs.  1 and 2). As a result, PRS is quickly 
becoming a common tool for estimating genetic liability 
in predicting disease risks, which is essential for early dis-
ease identification, prevention, and intervention.

The poor transferability of PRS derived from Euro-
pean ancestry dataset to diverse African populations is a 
cause of concern. This is likely to be due to unique dif-
ferences in genetic architecture and environmental expo-
sures of the different populations [4]. The lack of accurate 
PRS in African ancestry individuals may cause barrier to 
achieve precise risk stratification which is critical for pre-
cision medicine. Given that the human genetic diversity 
is greater in Africa, and when large-scale African ances-
try cohorts are available for the development of PRS, this 
may generate more generalizable findings [6]. This is high 
importance, not only for Africa but for the entire global 
medical and research community. For example, the iden-
tification of PCSK9 missense mutations and their impact 
on plasma low-density lipoprotein cholesterol levels 
across diverse ancestries. This breakthrough discovery 
exemplifies how African ancestry individuals have con-
tributed to advancing medical knowledge, thereby bene-
fiting the entire human race. The rich genetic variation in 

Fig. 1 Proportion of broad ancestry populations that contributed to the development and evaluation of 2555 PGS scores within the PGS Catalogue 
(version 2023–06-23). African unspecified: African that could not be classified as African American, Afro-Caribbean, or Sub-Saharan African. Asian 
unspecified: Asians that could not be classified as East Asian, Central Asian, South Asian, or South-East Asian. Multiple studies and subsets of data 
can contribute towards the development and evaluation of a PGS scores within the PGS Catalogue

https://www.who.int/data/gho,18/10/2022
https://www.who.int/data/gho,18/10/2022
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African populations provides so many opportunities that 
extends well beyond the scope of PRS. In this review arti-
cle, the aim is to (1) review factors contributing to poor 
transferability of PRS in African populations, (2) show-
case the novel genomic datasets that could enhance PRS 
transferability in continental Africa, and (3) explore the 
potential clinical utility of PRS in African populations.

Factors contributing to poor transferability of PRS 
in African populations
There are many factors contributing to poor transferabil-
ity of PRS in African populations. This includes genetic 
factors such as minor allele frequencies, difference in 
linkage disequilibrium patterns, and their interactions 
with environmental considerations like diet, exercise, 
age, gender, and variability in phenotype measurement.

PRS are calculated by aggregating the effect of many 
common variants that are associated with the diseases 
of interest. Given that Africa is the continent where all 
humans originated, it has the highest genetic diversity 
in the whole world. However, the current lack of diver-
sity in genomic studies have implications on the predic-
tive power of the methods that are trained and developed 
on euro-centric datasets. PRS constructed with such 
method may differ primarily on how the weight of the 
effect size is generated and how the number of single 
nucleotide polymorphism (SNPs) to be included in the 
PRS calculation is determined. For example, the inter-
rogation of high-risk variants may involve inclusion of a 
causal variant from a population, whereas PRS estimates 
may incorporate variants that are not perfectly correlated 
with the causal genetic factor [7]. The implication of this 
is that the method may incorporate a variant with uncer-
tain effect size in the PRS which invariably may reduce 
the generalizability of PRS risk estimates in the target 
population.

A linkage disequilibrium (LD) reference panel and data 
on allele frequencies are prerequisites for application of 
PRS methods in a heterogeneous background. These fac-
tors are important for PRS development. For example, 
allele frequency differences may cause predicted risks of a 
disease to vary across populations. Given that LD blocks 
are shorter in African populations, the SNPs which are in 
high LD can be removed as they inflate the score. Several 
studies have shown lower levels of LD in African popula-
tions compared to other populations [8] which may imply 
that the power to detect untyped causal loci is reduced. 
This LD and distance between the causal variants and 
the GWAS tagging SNPs can explain lower accuracy and 
limited transferability. The relative accuracy of polygenic 
scores is enhanced when LD and minor allele frequencies 
are integrated into the model [9] assuming that causal 
variants are shared between populations. Invariably, LD 

pattern differences between discovery and target popula-
tions may impact the effect size calculation and determi-
nation of causal variant. Therefore, the transferability of 
risk score across populations is a major challenge when 
they do not share the same genetic architecture for each 
disease [10].

The phenomenon of pleiotropy is an indication of the 
complexity of how mutations in one locus may influence 
several pathways or functions. One gene may be respon-
sible for different unrelated traits. SNP markers that are 
selected for PRS calculations may well impact on another 
phenotype(s) than the one for which the risk is being cal-
culated. Graff et  al. found patterns of pleiotropy when 
investigating PRS in Europeans for 16 different types of 
cancers [11]. Positive associations were reported between 
several forms of cancer. Some variants may be associated 
with a disease while being protective for another pathol-
ogy [11]. Pleiotropic effects of certain variants may well 
confound risk estimations when used for PRS calcula-
tions [11].

Many PRS methods have attempted to solve the prob-
lem of different LD pattern using LD clumping or/and 
penalised regression. Ge and colleagues [12] and Baker 
and colleagues [13] have extensively reviewed such differ-
ent PRS methods, and, as such, this paper is not intended 
to duplicate this effort. However, we provide a summary 
of how some popular PRS tools account for LD (Addi-
tional file 1: Table S1). The main problem with the clump-
ing and thresholding approach is that it does not take 
environmental factors such diet and exercise into consid-
eration which might confound the predictive accuracy of 
these measures.

In addition to genetic contributions to lower PRS 
accuracy in African population, environmental expo-
sures can also play a major role in contributing to poor 
transferability of PRS across populations [5]. As most 
GWAS may have already been subject to ascertainment 
bias [7], such study recruitment mainly from rural, 
urban, healthier, poorer, or educated participants only 
may introduce collider bias [14]. In a recently pub-
lished paper describing PRS in African populations, 
Kamiza and  colleagues4 show that environmental fac-
tors such as diet, exercise, age, gender, and living in 
rural or urban community can influence PRS portabil-
ity [15]. The results from this paper suggest that poor 
transferability of PRS between South African Zulu and 
Ugandan populations is due to differences in environ-
mental and genetic factors between the two African 
populations [15]. They also showed that lipid predicta-
bility was lower in East Africa Uganda population than 
in South Africa Zulu population which was attributed 
to non-fasting of participants before blood collection 
for lipid analysis. Similarly, a type 2 diabetes PRS paper 
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[16] shows a varied predictability between Kenya and 
Ghana and Nigeria, where predictability was much 
higher. Although these two studies show that PRS 
derived from data of African American individuals 
enhance polygenic prediction in sub-Sahara Africa 
compared to European and multi-ancestry scores, it 
is important to note that the studies further show that 
PRS prediction varied greatly within SSA, implying 
that African American-derived PRS may not be gener-
alizable across populations in Africa. This reason may 
be that only certain geographies and genetic variation 
are represented in African American [17].

In the study by Reisberg and colleagues [18], SNPs 
from the European cohorts were used for calculating 
the risk for type 2 diabetes, and the 1000 Genomes 
dataset of African populations had the highest scores 
compared to Europeans. The report from Hugues and 
 colleagues15 verifies that when population-specific 
SNPs are included in the calculations, the risk calcu-
lation is improved. Considerable efforts to understand 
GxE interaction effects is key for transferability of PRS 
as the effects of genetic variants on phenotype can 
be different between populations as demonstrated by 
Chikowore and colleagues [16].

In addition, research strategies and medical proce-
dures are not always consistent across all countries in 
Africa. This is critical for diseases such as psychiatric 
disorders, where phenotype reporting requires intri-
cate and complicated procedures. As an alternative, 
minimal phenotyping, which has recourse to hospital 
records, self-reporting symptoms, or prescription of 
medications, is used for identification of cases. This 
approach consists of sampling based on heterogeneous 
self-reported symptoms and not on the recommended 
criteria for diagnosis. GWAS based on minimal pheno-
typing produce a large number of associated loci which 
are however of lower heritability and have non-specific 
effects. Cai et  al. show that when minimal phenotyp-
ing is used, for major depressive disorder (MDD), the 
genetic architecture is different from when the strictly 
defined MDD is used [19].

Collectively, genetic factors such as differences in 
effect sizes, allele frequencies, LD patterns, phenom-
enon of pleiotropy, and phenotyping in addition to 
environmental exposures are limiting the generaliz-
ability of genetic predictions of diseases and traits to 
African populations. Pereira, et  al. discussed in detail 
these factors that influence PRSs and limit transfer-
ability including highlighting the complex scenarios of 
the importance of using genomic data from multiple 
populations to develop appropriate population-spe-
cific applications [20].

Growing collection of continental African genomic 
datasets for more accurate PRS
To do genomic research, biobanks are essential. As a 
result, national biobanks have been established by sev-
eral governments globally to support scientific research 
and advance precision medicine. One notable example 
is UKBioBank [21], a well-known biobank that gathers 
health and genetic information from 500,000 people in 
the UK. (2) The All of Us Research Programme (USA) 
seeks to recruit one million or more individuals from a 
variety of backgrounds to provide a resource for preci-
sion medicine [22]. (3) The Estonian Biobank—a nation-
wide biobank effort with the aim of enhancing genetic 
research and healthcare in the nation—collects genomic 
and health-related data from over 200,000 members [23]. 
Some other genomic medicine initiatives include those 
from Canada, Qatar, Turkey, Japan, Finland, Denmark, 
Australia, Saudi Arabia, Switzerland, China, and Brazil 
[24], but such national biobank is lacking in Africa.

Growing evidence shows that using large-scale African 
ancestry cohorts as discovery for PRS development may 
generate more generalizable findings. Data from GWAS 
are fundamental as they are used for developing PRS. 
To date, GWAS has increasingly identified a large num-
ber of genetic variants which are associated with a range 
of complex traits [5, 7, 24, 25]. However, the majority of 
GWAS has been conducted with data from individual 
of primarily European and Asian descents [5, 25]. PRS 
can help to estimate individual’s genetic risk to a dis-
ease or condition by aggregating the effect of many com-
mon variants associated with the condition, but studies 
have shown that well-powered large-scale-based data 
are required to derive PRS which are currently lacking 
in continental Africa. This calls for the need to initiate a 
step-change in the scale of such studies in African popu-
lations to enhance PRS prediction or aggregate emerging 
genomic datasets comparable with European and Asian 
genomic initiatives. African genetic data have revealed 
highly relevant African-enriched variants in genes such 
as APOL1, PCSK9, and G6PD for kidney diseases, lipid 
traits, and diabetes respectively [26]. In Table 1, we show 
a growing collection of rich continental African genomic 
datasets linked to mostly non-communicable disease 
phenotypes becoming available for generating PRS for 
African populations.

One key factor to determine the accuracy and predictive 
power of PRS is the power of the discovery GWAS data 
to avoid reaching misleading conclusions [9]. To improve 
cross-population polygenic risk prediction, specifically, 
Weissbrod and colleagues [59] recommended that base 
GWAS should have at least 100 K individuals to observe 
relate prediction and accuracy of PRS. Unfortunately, 
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the most current GWAS data from continental Africa 
are under-powered with sample sizes ranging from 150 
to 12,000 individuals representing only 1.1% of genomic 
studies from all African ancestry individuals [5].

In order to improve the representation of African 
genomic data in the global context for discovery and 
genetic risk prediction in the last decade, some initia-
tives have been initiated in Africa including the Africa 
America Diabetes Mellitus (AADM) [30], the Uganda 
genome project [27, 28], the Human Heredity and Health 
in Africa consortium [60, 61], the Nigerian 100 K genome 
project [50], and many others with smaller sample sizes 
and limited potential to get published. Aggregating all 
the datasets including many emerging ones (Table  1) 
will (1) improve discovery power for GWAS and PRS, 
(2) improve representation of African genomics in the 
global context, (3) provide a unique framework to exam-
ine a wide range of health indices in African populations, 
and (4) aid insights into the biological mechanisms and 
aetiology underlying disease risk in African populations, 
informing the wider application of potential preventative 
or therapeutic strategies.

Barriers and potential clinical utility of PRS in African 
populations
Hundreds of PRS studies have been carried out including 
those on its clinical utility mainly in European popula-
tions [62–65]. A recent systematic review by Kumuthini 
and colleagues [65] shows a conflict claim for and against 
utility of PRS. This analysis did not discover published 
evidence of a PRS’s clear clinical usefulness, though they 
show numerous examples of near evidence of clinical 
utility and ample demonstration of clinical validity [65]. 
Conversely, there is also a growing number of investiga-
tions suggesting that PRS are not more predictive than 
standard of care [66], for example, two retrospective 
studies that integrated coronary disease PRS and found 
no and a modest statistically significant improvement in 
accuracy compared to use of the same models without 
the score [67, 68]. In the analysis of two US cohorts, Mos-
ley and colleagues [68] show that the PRS was associated 
with incident of coronary heart disease events but did not 
significantly improve discrimination, calibration, or risk 
reclassification compared with conventional predictors. 
However, a few PRS-based genetic risk estimates from 
continental Africa [15, 16] have shown promises in the 
ability of PRS to identify subgroups of individuals who 
may benefit from the prioritisation of preventive actions.

The potential utility of PRS in African populations is 
limited by many factors. First, the current PRS meth-
ods limit the general utility of PRS as they have mostly 
been developed and optimised in European populations. 
Unless sufficient research is also undertaken to optimise 

the application of PRS in African populations, there is a 
risk of inequitable distribution of health benefits from 
future clinical utility of PRS. PRS calculations cannot, for 
now, capture the full spectrum of disease risk because 
of allele types, their frequencies, and their effect sizes. 
For precise estimates to be possible, a complete repre-
sentation of all contributing loci is desirable [69]. Cur-
rent PRS methods can be improved with non-genetic 
parameters included in the models. More dynamic 
methods to estimate the effects of specific genetic vari-
ations given the genetic, demographic, and clinical risk 
factor backgrounds of the individual are anticipated to 
be developed as representation from Africa and other 
underrepresented populations increases. It is reassuring 
to see a coordinated efforts such as the Polygenic RIsk 
MEthods in Diverse Populations (PRIMED) that prom-
ises to deliver new methods for risk prediction in diverse 
ancestry and specifically a pan-Africa initiative—CAR-
diometabolic Disorders IN African-ancestry PopuLations 
(CARDINAL) project which aim to test PRS performance 
on African individuals with phenotype and genotype data 
available from H3Africa projects [70].

Lack of infrastructure and difficulties with accurate 
phenotyping are major barriers for conducting genomic 
research in resource limit settings like Africa. However, 
to ensure collection of more accurate phenotype, a stand-
ardised data collection instrument known as the H3Af-
rica Standard Case Report Form (CRF) was developed by 
H3Africa [71], which enables efficient and complete data 
collection, processing, analysis, and reporting. While the 
issue of heterogenous phenotyping remains, there exists 
some commonly statistical method for analysing a col-
lection of studies for which the effect sizes are expected 
to vary. Random-effects model for GWAS meta-analysis 
is designed specifically for the case in which there is het-
erogeneity [72]. The other commonly used fixed-effects 
meta-analysis will only increase power if effects are 
homogeneous across studies.

For a sustainable solution to some lack of infrastructure 
in the continent for genomic research, H3Africa [60] and 
other initiatives in Africa are partnering with biotechnol-
ogy company such as Illumina. Africa can now boast of 
large genomics facility with the latest cutting-edge tech-
nology in Nigeria, South Africa, Kenya, Uganda, and 
other places. Notably are African Center of Excellence 
for Genomics in Infectious Diseases (ACEGID) Nige-
ria, KwaZulu-Natal Research Innovation and Sequenc-
ing Platform (KRISP), Centre for Epidemic Response 
and Innovation (CERI), and Centre for Proteomic and 
Genomic Research (CPGR) in South Africa. These new 
facilities enable African researchers to avoid major delays 
in cross-border shipping of biological samples and to 
ensure the ability to reuse these valuable datasets. In the 
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past, infrastructure for sample processing, biobanking, 
genotyping, or sequencing and computational analysis 
are often outsourced, but these are now gradually chang-
ing. To optimally benefit from these technologies that 
foster implementation of PRS, Africa countries must first 
address the collapsing primary health care mostly in the 
rural communities, although, in the urban context, Afri-
cans have choice to access advanced medical technolo-
gies despite the current shortcomings of the healthcare 
systems including an increased in demand for genetic 
tests for preventive purposes (for example: cancer panels 
such as MammaPrint in South Africa).

Even with the most accurate PRS, addition of conven-
tional risk factors to PRS would be central to potential 
clinical utility in Africa [16, 73]. Such clinical utility of 
PRS in Africa will require an extensive awareness and 
education for both the physicians, patients, and the 
public regarding the importance and interpretation. In 
particular, methods that integrate uncertainty deriving 
from measured as well as unmeasured factors would be 
valuable for communicating the uncertainty associated 
with genetic risk estimations at an individual level [74, 
75] including approaches to mitigate incidental findings, 
genetic discrimination, and what the role of counsellors 
and expert mediators would be in such cases. Such clini-
cal utility of PRS would need to be fully supported by a 
robust ethical framework and effective regulatory system. 
For example, ethically, the genetic study of cognitive abil-
ity remains controversial both scientifically and ethically, 
and as such, the utility of PRS would need to be regulated 
within certain traits and phenotypes.

Ultimately, as shown by a few African PRS studies, PRS 
may have clinical utility in Africa when combined with 
traditional risk factors for some diseases, such as cardio-
metabolic traits, but first, right healthcare system and 
genomic infrastructure must be in place, and large-scale 
African genomic studies are required to demonstrate the 
utility of polygenic risk estimation. This might require the 
development of multiple models for every disease given 
the broad genetic diversity within Africa.

Future directions and conclusion
PRS currently have limited transferability, caused mainly 
lack diversity in genomic studies. To improve the predic-
tion accuracy of PRS in African ancestry individuals, it 
is most important to include ethnically diverse individu-
als from continental Africa in genomic studies. Wonkam 
[76] recommended a rough estimate of about three mil-
lion African genomes (3MAG) to capture the full scope 
of Africa’s genetic variation and a representative human 
reference genome. This is mostly hindered by the lack of 
accurate population descriptions of African populations. 
Participants are mostly defined as per their geographic 

region or country, while it is well established that most 
countries are not homogeneous and can have profound 
genetic differences. Botswana, for example, hosts popula-
tions that are descendants of Bantu from West Africa and 
people of South African ancestry [77]. Similarly, Bantu 
speakers of Uganda contrast with non-Bantu speakers 
from the same country. Substantial genetic variations 
across regions of Africa must be carefully addressed for 
the integration of genomics data in health care. In a per-
sonal communication with Wonkam [76], he explained 
that 3MAG was a very rough estimate base on two sim-
ple assumptions: (1) the Human Genomes Project (HGP) 
estimated that between two unrelated individuals, there 
is a SNV every 1300 bp, therefore about 3,000,000 SNV 
difference, considering that each genome has 3 billion 
nucleotides. (2) owing to the great diversity in Africa, if 
we assume that most African has at least one uncaptured 
SNV, we need a minimum of 3 million African to cap-
ture, at least, the SNVs in our genome, although we see 
the potential of bias in this estimation [78] and several 
logistical and financial challenges to consider. Neverthe-
less, we agree with the proposition that a comprehensive 
and extensive genome sequencing programme in Africa 
is of utmost importance. This undertaking is essential 
for the comprehensive representation of the continent’s 
extensive genetic diversity. New initiatives in Africa, such 
as the ambitious plan to establish eight Genomics Cen-
tres of Excellence (GenCoE) across the continent, seek to 
revolutionise access to cutting-edge genomics technolo-
gies and reshape the continent’s response to some of its 
most pressing health challenges (https:// www. nature. 
com/ artic les/ d44148- 023- 00052-z). The initiative, which 
carries a significant price tag of US$200 million, is built 
from the 3MAG programme and seeks to obtain finan-
cial support from many sources globally. These sources 
include African governments, industrial partners, the US 
government, and other funding agencies. It is imperative 
that Africa actively participates in the genomic medicine 
revolution, ensuring that it does not lag behind in har-
nessing the transformative potential it offers.

Such large-scale African genomic studies like 3MAG 
can reveal novel genes including causal genetic variants 
not found in previous Eurocentric studies. In addition, 
it would offer the opportunity to develop regional PRS 
within Africa to cater for genetic differences within 
Africans which is even larger than between Africans 
and Eurasians. Invariably, this would largely solve many 
barriers poised by difference in allele frequencies, effect 
sizes, and LD patterns when developing PRS. Leverag-
ing the greater genetic diversity in Africa, within repre-
sentative genomic data from Africa, PRS derived from 
African population may be more predictive to all global 
populations [6].

https://www.nature.com/articles/d44148-023-00052-z
https://www.nature.com/articles/d44148-023-00052-z
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Currently, PRS statistical models are trained with 
Eurocentric datasets. While representation of African 
genomics is being improved which might take dec-
ades, statistical model could be trained to estimate 
the projected effect sizes and allele frequency of those 
unknown African GWAS loci for genetic risk predic-
tion. With current advances in machine learning and 
artificial intelligence, expanding the PRS models is 
a more practical solution to addressing the effect of 
genetics and its interaction with environmental expo-
sure [79]. This method will require to be trained with 
different datasets. Such datasets for PRS across diverse 
ethnic groups in African populations have been high-
lighted in Table  1. Eventually, more dynamic methods 
for estimating effects associated with individual genetic 
variants given the individual’s genetic, demographic, 
and clinical risk factor background should be developed 
[79]. We think the future of PRS in diverse Africa popu-
lation lies in the development of multiple PRS models 
per disease from African discovery datasets.

Considering the current poor state of many health-
care settings in Africa, even with best models and per-
fect PRS transferability, the prospect of clinical utility 
of PRS is slim in resource-limited medical settings. 
It is most likely that PRS would first be accessible 
across Africa via direct-to-consumer (DTC) company 
and specialist private hospitals for only those who 
could afford it, but there are concerns about ethi-
cal legal and social issues (ELSI) and how PRS will be 
regulated. Regulatory bodies should consider limiting 
power in the hands of PRS service providers to use 
their discretion to test and report any conditions or 
traits; otherwise, the easy access to PRS may also lead 
to inappropriate use and abuse. For example, the use 
of PRS for embryo selection, intelligence, and other 
psychiatric and socio-behavioural traits is strongly 
recommended to be restricted.

Collectively, in the future, with increased representa-
tion of Africans in genomics, sophisticated predictive 
PRS models which account for both genetic and non-
genetic factors, it may well be possible for PRS to be 
utilised in the medical practice for some diseases with 
multiple polygenic scores generated for different dis-
eases or traits in combination with conventional risk fac-
tors. This would need to be guided with robust ethical 
framework, but more translational research is needed.
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