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Abstract 

Background Early detection of hepatocellular carcinoma (HCC) is important in order to improve patient prognosis 
and survival rate. Methylation sequencing combined with neural networks to identify cell-free DNA (cfDNA) carrying 
aberrant methylation offers an appealing and non-invasive approach for HCC detection. However, some limitations 
exist in traditional methylation detection technologies and models, which may impede their performance in the read-
level detection of HCC.

Methods We developed a low DNA damage and high-fidelity methylation detection method called No End-repair 
Enzymatic Methyl-seq (NEEM-seq). We further developed a read-level neural detection model called DeepTrace 
that can better identify HCC-derived sequencing reads through a pre-trained and fine-tuned neural network. After 
pre-training on 11 million reads from NEEM-seq, DeepTrace was fine-tuned using 1.2 million HCC-derived reads 
from tumor tissue DNA after noise reduction, and 2.7 million non-tumor reads from non-tumor cfDNA. We validated 
the model using data from 130 individuals with cfDNA whole-genome NEEM-seq at around 1.6X depth.

Results NEEM-seq overcomes the drawbacks of traditional enzymatic methylation sequencing methods by avoiding 
the introduction of unmethylation errors in cfDNA. DeepTrace outperformed other models in identifying HCC-derived 
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Background
Cancer is a leading cause of death, with an estimated 
19.3 million new cases and nearly 10 million deaths 
worldwide in 2020 [1]. Among these, hepatocellular car-
cinoma (HCC) is one of the most common and deadli-
est types of liver cancer, accounting for a huge number 
of cancer deaths globally [1]. HCC is typically associ-
ated with chronic liver disease (LD), primarily cirrhosis 
[2]. Unfortunately, most HCC patients are diagnosed at 
advanced stages with a median overall survival of only 
1–1.5  years [3]. However, early detection of HCC sig-
nificantly improves the prognosis, with a 5-year survival 
rate more than 70% [2]. Researchers have been investi-
gating various biomarkers to aid in early detection. One 
such promising and non-invasive biomarker is cell-free 
DNA (cfDNA), which is the fragmented DNA in human 
peripheral blood and other circulating fluids. A small 
proportion of cfDNA is circulating tumor DNA (ctDNA), 
which is the DNA derived from tumor cells. Detecting 
ctDNA in plasma cfDNA has achieved success in diag-
nosing various cancers including HCC, since ctDNA car-
ries cancer-specific genetic and epigenetic aberrations [4, 
5]. Specifically, abnormal DNA methylation changes have 
been reported in early stage of HCC [6–9].

The methylation sequencing (methyl-seq) technol-
ogy uses sodium bisulfite to convert the unmethylated 
cytosines to uracils. While bisulfite treatment is a widely 
used method for detecting DNA methylation, it requires 
harsh chemical conditions (in low pH, high temperature, 
and high concentration salt solution for a long time), 
leading to DNA damage, fragmentation, and degradation 
[10]. Particularly, bisulfite treatment has been reported to 
preferentially damage DNA in hypo-methylated regions 
with high GC content [11], which was associated with 
the causes and development of multiple cancers includ-
ing HCC [12]. Moreover, the bisulfite treatment can 
exhibit flaws during unmethylated cytosine conversion, 
potentially reducing their accuracy and sensitivity of 
cancer detection. To address the limitations of bisulfite 

treatment, enzymatic conversion-based methyl-seq 
(EM-seq) has been developed and has shown significant 
potential in increasing accuracy in detecting cancer with 
less DNA damage and more CpG sites (CpGs) covered 
[13]. However, current EM-seq method is inaccurate 
when applied in cfDNA or degraded DNA (e.g., DNA 
from formalin-fixed, paraffin-embedded (FFPE) samples), 
because these DNA fragments contain various lengths 
of jagged ends [14–16]. Most double-stranded cfDNA 
carry single-stranded ends, termed a jagged end, and the 
lengths of jagged ends varied among cfDNA fragments 
[14]. Since double-strand DNA library construction is 
used in current EM-seq method, it has to do end-repair 
proximal to 3’ end of cfDNA using the unmethylated 
nucleotides before conversion [17]. Therefore, this end-
repair process may introduce a considerable amount of 
unmethylation errors in CpG sites, although the original 
sites are actually methylated. Moreover, these unmeth-
ylated CpGs introduced artificially are difficult to be 
removed due to the various lengths of jagged ends among 
cfDNA fragments as mentioned above [14]. To over-
come this problem, we are first to develop a new library 
construction method, called No End-repair Enzymatic 
Methyl-seq (NEEM-seq).

In recent years, deep learning techniques have been 
applied to genomic sequence research and cancer detec-
tion [18–20]. Most researchers utilize Convolutional 
Neural Network (CNN) [19, 21], Recurrent Neural Net-
work (RNN), such as Long Short-Term Memory (LSTM) 
[22] or a hybrid model that integrates the advantages of 
the CNN and RNN (e.g., CNN + LSTM) [23–25]. How-
ever, these models have limited performance that is 
restricted by the quantity and quality of annotated data. 
They can only capture the task-specific information con-
tained in supervised labels [26] and hardly learn general 
deep semantics of genome sequences, which may limit 
their performance in detecting cancer in read level [27].

To address these issues, we propose DeepTrace [28], 
a read-level HCC detection model that captures the 

reads and detecting HCC individuals. Based on the whole-genome NEEM-seq data of cfDNA, our model showed high 
accuracy of 96.2%, sensitivity of 93.6%, and specificity of 98.5% in the validation cohort consisting of 62 HCC patients, 
48 liver disease patients, and 20 healthy individuals. In the early stage of HCC (BCLC 0/A and TNM I), the sensitivity 
of DeepTrace was 89.6 and 89.5% respectively, outperforming Alpha Fetoprotein (AFP) which showed much lower 
sensitivity in both BCLC 0/A (50.5%) and TNM I (44.7%).

Conclusions By combining high-fidelity methylation data from NEEM-seq with the DeepTrace model, our method 
has great potential for HCC early detection with high sensitivity and specificity, making it potentially suitable for clini-
cal applications.

DeepTrace: https:// github. com/ Bamro ck/ DeepT race

Keywords Hepatocellular carcinoma, Early detection, Cell-free DNA, Circulating tumor DNA, Whole-genome 
methylation sequencing, Enzymatic conversion, Read level, Neural network, No end-repair enzymatic methyl-seq

https://github.com/Bamrock/DeepTrace
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genetic information of methyl-seq data in a Bidirectional 
Encoder Representations from Transformers (BERT) like 
model [29]. In brief, the DeepTrace model was first pre-
trained to learn the general semantics of human DNA 
methylation sequences without any additional annota-
tions. DNA methylation and CpG sites (CpGs) are infre-
quent throughout the whole genome, but crucial for 
carcinogenesis. Thus, the methylated CpGs in sequenc-
ing reads were recoded, and we modified the Masked 
Language Model (MLM) task in the pre-training phase, 
to enable the model to pay more attention to the meth-
ylation status of CpGs. The pre-trained DeepTrace was 
then fine-tuned for the specific task of HCC-derived read 
identification. A validation cohort containing 130 indi-
viduals further demonstrates our proposed DeepTrace 
model to be powerful in detecting early-stage HCC with 
low-depth cfDNA NEEM-seq data, providing a potential 
and affordable solution for clinical applications.

Methods
Sample collection
In this study, total 42 pairs of human HCC tissues and 
para-tumor tissues, 62 HCC plasma samples, 67 LD 
plasma samples, and 39 healthy plasma samples were 
collected from three hospitals: the Affiliated Hospital 
of Infectious Diseases of Soochow University, the First 
Affiliated Hospital of Nanjing Medical University, and 
the Xinhua Hospital Affiliated to Shanghai Jiao Tong 
University School of Medicine. The LD patients include 
chronic hepatitis (hepatitis B, C, and E), liver cirrho-
sis, liver damage, and acute hepatitis patients. All HCC 
and LD patients have undergone a definite clinical diag-
nosis. None of the HCC patients had received any prior 
treatment for tumor before blood collection and sur-
gery resection. The healthy volunteers have successfully 
passed a physical examination indicating the absence of 
liver disease. Primary tumor and para-tumor tissues were 
collected during surgical resection. Approximately 10 ml 
of peripheral blood was collected from each participant 
at the time of diagnosis by using Cell-Free DNA BCT 
tube (Streck). The peripheral blood of HCC individuals 
was collected before surgical resection and treatment. All 
procedures were approved by ethics committee of three 
aforementioned hospitals and written informed con-
sent was obtained from all participants. The information 
about the participants was summarized in Additional 
file 1.

DNA isolation and library preparation
Plasma was collected by centrifuging blood at 1600 g for 
10 min at 4  °C and followed by centrifuging at 16,000  g 
for 10 min at 4 °C to remove cell debris. Genomic DNA 
(gDNA) of tissues and cfDNA of plasma were extracted 

by using blood/tissue DNA magnetic bead extraction 
kit (GeneOn Biotech). All procedures were conducted 
according to the manufacturer’s protocol. DNA quan-
tity was assessed using Qubit dsDNA HS Assay (Thermo 
Fisher Scientific). Extracted cfDNA and gDNA were 
stored at − 80 °C for ready use.

The gDNA was acoustically sheared to an average size 
200–280  bp (peak approximately 250  bp) by using frag-
mentation device Covaris instrument. Two internal 
controls, unmethylated lambda and CpGs methylated 
pUC19, were added in each sample. Forty nanograms 
gDNA or 5–20  ng cfDNA were subjected to the enzy-
matic conversion step using Enzymatic Methyl-seq 
Conversion Module (NEB, E7125S) according to the 
manufacturer’s protocol. In brief, Tet methylcytosine 
dioxygenase 2 (TET2) and T4-BGT enzymes were used to 
protect 5mC and 5hmC from deamination. Subsequently, 
APOBEC3A converted cytosines, but not the protected 
forms of cytosines, to uracils. The enzymatic converted 
DNA was then subjected to Accel-NGS DNA library Kit 
(Swift Biosciences) for single-strand DNA library prepa-
ration according to the manufacture’s protocol. Briefly, 
tails and truncated adapter 1 were ligated to 3’ end of sin-
gle-strand DNA. A new DNA strand was generated via 
the extension step, followed by adding truncated adapter 
2 to the 5′ end of DNA. Finally, an indexing PCR step was 
performed to increase yield of DNA molecules with full-
length adapter 1 and adapter 2.

We also used human reference gDNA (NA12878, Cori-
ell) and human cfDNA samples to compare three differ-
ent methods for methyl sequencing library construction, 
including NEEM-seq, Enzymatic Methyl-seq (EM-seq), 
and whole-genome Bisulfite Sequencing (WGBS) which 
was considered as the gold standard. The input amount of 
DNA was 40 ng for gDNA and 20 ng for cfDNA, and was 
consistent across different library construction methods. 
The cfDNA samples were from the same individual. The 
EM-seq library was constructed using NEBNext Enzy-
matic Methyl-seq Kit (NEB, E7120S) according to the 
manufacturer’s protocol. For WGBS, the DNA samples 
were converted using EZ DNA Methylation-Lightning 
Kit (Zymo) according to the manufacturer’s protocol. The 
bisulfite converted DNA was then subjected to Accel-
NGS DNA library Kit (Swift Biosciences) for library 
preparation according to the manufacturer’s protocol.

Sequencing, mapping, and DMRs identification
The libraries were paired-end 150  bp sequenced on 
NovaSeq 6000 sequencers (Illumina). Raw data was fil-
tered using fastp 0.20.1 [30]. Low-quality reads were 
filtered and adapters were trimmed using default param-
eters of fastp. In addition, according to the manual of 
Swift library construction kit, after adapter trimming, 
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15 bases from the end of read 1 and 15 bases from the 
beginning of read 2 were trimmed to eliminate the 
majority of tail sequence. Five bases from the beginning 
of read 1 and five bases from the end of read 2 were also 
trimmed. After reads trimming, reads less than 36  bp 
were removed. Bismark 0.23.0 [31] was used to map 
the clean reads to the human reference genome (hg38). 
Reads mapped simultaneously to two or more regions of 
the genome were removed, and only the unique mapped 
reads were retained. PCR duplications were identified 
and removed using Bismark, followed by extraction of 
methylation status of each site. Deconvolution of cfDNA 
samples was conducted using MethAtlas [32].

Differential methylation analysis between tumor tissue 
group and para-tumor tissue group was performed using 
R package methylKit 1.18 [33]. The 42 pairs of tumor tis-
sues and para-tumor tissues from 42 HCC patients were 
used. The CpG sites with FDR corrected p-value (q-value) 
less than 0.01 and methylation difference greater than 
25% were considered as differentially methylated CpG 
sites (DMCs). Then contiguous DMCs were connected 
into differentially methylated regions (DMRs). DMRs 
satisfying all the following conditions were retained: (1) 
containing at least five DMCs; (2) The distance between 
DMCs does not exceed 300 bp.

Data noise reduction
The HCC tumor tissues from resection usually contain 
other cells besides tumor cells, such as normal hepato-
cytes, immune cells, and vascular endothelial cells. Dur-
ing model training, if all reads from tumor tissues were 
labeled as tumor, noise labels will be mixed, which may 
cause interference and confusion to neural network and 
affect the training effect. To reduce these noises, reads 
from HCC tumor tissues were filtered using reads from 
cfDNA of healthy individuals. The Methylation Continu-
ity Score (MCS) of a given read was defined by the fol-
lowing formula:

where L is the number of CpGs within the read; define a 
block consisting of i continuous methylated CpGs in the 
read, and ni is the number of corresponding blocks in the 
read.

The value of MCS ranges from 0 to 1. The higher the 
MCS value, the higher the methylation level of the read, 
and the more continuously distributed methylated CpGs, 
and the less they are separated by the non-methylated 
CpGs in the read.

For each DMR, the MCS of each read from tumor tis-
sue DNA and from cfDNA of healthy individuals were 
calculated. Only the reads containing three or more 

MCS =

∑L
i=1

(

i2 × ni
)

L2

DMCs were used. The maximum and minimum MCS in 
all reads from cfDNA of healthy individuals were denoted 
as Smax and Smin, respectively. If the DMR is hypo-meth-
ylated, reads with MCS greater than or equal to Smin in 
tumor tissue DNA were removed. If the DMR is hyper-
methylated, reads with MCS less than or equal to Smax in 
tumor tissue DNA were removed. If the length of a DMR 
was more than 150  bp, the reads within it were filtered 
using sliding windows with 150 bp length and 50 bp step 
size. Perform the above filtering steps for reads in each 
sliding window.

Further screening of DMRs
After data noise reduction, the number of retained reads 
from tumor tissue DNA per DMR per individual varied 
among DMRs. To screen out DMRs with a high propor-
tion of retained reads in more individuals, we defined an 
indicator called DMR Universality Score (DUS). The DUS 
of a given DMR was defined as follows:

where n is the total number of individuals; t is the ratio of 
reads count after filtration to the total read count before 
filtration in the individual i; d is the proportion of indi-
viduals with t > 0 to the total number of individuals. The 
DUS value ranges from 0 to 1. DUS = 0 indicates that the 
number of remaining reads after filtration in all individu-
als is 0. DUS = 1 indicates that no reads were filtered in all 
individuals. The optimal parameters in the DUS formular 
were determined by pre-experiments.

DMRs containing more than 200 retained reads (total 
in all individuals) after filtration were selected. These 
DMRs were arranged in order of DUS values from large 
to small, and 10,000 hypo-methylated DMRs (hypo-
DMRs) and all hyper-methylated DMRs (hyper-DMRs) 
were selected for subsequent analysis. Homer [34] was 
used for annotation of the screened DMRs. The genes 
that overlapped with DMRs in the upstream and down-
stream 2-kb region of the transcription start site (TSS) 
were defined as DMR-related genes. R package “cluster-
Profiler” [35] was used for GO and KEGG enrichment 
analysis of DMR-related genes. The q-value threshold 
was set to 0.05.

Neural Architecture of DeepTrace
The architecture of DeepTrace is similar to BERT model, 
which is a bidirectional encoder representation model 
based on Transformer. It consists of an embedding layer, 
multiple layers of Transformer encoders. The embedding 
layer learns an embedding matrix to map each token to 
a fixed-length real-valued vector. These vectors capture 
the semantic and contextual information of tokens and 

DUS =

n
i=1 ti

n
× d
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represent the relationships between tokens in a con-
tinuous vector space. Each encoder layer is composed of 
multi-head self-attention mechanisms and feed-forward 
neural networks. The self-attention mechanism allows 
the model to consider all positions in the input sequence 
simultaneously, effectively capturing the contextual rela-
tionships. With the multi-head mechanism, BERT can 
learn multiple attention representations in parallel, cap-
turing semantic information at different granularities.

In this work, the inputs of BERT are DNA reads that 
tokenized by n-gram. The hyperparameters of the model 
are the same as the BERT-base: the number of encoder 
layers is 12, the number of self-attention heads is 12, the 
hidden size of embedding is 768, the total number of 
parameters is 110 M.

Pre‑training of DeepTrace
Eleven million sequences of reads from two cfDNA sam-
ples of two LD patients were used in the pre-training 
phase. Only the reads with mapping quality greater than 
30 were used. The paired-end reads overlapping with 
each other were merged. After merging, only reads con-
taining three or more DMCs were used. To highlight the 
difference between methylated CpGs and unmethylated 
CpGs in reads, the “CG” in each methylated CpG site 
was recoded as “ML”. Each recoded read was served as an 
input sequence of DeepTrace.

For a sequence (i.e., recoded read), we employed k-mer 
representation method that has been widely used in bio-
medical research to tokenize the DNA sequence. In this 
way, each read was tokenized into multiple consecu-
tive bases that contained rich contextual information. 
Additionally, we added a special token [CLS] as the first 
token of sequence like BERT to represent the entire DNA 
sequence information. In pre-training phase, we only 
used the MLM task that predicts the masked tokens to 
learn the contextual representation of DNA methyl-seq 
sequences. However, the proportion of methylated CpGs 
in genome was extremely low, which occupies only 1 ~ 2% 
of the total bases in the whole genome. It is hence diffi-
cult for the traditional MLM task that randomly masks 
15% of the tokens in each sequence to learn the methyla-
tion information. To address this issue, in addition to tra-
ditional MLM, we also masked 80% of tokens containing 
“ML” with methylated CpGs.

During the pre-training phase, we used 11 million 
sequences of reads from two cfDNA samples of two LD 
patients. The optimizer we used is adam where learning 
rate is 1e − 4, β1 is 0.9, β2 is 0.999, and L2 weight decay of 
0.01. The dropout probability is 0.1 on all layers. We used 
a gelu activation in the model. The loss function of pre-
training is the mean cross-entropy loss for masked token 
prediction. We utilized 4 NVIDIA Tesla V100 16  GB 

GPUs for pre-training with data parallelism. The training 
process took approximately 30 days to complete.

Fine‑tuning of DeepTrace
After the model pre-training, we conducted the HCC-
derived reads (i.e., tumor reads) identification task via 
model fine-tuning. All of the reads within the DMRs 
were extracted from bam files. The retained reads from 
tumor tissues after filtration were labeled as “1,” and 
reads from cfDNA of LD patients and healthy individuals 
were labeled as “0.” After noise data reduction, approxi-
mate 1.2 million sequences labeled as “1” and 2.7 million 
clean sequences labeled as “0” were used for fine-tuning. 
The dataset exhibits a relatively balanced ratio of posi-
tive to negative labels at approximately 1:2, no special 
handling or processing has been applied for data balance. 
Ninety percent of data was used for fine-tuning training 
and the remaining 10% of data was used for fine-tuning 
test. Because the amount of our total training data is 
large enough, overfitting is not expected to be a problem. 
During fine-tuning phase, we used the representation of 
[CLS] token that from last layer of DeepTrace for the final 
classification. The training objective was cross-entropy 
loss function. All parameters of the model and the newly 
added classification layer are involved in the training.

Other public models including LSTM, GRU, 
CNN + LSTM, and CNN + GRU were also trained to 
compare with DeepTrace. In order to compare the per-
formance of different models in resistance to noise data 
interference, original raw data including noise sequenc-
ing reads (before data noise reduction) were also used to 
train models. All the model trainings were executed on 
Tesla V100 GPUs.

Model evaluation
Accuracy, f1 score, Matthews correlation coefficient 
(MCC), receiver operating characteristic (ROC) curve, 
and precision recall (PR) curve were used to evaluate 
the performance of models in identifying HCC-derived 
reads. The total number of reads that used for evaluating 
model performance was marked as letter “n.” The differ-
ence between prediction and real label was described by 
the number of true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN).

Accuracy calculated the proportion of correct predic-
tion of all reads in both classes. The formula of accuracy 
was accuracy = (TP + TN)/n.

F1 score can be interpreted as a harmonic average of 
the precision and recall. The precision was the ratio TP/
(TP + FP) and the recall was the ratio TP/(TP + FN). The 
formula for the F1 score was f1 score = 2 * (precision * 
recall) / (precision + recall). The range of f1 score was [0, 
1], where 1 represented the best value and 0 represented 
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worst score. The relative contribution of precision and 
recall to the f1 score were equal.

MCC was used to measure the quality of binary clas-
sification even if the classes were of very different sizes, 
which can be regarded as a balanced measurement. It 
took into account true and false positives and negatives. 
The range of MCC was between − 1 and + 1. A coefficient 
of + 1 represented a perfect prediction, 0 meant an aver-
age random prediction, and − 1 represented an inverse 
prediction.

ROC curve was used to display the tradeoff between 
sensitivity and specificity for different thresholds of a 
model. AUC calculated area under the ROC curve.

PR curve showed the tradeoff between precision and 
recall for different thresholds of a model. AUPR calcu-
lated area under the PR curve.

In the read prediction process, it took about 5  min 
of running time and about 2  GB of memory on a sin-
gle Tesla V100 GPU for each cfDNA sample with 1.6X 
sequencing depth.

Individual’s cancer risk score
For a given individual, the individual’s cancer risk score 
(RS) was estimated according to the following formula:

where p is the probability predicted by the neural net-
work that a read is derived from ctDNA; t is the defined 
probability threshold of ctDNA, in which a read with p 
more than t was considered deriving from ctDNA; n is 
the number of reads. The value of RS ranges from 0 to 1. 
The higher the RS value, the higher the individual’s can-
cer risk.

Because the score of cancer risk was affected by the 
ctDNA probability threshold t, searching for proper 
threshold t to estimate cancer risk was essential for HCC 
detection. The individuals in validation cohort were ran-
domly split into four roughly equal size groups (four 
folds, Additional file 2: Fig. S1). One of the folds was first 
chosen to calculate risk score and utilized to search for 
the best ctDNA probability threshold t and the best risk 
score threshold. The remaining three folds were then 
combined to serve as a final independent validation 
cohort to evaluate the performance of HCC detection. 
This process was repeated four times (Additional file  2: 
Fig. S1).

Data mixing simulation
Simulated cfDNA samples were constructed using 
real sequencing data. Reads were randomly extracted 
from two sources: (1) cfDNA sequencing data from LD 

RS =

∑

p>t pi
∑n

i=1 pi

individuals in the independent validation set; and (2) 
sequencing data of an HCC tumor tissue. This tumor tis-
sue was an independent sample and was not used in the 
process of DMRs search or model training. The extracted 
reads from HCC tumor tissue were mixed to cfDNA 
reads with different proportions. For each ctDNA pro-
portion, the process was repeated 100 times to simulate 
100 parallel samples.

Visualizing attention map of the DeepTrace model
In order to figure out the DNA sequence and methyla-
tion patterns that the DeepTrace model focused on, we 
visualized the attention weight of [CLS] token that from 
the last layer of the fine-tuned model. Firstly, we applied 
linear transformations to hidden state of each position in 
the input sequence to compute query (Q), key (K), and 
value (V) vectors. Then the attention scores were calcu-
lated by using the scaled dot product to measure the sim-
ilarity between the query vector and the key vector. These 
attention scores reflect the level of association between 
the query vector and the key vector. Finally, to ensure 
that the sum of attention weights is equal to one, the 
attention scores were typically normalized. This normali-
zation was achieved by applying the softmax function to 
the attention scores. The formula for attention weights is 
as follows:

where 
√

dk  is used to maintain the stability of gradi-
ent values during the training process. In this paper, we 
captured the attention weight of [CLS] token that from 
the last layer of the fine-tuned model, which reflected 
the importance of each token for read identification. 
To investigate the distribution of attention weight more 
intuitively, tumor tissue and non-tumor-derived reads in 
a certain DMR in the training dataset were used to cal-
culate the average of attention weight in each position of 
the DMR respectively. For finding which bases are impor-
tant for HCC-derived read identification, the frequency 
of each base and the methylation state in a certain DMR 
in tumor tissues and non-tumor cfDNA samples was cal-
culated and visualized.

Results
NEEM‑seq overcomes the drawback of EM‑seq associated 
with cfDNA end‑repair
Figure 1A shows that in the traditional enzymatic methyl-
seq (EM-seq), the jagged ends of cfDNA were repaired by 
the unmethylated nucleotides (i.e., A, C, G, and T) before 
cytosine conversion (Fig. 1A) [17]. In general, the methyl-
ation states of the same CpG sites on both strands of the 

Attention(Q,K ,V ) = softmax(
QKT

√

dk
)V
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same DNA are supposed to be the same. However, the 
CpGs in the newly repaired sequence were all unmeth-
ylated (red box with dashed line), even though the same 
CpGs on the complementary strand of the same DNA 
molecule were methylated. Therefore, this process of 
end-repair produced artificial unmethylated CpGs to the 
jagged ends of cfDNA, introducing considerable meth-
ylation erasure to the 3’ end. Studies have shown cfDNA 
and degraded DNA (e.g., DNA from FFPE samples) con-
tained lots of jagged ends [14–16]. Since the front end of 
reads 2 corresponds to the 3’ end of cfDNA fragments, 
and the length of jagged ends are various among cfDNA 
[14], it is expected to be observed that from the tail end 
to the front end of reads 2, the average methylation ratio 
will decrease gradually. Conversely, NEEM-seq did not 

perform end-repair; therefore, the 3’ end of jagged DNA 
was precluded from methylation errors (Fig.  1B). Thus, 
the average methylation ratio is expected to be evenly 
distributed on NEEM-seq reads.

To provide the proof of concept, we performed the 
experiments on the same gDNA and cfDNA samples 
using three different methyl-seq methods, including 
EM-seq, NEEM-seq, and WGBS. Methylation ratios 
were distributed evenly on both reads 1 and reads 2 in all 
three methods for the human reference gDNA NA12878 
(Fig.  2A). This can be attributed to the presence of few 
and short jagged ends in acoustically sheared gDNA. 
However, when we sequenced human cfDNA con-
structed using EM-seq, we observed a gradual and signif-
icant decrease in the average methylation ratio (Fig. 2A) 

Fig. 1 Overview of library construction for traditional enzymatic methyl-seq and NEEM-seq. A The process of traditional enzymatic methyl-seq 
to detect methylated (5mC) and hydroxymethylated (5hmC) cytosines. Firstly, the DNA fragments underwent end-repair and dA-tailing processes, 
followed by P5 and P7 adapter ligation. Artificially unmethylated cytosines located in CpG sites (indicated by red dashed boxes) were introduced 
to the cfDNA in end repair. The enzymes TET2 and T4-BGT, oxidized 5mC and 5hmC to 5-carboxycytosine and 5-(β-glucosyloxymethyl) cytosine 
(5caC/5gmC) to prevent from deamination in the subsequent step. Next, unprotected cytosines were converted to uracils by the deaminase 
of APOBEC and amplified by PCR for sequencing. B The procedures of our NEEM-seq method. The DNA fragments were first converted by TET2 
and APOBEC enzymes, followed by the single-strand DNA library construction. Briefly, tails and truncated adapter 1 were ligated to 3′ end 
of single-strand DNA. A new uracil-free DNA strand was generated through extension, and truncated adapter 2 was added to the other end of DNA. 
Finally, an indexing PCR step aimed to increase the yield of DNA molecules with full-length adapter 1 (P5) and adapter 2 (P7)
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from the tail end to the front end of reads 2 (i.e., from the 
5’ end to the 3’ end of cfDNA fragments), even after trim-
ming the 15 bases from the front end of reads 2 before 
mapping. A slight decrease in methylation ratio was also 
observed from the front end to the tail end of reads 1 (i.e., 
from the 5′ end to the 3′ end of cfDNA fragments) in the 
EM-seq results of cfDNA (Fig. 2A), in which the 15 bases 
from the tail end of reads 1 have also been trimmed. In 
contrast, methylation ratios of the same cfDNA samples 
in WGBS and NEEM-seq results were distributed evenly 
on both reads 1 and reads 2 (Fig. 2A). Notably, both the 
WGBS and NEEM-Seq used the single-strand DNA 
library construction method without end-repair. These 
results suggest that artificial unmethylated CpGs were 
introduced to the 3′ end of cfDNA fragments during the 
end-repair process of EM-seq.

With the same DNA input amount and sequencing 
depth, the coverage ratio and coverage depth of CpGs 
and the GC bias of NEEM-seq were better than those of 
WGBS for both gDNA and cfDNA samples (Fig. 2B–D). 
Additionally, WGBS had much lower coverage on GC-
rich regions and CpG islands compared to NEEM-seq 
(Fig. 2B–D).

Workflow chart for data generation and analysis 
by DeepTrace
As shown in Fig. 3A, after reads recoding, tokenize and 
masking, the whole-genome NEEM-seq reads from 
human cfDNA were used to pre-train the DeepTrace 
model to capture global and transferrable understanding 
of human methyl-seq data. Then the pre-trained model 
was fine-tuned using tumor reads from HCC tumor tis-
sue DNA after noise reduction (labeled as “1”), and 
non-tumor reads from non-tumor cfDNA (labeled as 
“0”). Data noise reduction was conducted on the reads 
from tumor tissues to retain reads from tumor cells, and 
remove reads from non-tumor cells in tumor tissues as 
much as possible (see “Methods” section for details). The 
fine-tuned model was subsequently used to predict the 
probability that a read is derived from HCC tumor DNA. 
The architecture of DeepTrace model is shown in Fig. 3B, 
and the details are described in the “Methods” section.

The whole process for HCC early detection is sum-
marized in Fig. 4. A total of 10 ml peripheral blood was 
drawn from each individual. Low-depth whole-genome 
NEEM-seq was performed on the cfDNA sample. The 
DeepTrace model predicted the probability of each read 
within DMRs. This probability represented the possi-
bility that a read is derived from HCC tumor DNA (i.e., 
ctDNA). The individual’s HCC risk score was calculated 
by integrating all the read probability, and the individual 
was finally classified as either positive (high risk of HCC) 
or negative (low risk of HCC).

Figure  5 displays the composition of the cohort and 
the division of the dataset in detail. Further information 
is available in Additional file  1. Whole-genome NEEM-
seq method was conducted in all samples. The sequenc-
ing depth of each of the 84 tissue gDNA samples and 
38 cfDNA samples from the training cohort was about 
11.6X. Similarly, the sequencing depth of each of the 130 
cfDNA samples from the validation cohort was about 
1.6X. Notably, each input sample for the DeepTrace neu-
ral network was a single read rather than an individual. 
Therefore, the difference in sequencing depth between 
the training cohort and the validation cohort did not 
affect the training and prediction of DeepTrace. A higher 
depth of the training cohort allowed more read samples 
for the training of DeepTrace and enabled the identifying 
of more accurate DMRs. Approximately 11 million reads 
from NEEM-seq were used for model pre-training to 
capture global and transferrable understanding of human 
genome methyl-seq data. The pre-trained DeepTrace was 
then fine-tuned using approximate 1.2 million tumor 
reads and 2.7 million non-tumor reads after data noise 
reduction. Before fine-tuning, the reads from cfDNA of 
healthy individuals in the training cohort were used to 
filter the reads from tumor tissue DNA, which removed 
reads from non-tumor cells in tumor tissues as much as 
possible (see “data noise reduction” in “Methods” section 
for details).

After screening of DMRs (see “Methods” for details), 
10,000 hypo-methylated DMRs (hypo-DMRs) and 194 
hyper-methylated DMRs (hyper-DMRs) were used 
in the processes of model fine-tuning and prediction. 
These hypo-DMRs were significantly enriched in SINE 

Fig. 2 Comparison of results among NEEM-seq, WGBS and EM-seq. A Methylation bias plot of reads. This plot shows the average percentage 
of methylation across each position in the reads 1 and reads 2. The left end of the horizontal coordinate corresponds to the front end of reads. The 
15 bases from the front end of reads 2 and tail end of reads 1 have been trimmed before mapping. In the cfDNA EM-seq result (indicated by a black 
arrow), from the tail end to the front end of reads 2 (i.e., from the 5′ end to the 3′ end of cfDNA fragments), the methylation ratio decreased 
gradually and obviously. B GC bias plot which shows the normalized coverage depth on genomic regions (200 bp sliding window) with various GC 
contents. C Coverage ratio of CpGs in each genomic feature. D The frequency distribution of CpGs coverage depth in each genomic feature. The 
same samples, the same amount of DNA input, and the same sequencing depth were applied across different libraries

(See figure on next page.)



Page 9 of 23Deng et al. Genome Medicine           (2023) 15:93  

Fig. 2 (See legend on previous page.)
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Fig. 3 Architecture and characteristics of DeepTrace model. A The pre-training, fine-tuning, and prediction process of DeepTrace model using 
sequencing reads. The NEEM-seq reads from human cfDNA were used to pre-train the DeepTrace model to capture global and transferrable 
understanding of human genome methyl-seq data. Then the pre-trained model was fine-tuned using tumor reads (i.e., HCC-derived reads) 
from HCC tumor tissue DNA after noise reduction, and non-tumor reads from non-tumor cfDNA. The fine-tuned model was subsequently used 
to predict the probability that a read is derived from HCC tumor DNA (i.e., ctDNA). B The architecture details of DeepTrace model. The steps 
indicated by the dashed lines were performed only in pre-training
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(Alu), CpG island, exon, and retrotransposon, while the 
hyper-DMRs were significantly enriched in CpG island, 
exon, promoter, and 5′-UTR (Hypergeometric test, 
q-value < 0.05) (Fig. 6A).

To verify the association of identified DMRs with 
cancers, GO and KEGG enrichment analysis were 
performed. The results of GO enrichment (Fig.  6B, 
Additional file  2: Fig. S2 and Fig. S3) showed that the 
hyper-DMR-related genes were significantly enriched 
in several GO terms such as embryonic organ devel-
opment, cell fate commitment, and DNA-binding 
transcription activator/repressor (q-value < 0.05). The 
results of KEGG enrichment (Fig.  6D) showed that 
these genes were significantly enriched in the Ras-
associated protein 1 (Rap1) signaling pathway and the 
regulation pathway of actin cytoskeleton. Hypo-DMR-
related genes were significantly enriched in GO terms 
such as keratinocyte differentiation, intermediate fila-
ment cytoskeleton, and olfactory receptor. They were 
also significantly enriched in the olfactory transduction 
pathway (Fig.  6CE, Additional file  2: Fig. S2 and Fig. 
S3).

The overall genome-wide average methylation ratios of 
HCC tumor tissues were significantly lower than those 
of corresponding para-tumor tissues (p-value < 0.01). 
Moreover, 39 out of 42 HCC patients showed that the 
genome-wide average methylation ratio of a tumor tis-
sue was lower than that of its paired para-tumor tissue 
(see details in Additional file  1). These findings collec-
tively suggest that global hypo-methylation events have 
occurred in the genome of most HCC tumor tissues.

Using tissue and cell specific methylation information, 
deconvolution of cfDNA was performed to figure out the 
proportion of hepatocyte-derived cfDNA among healthy, 
LD, and HCC subgroups. The results (Additional file  2: 
Fig. S4) suggested that the proportion of cfDNA derived 
from hepatocytes was very similar between healthy indi-
viduals and LD patients (mean value was 3% and 4% 
respectively). However, there was a significant increase 
in the proportion of hepatocyte-derived cfDNA in HCC 
patients (mean value 20%; p-value < 0.01, Wilcoxon test).

DeepTrace better identified HCC‑derived reads 
and achieved higher accuracy in detection of HCC 
individuals than other models and AFP
Accurately identifying ctDNA from cfDNA is essential 
for early stage of HCC detection. To compare the perfor-
mance of different models in identifying HCC-derived 
reads, the read datasets before and after noise reduction 
were used. The read dataset before noise reduction con-
sisted of all the sequencing reads in the selected DMRs 
from tumor tissue gDNA and LD and healthy plasmas 
cfDNA in the training cohort (Fig.  5). The read data-
set after noise reduction filtered the noise reads based 
on the criteria described in the method section “Data 
noise reduction,” in which around 3.9 million reads were 
retained. In order to compare different models using the 
identical data, the same training and test data partition-
ing was built among different models in the same dataset. 
The most applied deep learning models in the genomic 
research (LSTM, GRU, CNN + LSTM, CNN + GRU) were 
used to compare with our DeepTrace. Parameters such 

Fig. 4 Schematic diagram of the whole process for HCC early detection. The 10 ml peripheral blood was drawn from the individual. After cfDNA 
extraction, low-depth whole-genome NEEM-seq was performed on the cfDNA sample. DeepTrace model was used to predict the probability 
of each read within the differentially methylated regions (DMRs). The probability estimated the possibility that a read is derived from ctDNA. The 
individual’s HCC risk score was calculated by integrating all the reads probability, and the individual’s positive (high risk of HCC) or negative (low risk 
of HCC) detection result was given
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as accuracy, f1 score, MCC, ROC curve, and PR curve 
were adopted to evaluate the performance of all models. 
As expected, DeepTrace achieved the best performance 
in identifying HCC-derived reads in both datasets. As 
shown in Fig.  7, DeepTrace showed significantly higher 
accuracy, f1 score, MCC, AUC, and AUPR in the read 
dataset before noise reduction. Even in the read dataset 
after noise reduction, DeepTrace still achieved the best 
performance over all the models, despite the task being 
easier due to data filtration and reduced noise. The results 
suggested that DeepTrace could be fine-tuned with 
high reliability and accuracy to identify HCC-derived 

reads (e.g., ctDNA) from non-tumor derived reads (e.g., 
cfDNA). Using DeepTrace model fine-tuned with the 
read dataset after noise reduction, we identified the reads 
from the validation cohort and predicted the probabil-
ity of each read. All predicted values of reads in a single 
cfDNA sample were then used to estimate the individu-
al’s cancer risk score. The “Methods” section explains the 
formula used for this purpose.

We also compared the performance of different mod-
els in detection of HCC individuals (Fig.  8). The cancer 
risk score of each individual was utilized for HCC detec-
tion in the validation cohort, which included total 130 

Fig. 5 The composition and division of cohort and dataset. Whole-genome NEEM-seq was performed on all samples. About 11 million reads 
from whole-genome NEEM-seq data were used for DeepTrace model pre-training to capture global and transferrable understanding of human 
genome methyl-seq data. The pre-trained DeepTrace was then fine-tuned using approximate 1.2 million tumor reads and 2.7 million non-tumor 
reads after data noise reduction. Before fine-tuning, data noise reduction was conducted on the reads from tumor tissues to retain reads 
from tumor cells, and remove reads from non-tumor cells in tumor tissues. M: million. LD: liver disease
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individuals (62 HCC, 48 LD, and 20 healthy individu-
als). As shown in Fig. 8AB and Additional file 2: Table S1, 
DeepTrace showed highest average AUC (98.7% (con-
fidence interval [CI] 98.1–99.2%), accuracy (96.2% (CI 
94.5–97.9%)), sensitivity (93.6% (CI 90.7–96.5%)), and 

specificity (98.5% (CI 97.6–99.5%)) for the detection of 
HCC individuals in four-fold cross validation datasets.

In order to check the sensitivity of models in differ-
ent stage of HCC, HCC patients were separated into 
subgroups based on the Barcelona Clinic Liver Cancer 

Fig. 6 Annotations of DMRs. A The genomic features overlap with DMRs. The abscissa axis indicates the proportion of the length of DMRs covering 
this region to the total length of DMRs. B ~ C GO enrichment results of hyper-methylated (B) and hypo-methylated (C) DMR-related genes. D ~ E 
KEGG enrichment results of hyper-methylated (D) and hypo-methylated (E) DMR-related genes. The q-value denotes the FDR corrected p-value
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(BCLC) [36, 37] and TNM staging system [38]. Because 
Alpha Fetoprotein (AFP) is a well-known diagnostic 
biomarker used in HCC diagnosis, its performance was 
also assessed in different stages of HCC in the valida-
tion cohort. As presented in Fig.  8B–D and Additional 
file 2: Table S2, DeepTrace showed excellent sensitivities 
in detection BCLC stage 0 and A (89.6% (85.2–94.0%). It 
is notable that the only HCC patient with BCLC stage 0 
was accurately identified. As expected, the sensitivities 
for intermediate and advanced stages of HCC detection 
were higher (stage B: 100.0% (100.0–100.0%); stage C 
and D: 100% (100.0–100.0%)). Additionally, in the TNM 

staging system, DeepTrace also showed high sensitivity in 
early stage (Fig. 8G and Additional file 2: Table S2, TNM 
stage I: 89.5% (84.2–94.9%)). In comparison, AFP showed 
much lower sensitivity in early stage of HCC in both 
BCLC and TNM staging system (BCLC 0 and A: 50.5% 
(45.9–55.1%); TNM I: 44.7% (40.3–49.2%)). However, 
AFP still showed a low sensitivity in intermediate BCLC 
stage B or TNM stage II, at only 72.4% (64.7–80.1%) and 
53.4% (43.2–63.7%), which was significantly lower com-
pared to DeepTrace. These results suggested that Deep-
Trace is more sensitivity in detection of early-stage HCC 
than AFP.

Fig. 7 DeepTrace outperformed other models in identifying HCC-derived reads. The performance of DeepTrace in identifying HCC-derived reads 
was compared with that of LSTM, GRU, CNN + LSTM, and CNN + GRU based on the read datasets before and after noise reduction separately. The 
read dataset after noise reduction filtered out noise reads according to the rules described in the “Data noise reduction” method. Panel A shows 
the accuracy, f1 score, MCC of different models in identifying HCC-derived reads in the reads test datasets. Panel B shows the precision recall curve 
and panel C shows the ROC curve of different models
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Fig. 8 DeepTrace outperformed other models in detection of HCC individuals in the validation cohort. A ROC curve of different models on HCC 
detection (n = 130). Blue lines show the average ROC of four-fold cross-validation. B–D Accuracy, sensitivity, and specificity of different models 
on HCC detection (62 HCC, 48 LD, 20 healthy). The boxplots show the data distribution of four-fold cross-validation results. E,F Results of DeepTrace 
and AFP biomarker on HCC detection with BCLC staging system (E) and TNM staging system (F) (61 HCC, 48 LD). An HCC patient without AFP value 
was excluded from the analyses in panels E and F. The error bars indicate the standard deviation of four-fold cross-validation results. The numbers 
near to the boxplots and histograms in panels B–F are the mean values
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The specificity of DeepTrace also outperformed that of 
AFP for LD individuals. In the LD subgroup, the specific-
ity of DeepTrace was significantly higher (97.9%; 95% CI 
96.5–99.3%) than that of AFP (86.4%; 95% CI 74.1–98.7%) 
(Fig. 8EF and Additional file 2: Table S2).

Regardless of HBV infection status or cirrhosis his-
tory, DeepTrace consistently demonstrated high accu-
racy in both HCC and LD subgroup (Additional file  2: 
Fig. S5AB, Additional file  2: Table  S3). The sensitiv-
ity of DeepTrace for detecting HCC patients with small 
(≤ 3  cm) and larger (> 3  cm) tumor size (≤ 3  cm) was 
93.8% (95% CI 86.7–100.0%) and 93.6% (95% CI 91.1–
96.1%), respectively (Additional file  2: Fig. S5C, Addi-
tional file  2: Table  S3). In the AFP-negative subgroup 
(AFP < 20 μg/L), the average accuracy of DeepTrace was 
93.4% (95% CI 89.5–97.3%). In AFP-positive subgroup 
(AFP > 20  μg/L), DeepTrace also demonstrated an accu-
racy of 96.5% (95% CI 94.1–98.8%) (Additional file 2: Fig. 
S5D, Additional file 2: Table S4). We conducted a t-test to 
assess the impact of imbalanced gender within our vali-
dation cohorts. Our results revealed no significant dif-
ferences in cancer risk scores between males (n = 92) and 
females (n = 38) (p-value > 0.05) (Additional file  2: Fig. 
S5E). DeepTrace model showed excellent performance 
for both males (mean AUC = 0.994 (CI 99.2–99.6%)) and 
females (mean AUC = 0.981 (CI 96.8–99.5%)) (Additional 
file 2: Fig. S5F).

To investigate the minimum read coverage for detect-
ing early HCC using this model, we down sampled the 
read count for each sample in the validation cohort. 
The detection results showed that when the remaining 
specificity (98.5%) is unchanged, the sensitivity (90.3%) 
of detecting HCC individuals decreased slightly with 3G 
(1X depth) down-sampled data size. However, the sensi-
tivity (83.8% or lower) decreased rapidly when data size 
of each sample was down sampled to 1G or lower. There-
fore, to achieve a good detection performance, we recom-
mend a minimum coverage depth of 1X for each sample.

In addition to the plasma samples contained in the 
validation cohort, there were also 13 HCC patients in the 
training cohort with both tumor tissue and plasma sam-
ples available. Among them, 6 were classified as BCLC 
stage A, 2 as stage B, while the rest as stage C. We also 
utilized NEEM-seq and the DeepTrace model to test 
cfDNA samples from these 13 individuals. The results 
showed that all these 13 individuals tested positive (95% 
CI of sensitivity: 100 ~ 100%). These results imply that the 
plasma of these patients contains ctDNA derived from 
their liver cancer tissues.

To explore the correlation between ctDNA propor-
tion and individual’s risk score, reads from an independ-
ent tumor tissue were blended with reads from cfDNA 
to simulate cfDNA samples that contained varying 

proportions of ctDNA. At a sequencing depth of 1.5X, 
the result (Additional file 2: Fig. S6A) depicted a signifi-
cantly positively correlation between the individual’s risk 
score and the proportion of ctDNA (Pearson correlation 
coefficient  R2 = 0.96, p-value = 1.5e − 7). This suggests a 
significant correlation between risk score and the extent 
of tumor burden. At a sequencing depth of 1.5X, the risk 
score of simulated cfDNA samples with ctDNA ratio of 
2/10,000 was significantly different from that of blank 
control samples containing no ctDNA (Wilcoxon test, 
p-value < 0.01) (Additional file  2: Fig. S6B). Collectively, 
these simulation results suggested the estimation of risk 
score can serve as an effective method for HCC detection 
at low sequencing depths.

Attention map of DeepTrace identifies joint patterns 
of multiple CpG methylation with surrounding DNA 
sequence
To overcome the common “black-box” problem of deep 
learning models and investigate how DeepTrace distin-
guishes between HCC-derived and normal reads, we 
tried to interpret the deep learning model of DeepTrace 
by investigating its neural network details. The atten-
tion map of the DeepTrace was generated to visualize 
the important regions (blue color) that contribute to the 
model decision in a hyper-DMR overlapping Orthodenti-
cle Homeobox 1 (OTX1) gene and a hypo-DMR overlap-
ping an Alu element respectively (Fig. 9AD). Our results 
suggested DeepTrace only focused on specific small 
regions containing DMRs. Average attention weight of 
each base position (Fig. 9BE) showed these regions were 
mainly located in the position 4–6, 16–22, 29-43nt of 
hyper-DMR and in the position 5–23, 38-53nt of hypo-
DMR. All these regions contained DMCs. In the hypo-
DMR, the CpGs in the non-HCC-derived reads were 
almost fully methylated (marked with letter ML), while in 
HCC-derived reads, the CpGs were almost unmethylated 
(Fig. 9C, regions marked with red rectangles). Conversely, 
in the hyper-DMR (Fig. 9F, regions marked with red rec-
tangles), CpGs of the HCC-derived reads were most fully 
methylated, but not in non-HCC-derived reads. These 
results suggested that DeepTrace was able to find impor-
tant regions in DMRs based on its attention mechanism, 
and DeepTrace successfully distinguished HCC-derived 
reads by combining multiple CpG methylation informa-
tion with surrounding DNA sequence together.

Discussion
DNA methylation sequencing has achieved significant 
attentions due to its potential to enhance cancer detec-
tion sensitivity through genomic methylation profiling 
[39–41]. In this study, we developed an enzyme-based 
methylation sequencing technology without end-repair 
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called NEEM-Seq, to achieve single-base resolution 
and high-fidelity epigenetic profiling of DNA. Further-
more, we developed DeepTrace, a deep learning-based 
approach to detect early stage of HCC by identifying 
HCC-derived reads from plasma cfDNA sequencing 
reads.

The disadvantage of WGBS, EM‑seq, and the advantage 
of NEEM‑Seq
Sodium bisulfite-based methylation sequencing meth-
ods, such as WGBS, are widely used to detect methylated 
and unmethylated cytosines in DNA [42–44]. However, 
harsh condition of sodium bisulfite treatment has been 
reported to damage DNA, and preferentially damage on 
genomic regions with high GC content and low meth-
ylation level [45, 46]. Compared with the methyl-seq 
method based on enzymatic conversion, WGBS exhib-
its a lower coverage depth on GC-rich regions and CpG 
islands [17, 47, 48]. Our results (Fig. 2B–D) are consist-
ent with these findings. However, the methylation status 
of GC-rich regions, such as CpG islands, is critical for the 
regulation of oncogene and tumor suppressor gene, and 
carcinogenesis [12, 49]. Thus, the damage and uneven 
coverage of DNA introduced by bisulfite conversion may 

reduce the accuracy of cancer detection based on cfDNA 
methyl-seq.

Although traditional enzymatic methyl-seq methods 
detect methylation information of cytosines in a mild 
condition and avoid the problem of DNA damage [17], 
they introduce unmethylation errors in CpGs for DNA 
containing jagged ends (e.g., cfDNA and degraded DNA 
[14–16]) due to the end-repair before cytosine conver-
sion [17]. Because the lengths of jagged ends vary among 
cfDNA fragments [14], these artificially introduced 
unmethylated CpGs are challenging to remove accord-
ing to sequencing results. Thus, these unmethylation 
errors in CpGs could distort the methylation pattern of 
reads and the methylation ratio of CpGs. This distor-
tion then may influence the DMR identification, model 
training, and read identification, decreasing the accuracy 
and precise of cancer detection. In comparison, NEEM-
seq removes the end-repair step and avoids the errors in 
CpGs of the jagged ends of cfDNA. Our results showed 
that methylation ratios of cfDNA in NEEM-seq results 
were evenly distributed on reads, suggesting that NEEM-
seq can provide more accurate methylation profiling for 
cfDNA-based cancer detection than traditional enzy-
matic methyl-seq methods with end-repair.

Fig. 9 The visualizations of attention weights in hyper- and hypo-DMRs. Panels A and D show the attention map of a hyper-DMR (chr2: 63,055,387–
63055523) overlapping OTX1 and a hypo-DMR (“chr2: 104,265,134–104265334”) overlapping an Alu element. Darker colors represent higher 
attention weights. Panels B and E display the average weight of attention in each position of reads in hyper- and hypo-DMR. Red line denotes 
the reads from tumor tissues and green line indicates the reads from non-tumor cfDNA. Panels C and F show the frequency of each base in all 
reads from tumor tissues and non-tumor cfDNA. The methylated CpG sites were marked with letter “ML.” Larger letter represents higher frequency. 
Regions with high attention weights were marked with red rectangles
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Studies have shown an elevation of jagged cfDNA in 
the plasma of HCC patients compared with non-tumor 
controls, and in the urinary of bladder cancers or con-
trols, the proportion of jagged cfDNA was much higher 
than in the plasma [14, 50]. Therefore, the unmethyla-
tion errors in these liquid biopsies would be more seri-
ous if the traditional enzymatic methyl-seq methods with 
end-repair were utilized. Although the content of jagged 
cfDNA in other cancers is needed to be tested, NEEM-
seq is expected to be a more accurate method for cfDNA 
methylation sequencing in the cancer detection based on 
liquid biopsy.

NEEM-seq only induces base changes at unmethyl-
ated cytosines, thus it was expected to maintain most of 
the cfDNA intact. Therefore, we can extract additional 
information including cfDNA fragmentation pattern 
and copy number variations aside from cfDNA methy-
lome. This suggests NEEM-seq has the potential for 
blood-based multi-omics applications via a single library 
construction with low cost. Multi-omics data has been 
demonstrated to be able to improve the specificity and 
sensitivity of complex diseases such as cancers [51–53]. 
However, multi-omics data usually requires different 
sequencing strategies. Recently, Chen et  al. developed 
an HCC detection model based on multi-omics data by 
constructing methylation sequencing library and whole-
genome sequencing library separately [51], which made 
the experiments and sequencing complex, time-consum-
ing and expensive. Therefore, integrating multi-omics 
data from our NEEM-seq is expected to be an easier 
method with lower cost and higher effectiveness for can-
cer detection.

Some DMR‑related genes have been found to be closely 
related to cancers including HCC
Over 30% of hypo-DMRs are located in the Short Inter-
spersed Elements (SINEs), which in almost all of them 
consist of Alu elements. For instance, a DMR (chr2: 
104,265,134–104265334) overlapping an Alu element 
was found to be demethylated in tumor tissues (Fig.  9). 
SINEs belong to the retrotransposon, whereas Alu ele-
ments belong to the most abundant class of SINEs. They 
are primate specific and constitute 11% of the human 
genome [54]. Alu elements have often been used as sur-
rogate markers of global DNA hypo-methylation [55]. 
The demethylation of Alu elements occurs in aging and 
cancer processes and has been linked with gene reactiva-
tion and genomic instability [56]. Alu elements can acti-
vate oncogenic pathways in HCC [57], and studies have 
identified Alu hypo-methylation as increased risk factors 
for cancers [58].

The hypo-DMR-related genes were significantly 
enriched in the olfactory transduction pathway, which 

mainly included olfactory receptor (OR) genes. Fur-
thermore, OR activity was also one of the significantly 
enriched GO terms. ORs are not exclusively expressed 
in the olfactory sensory neurons, but also observed in 
all other human tissues [59]. ORs have been shown to 
be involved in the modulation of cell–cell recognition, 
migration, proliferation, the apoptotic cycle, and other 
processes [59]. Additionally, ORs are highly expressed 
in various cancer tissues compared with normal tissues, 
making them potential diagnostic and therapeutic targets 
[59].

The genes related to hyper-DMRs were significantly 
enriched in the “DNA-binding transcription activator/
repressor” GO term mainly belong to the transcription 
factor (TF) gene family. Cancer requires constitutive 
expression of TFs for growth and survival, and many TFs 
are critical for carcinogenesis [60]. For instance, a DMR 
(chr2: 63,055,387—63,055,523) overlapping Orthodenti-
cle Homeobox  1 (OTX1) gene was hyper-methylated in 
tumor tissues (Fig.  9). This gene encodes a member of 
the bicoid sub-family of homeodomain containing tran-
scription factors, which contributes to HCC progression 
by regulating the ERK/MAPK pathway [61]. Another 
example is that the promoter of spalt-like transcription 
factor 3 (SALL3) gene was hyper-methylated in HCC 
tumor tissues in this study. The SALL transcription fac-
tors are composed of a zinc finger motif and participating 
in embryonic development [62]. The SALL family also 
contributes to cellular apoptosis, angiogenesis, invasion, 
and metastasis of tumors [62]. The downregulation of 
the expression of SALL3 gene has been reported in HCC 
[63].

The Rap1 signaling pathway was one of the enriched 
pathways for hyper-DMR-related genes. Targeting Rap1 
signaling and its regulators could potentially control car-
cinogenesis, metastasis, chemoresistance, and immune 
evasion [64]. The Rap1 signaling pathway has been found 
to be closely associated with the HCC tumor-infiltrating 
immune and clinical prognosis [65].

The outperformance of DeepTrace in identifying 
HCC‑derived reads and detecting early stage of HCC
CNN or RNN (such as GRU and LSTM) based mod-
els have been widely applied in various biological fields, 
including genomic sequencing [19, 20, 23–25, 66, 67]. 
However, CNN struggles to obtain long-range contextual 
information from DNA sequence, and both CNN and 
RNN rely on a large amount of annotated data, limiting 
their performance by the quality of that data. In addition, 
these models can only capture the task-specific informa-
tion found in supervised labels [26]. Thus, these models 
are difficult to learn general deep semantics of genome 
sequences [27], which may limit their performance in 
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read-level HCC detection. Consequently, instead of using 
CNN or RNN-based models, we proposed a DeepTrace 
model based on BERT. BERT has overcome the above 
limitations [29] and based on recent studies, has reached 
state-of-art performance in identifying cis-regulatory 
elements [27]. Our study demonstrated that DeepTrace 
achieved superior performance in identifying HCC-
derived reads compared to the most common models 
available (LSTM, GRU, CNN + LSTM, and CNN + GRU). 
In order to make the model suitable for methyl-seq data 
and HCC detection, DeepTrace was first pre-trained to 
learn the general semantics of human DNA methylation 
language via self-supervised training, and the pre-trained 
DeepTrace model was then fine-tuned to specific task 
of HCC-derived read identification. To focus the Deep-
Trace model better on the methylation status of CpGs, 
we recoded the methylated CpGs present in the reads. 
Additionally, we provided a modification to the MLM 
task during the pre-training phase.

The traditional cancer detection methods, which 
depend on NGS and methylation, rely on the methylation 
levels calculated by averaging across all cfDNA molecules 
at each site or region. A block of cfDNA molecules is uti-
lized to calculate the β methylation ratio. However, due 
to the extremely low proportion of ctDNA, the detec-
tion of small discrepancies in the average measurement 
values becomes challenging even with high sequencing 
depth (typically more than 2000X), leading to a low sig-
nal-to-noise ratio [39]. DeepTrace read-level identifica-
tion method integrates the methylation information from 
multiple CpGs, and the sequence information surround-
ing the CpGs in a single read, to identify each cfDNA 
molecule individually and independently. The neural 
network predicts the probability that a read is derived 
from ctDNA, and it is not affected by other reads. This 
enables detection of a low proportion of ctDNA even 
at a low sequencing depth. At the sequencing depth of 
1.5X, the read mixture simulation experiments suggest 
that DeepTrace can detect ctDNA with proportion as low 
as 2/10,000. The high-depth targeted methyl-seq on the 
DMRs based on multiplex PCR or probe hybridization 
capture is expected to further improve the detection per-
formance of DeepTrace.

By accurately identifying rare signal of HCC-derived 
reads and calculating the individual’s cancer risk score, 
DeepTrace achieved high sensitivity at 93.6% and high 
specificity at 98.5% in distinguishing HCC and non-
HCC individuals at 1.6X sequencing depths, which sug-
gested it was a low-cost but effective cancer detection 
method. In LD individuals, DeepTrace still exhibited a 
high specificity of 97.9%. Moreover, in the early stage 
of HCC, DeepTrace achieved substantial sensitivity 
(BCLC stage 0 and A, 89.6%; TNM stage I, 89.5%). This 

result reinforces the idea of employing DeepTrace as a 
novel strategy for HCC early detection. In clinical prac-
tice, AFP biomarker is often utilized for cancer diagno-
sis, although its reported sensitivity in cancer detection 
is quite low [51]. Likewise, in our study, the sensitiv-
ity of AFP in early stage of HCC was much lower than 
DeepTrace. Previous studies have shown that the sen-
sitivity of HCC detection when combing AFP with 
ultrasonography is generally only 48–75% [68]. All 
these findings suggested DeepTrace is a much more 
precision method than traditional AFP biomarker and 
ultrasonography. Nonetheless, more samples and fur-
ther clinical trials are required to evaluate the method 
further.

The simulation experiments results suggest that the 
individual’s risk score has a significant positive cor-
relation with the proportion of ctDNA. As a result, the 
DeepTrace method has the potential in various applica-
tions such as minimal residual disease (MRD) detec-
tion, ctDNA dynamic monitoring during treatment, 
and relapse risk monitoring. Further clinical trials are 
needed to validate the feasibility and performance of our 
approach in these various applications.

DeepTrace identified HCC‑derived reads by focusing 
on multiple CpGs methylation and their surrounding DNA 
sequence
The outperformance of DeepTrace was partially attrib-
uted to its utilization of novel BERT networks and BERT’s 
attention mechanism. The attention map demonstrated 
that DeepTrace paid attention to regions where meth-
ylation states of CpGs differed between tumor tissues 
and non-tumor samples. This suggests that DeepTrace 
comprehends DNA methylation language and recog-
nizes sequence features related to HCC through self-pre-
training and fine-tuning training. As a result, this ensures 
the accurate identification of HCC-derived reads from 
cfDNA reads without relying solely on one single CpG 
site’s information. Instead, DeepTrace combined meth-
ylation states in multiple CpGs to identify HCC-derived 
reads. The use of multiple CpG sites could potentially 
reduce the probability of false judgments caused by 
technical noise errors (PCR, enzymatic conversion, or 
sequencing). For instance, we assume that the false ratio 
of methylation in a single CpG site due to technical noise 
error is 1%, while the chance of two CpG sites being false 
simultaneously is only 0.01%. Furthermore, DeepTrace 
also considered the DNA sequence surrounding CpGs to 
determine the HCC-derived reads. This further reduces 
the false ratio of ctDNA judgment, suggesting that Deep-
Trace is effective in resisting technical noise error and 
reinforcing the model’s robustness.
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DeepTrace could be easily applied to other cancers 
and multi‑cancer detection
Previous studies have demonstrated the significant 
potential of cfDNA methylation profiling to detect can-
cers [8, 41, 69, 70]. Here, we validated the promising 
potential of cfDNA methylation profiling using our Deep-
Trace technology for HCC detection. Furthermore, we 
posit that DeepTrace can potentially be applied to detect 
other types of cancer using cfDNA from liquid biopsies, 
such as plasma, urine, and cerebrospinal fluid. However, 
this requires validation. Notably, a recent large multi-can-
cer detection program has reported 54.9% sensitivity and 
99.3% specificity across various stages and different kinds 
of cancer types using a methylation-based approach [71], 
highlighting the promising potential of cfDNA meth-
ylation signatures for multi-cancer detection. Therefore, 
we predict that DeepTrace can be customized to multi-
cancer classification based on the source tumor-of-origin 
or tissue-of-origin of each cfDNA molecule, although 
this would require the identification of tumor-specific or 
tissue-specific markers. Owing to the extensive influence 
of biological factors and medication on methylation sta-
tus, it is crucial to design and execute carefully controlled 
studies to evaluate the clinical applicability of DeepTrace 
when searching for tumor or tissue-specific markers.

Conclusions
In this study, we propose NEEM-seq as a novel meth-
ylation library construction method. The NEEM-seq 
method overcomes the drawback of traditional EM-
seq caused by end-repair and is expected to generate a 
more precise methylation profile of cfDNA. In addition, 
we develop a deep-learning model for early detection of 
HCC based on read-level ctDNA identification by using 
plasma cfDNA, and the model has exhibited an outper-
formance with low coverage depth of NEEM-seq data. 
Future prospective studies with larger sample size are 
needed to confirm the clinical utility of our model.
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