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and drug targets for colorectal cancer 
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Abstract 

Background The proteome is a major source of therapeutic targets. We conducted a proteome-wide Mendelian 
randomization (MR) study to identify candidate protein markers and therapeutic targets for colorectal cancer (CRC).

Methods Protein quantitative trait loci (pQTLs) were derived from seven published genome-wide association studies 
(GWASs) on plasma proteome, and summary-level data were extracted for 4853 circulating protein markers. Genetic 
associations with CRC were obtained from a large-scale GWAS meta-analysis (16,871 cases and 26,328 controls), 
the FinnGen cohort (4957 cases and 304,197 controls), and the UK Biobank (9276 cases and 477,069 controls). Colo-
calization and summary-data-based MR (SMR) analyses were performed sequentially to verify the causal role of candi-
date proteins. Single cell-type expression analysis, protein-protein interaction (PPI), and druggability evaluation were 
further conducted to detect the specific cell type with enrichment expression and prioritize potential therapeutic 
targets.

Results Collectively, genetically predicted levels of 13 proteins were associated with CRC risk. Elevated levels 
of two proteins (GREM1, CHRDL2) and decreased levels of 11 proteins were associated with an increased risk of CRC, 
among which four (GREM1, CLSTN3, CSF2RA, CD86) were prioritized with the most convincing evidence. These 
protein-coding genes are mainly expressed in tissue stem cells, epithelial cells, and monocytes in colon tumor tissue. 
Two interactive pairs of proteins (GREM1 and CHRDL2; MMP2 and TIMP2) were identified to be involved in osteo-
clast differentiation and tumorigenesis pathways; four proteins (POLR2F, CSF2RA, CD86, MMP2) have been targeted 
for drug development on autoimmune diseases and other cancers, with the potentials of being repurposed as thera-
peutic targets for CRC.

Conclusions This study identified several protein biomarkers to be associated with CRC risk and provided new 
insights into the etiology and promising targets for the development of screening biomarkers and therapeutic drugs 
for CRC.
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Background
Colorectal cancer (CRC) is the third most common malig-
nancy and the second leading cause of cancer death, with 
1.9 million new cases and 0.9 million deaths worldwide 
in 2020 [1]. The CRC survival remains to be improved via 
early detection or targeted anticancer therapy [2]. Further 
evidence regarding non-invasive early diagnostic biomark-
ers and the development of novel therapeutic targets for 
CRC is urgently required.

Proteins, appearing in blood circulation due to cellu-
lar leakage or active secretion, provide a window into the 
human health state [3] and act as a major source of bio-
markers and druggable targets [4]. Previous studies have 
found several circulating proteins to be associated with 
CRC risk [5–9]. However, most of these studies were lim-
ited as candidate approach with a few numbers of proteins, 
observational design, or small sample size, which limited 
opportunities to understand the causal role of protein mak-
ers in CRC risk.

Large-scale proteomic studies have identified over 18,000 
protein quantitative trait loci (pQTLs) covering more than 
4800 proteins, including over 1800 independent cis pQTLs 
[10–16]. These studies provide valuable data resources to 
systematically elucidate the causal effects of plasma pro-
teins on CRC risk by Mendelian randomization (MR). MR 
uses genetic variants that are naturally randomized at con-
ception as a natural experiment to uncover causal relation-
ships of exposures with diseases, minimizing the chance of 
reverse causation and confounding bias [17]. Proteome-
wide MR has recently offered important insights into 
understanding the etiology and prioritizing druggable tar-
gets for stroke, diabetes, psychiatric disorders, and ovarian 
cancer [18–22].

In this study, we performed a proteome-wide MR analy-
sis by integrating human plasma proteome with genome 
data to systematically identify circulating protein biomark-
ers associated with CRC risk. Considering that MR alone 
may be insufficient in identifying credible proteins on 
causal pathways to cancer, colocalization, summary-data-
based MR (SMR), and the HEIDI test were subsequently 
performed. Single cell-type expression analysis was 
employed to detect their enrichment cell type in colon 
tumor tissue. Lastly, druggability evaluation was performed 
to explore their potential as therapeutic targets for CRC.

Methods
The overall study design is shown in Fig.  1. Briefly, we 
employed pQTL data derived from seven large-scale 
proteomic studies and examined their associations with 

CRC using a two-stage (discovery and replication) pro-
teome-wide MR framework. Bayesian colocalization, 
summary-data-based MR (SMR), and HEIDI tests were 
leveraged to verify the causal associations between pro-
tein biomarkers and CRC. Single cell-type expression 
analysis was further conducted to detect the specific cell 
type of colon tumor tissue in which targeted protein-
coding genes had enrichment expression. Last, protein-
protein interaction (PPI) and druggability evaluation of 
identified protein biomarkers were performed to prior-
itize the potential therapeutic targets.

Study population and datasets
The current study included CRC cases and controls of 
European ancestry from a meta-analysis of 11 previ-
ously published CRC GWASs [23]. Details for the study 
population, genotyping, and imputation information 
have been described elsewhere [23]. After standard qual-
ity control (QC), a total of 16,871 CRC cases and 26,328 
controls were included in the discovery proteome-wide 
Mendelian randomization (MR) analysis. Two GWAS 
summary data included CRC cases and controls of Euro-
pean ancestry from independent FinnGen (4957 CRC 
cases and 304,197 controls) [24] and UK Biobank (UKBB) 
(9276 cases and 477,069 controls) [25] datasets were 
employed in the replication proteome-wide MR. In strat-
ified analysis by tumor site (colon or rectum), 3793 colon 
cancer cases and 410,350 controls of European ancestry; 
2091 rectal cancer cases and 410,350 controls of Euro-
pean ancestry were included [26]. All participants pro-
vided informed consent, and the ethics approvals were 
obtained from the relevant authorities. The basic infor-
mation of these datasets is shown in Additional file  1: 
Table S1.

Proteomic data source
Seven large-scaled proteomic studies (Pietzner et  al., 
4775 proteins [10]; Ferkingstad et  al., 4719 proteins 
[11]; Sun_1 et  al., 2995 proteins [12]; Sun_2 et  al., 1463 
proteins [13]; Suhre et  al., 1124 proteins [14]; Folkersen 
et al., 90 proteins [15]; Yao et al., 71 proteins [16]) were 
employed to extract summary statistics of genetic asso-
ciations with plasma proteins, among them, six studies 
[10–12, 14–16] had available full summary-level data. 
These protein data were measured using the SOMAs-
can platform in four studies [10–12, 14], the Olink plat-
form in two studies [13, 15], and the xMAP platform in 
one study [16]. Detailed information on these studies is 
shown in Additional file 1: Table S2.
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Proteome‑wide Mendelian randomization (MR) analysis
The protein quantitative trait loci (pQTLs) from the 
above-mentioned seven proteomic studies were used 
for the selection of genetic instruments. The platform 
ID for each protein from each study was mapped to 
the gene symbol and unified based on annotations 
provided by the original studies and manual review 
(https:// biodb net- abcc. ncifc rf. gov/ db/ db2db. php). 
Then, we mapped SNPs to human genome Build 37 
(NCBI GRCh37) for unifying genomic coordinates. 
The following criteria were used to select instruments 
and proteins: (i) SNPs associated with any protein were 
selected (P < 5×10−8); (ii) the SNPs and proteins within 
the Major Histocompatibility Complex (MHC) region 
(chr6:25.5–34.0Mb) were excluded due to their com-
plex linkage disequilibrium (LD) structure; (iii) the LD 

clumping was then conducted to identify independ-
ent pQTLs for each protein (r2 < 0.001); (iv) the R2 and 
F-statistic (R2=2×EAF×(1-EAF)×beta2; F=R2×(N−2)/
(1−R2)) [27] were used to estimate the strength of 
genetic instruments, where R2 was the proportion of 
the variability of the protein levels explained by each 
genetic instrument. For reduplicative proteins among 
studies, the protein with the largest sum of R2 was 
selected. We further classified instruments as cis or 
trans pQTLs based on the following criteria: a pQTL 
was defined as cis pQTL when the leading SNP in the 
region was located within 1 Mb of the transcription 
start site of the protein-coding gene, whereas a pQTL 
lying outside of this region was defined as trans pQTL 
[12]. Finally, a total of 13,236 instruments (1871 cis 
pQTLs, 11,377 trans pQTLs) and 4853 unique plasma 

Fig. 1 Flowchart of the study design

https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
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proteins were included in the analysis. Instrument vari-
ables are presented in Additional file 1: Table S3.

The “TwoSampleMR” package [28] was employed to 
perform MR analysis. For any proteins with only one 
instrument, the Wald ratio method was used to estimate 
the log odds change in CRC risk for per standard devia-
tion (SD) increment of circulating protein levels as prox-
ied by the instrumental variables. The inverse-variance 
weighted (IVW) method was used to obtain the MR 
effects estimates for proteins with more than one instru-
ment. The heterogeneity test was performed to assess the 
heterogeneity of the genetic instruments based on the Q 
statistic. We also performed additional analyses includ-
ing simple mode, weighted mode, weighted median, 
and MR-Egger to account for horizontal pleiotropy [29]. 
MR-Egger results were used only when the intercept 
indicated the presence of horizontal pleiotropy. Bonfer-
roni correction was used for multiple testing correction, 
with P < 1.03×10−5 (0.05/4853) as the significance level. 
Replication MR analysis was further performed for the 
identified proteins based on CRC GWAS summary data 
from FinnGen and UKBB, respectively. P value < 0.05 was 
defined as the significance level for replication. Finally, 
the estimates for each protein from the CRC meta-
GWASs, FinnGen, and UKBB were combined based on 
the random-effects meta-analysis method. In stratified 
analysis by tumor site, we further tested associations of 
the identified protein markers with colon cancer and 
rectal cancer, respectively. Additionally, we performed a 
sensitivity analysis using only cis pQTLs as instruments 
to evaluate associations of proteins with CRC risk, with 
P < 2.70×10−5 (0.05/1850 proteins with cis pQTLs) as the 
significance level. The analyses were conducted using R 
software 4.1.0.

Bayesian colocalization analysis
To assess whether two associated signals (protein and 
CRC risk) were consistent with a shared causal variant 
to distinguish the confounding of linkage disequilib-
rium, we employed summary statistics of proteins and 
CRC meta-GWASs to perform Bayesian colocalization 
analysis based on the “coloc” package [30]. The colocali-
zation analysis included five hypotheses: (i) there was no 
causal variant for either protein or CRC in the genomic 
locus (H0); (ii) there was one causal variant for protein 
only (H1); (iii) there was one causal variant for CRC only 
(H2); there were two distinct causal variants for protein 
and CRC (H3); (iv) there was a shared causal variant for 
protein and CRC (H4). For each protein, we included 
SNPs within ±500 kb of the pQTL. When a protein had 
more than one pQTL, colocalization analysis was per-
formed based on each pQTL, respectively, and the pQTL 
with the strongest evidence for colocalization was shown. 

Default parameters were used to perform colocaliza-
tion, with p1=1×10−4 (prior probability a SNP is associ-
ated with protein), p2=1×10−4 (prior probability a SNP 
is associated with CRC), and p12=1×10−5 (prior prob-
ability a SNP is associated with both protein and CRC) 
[30]. Given that colocalization is sensitive to priors and 
window sizes, we performed additional colocalization 
analyses based on other priors (p12=1e−6) and windows 
(±250kb) to evaluate the robustness of the results. The 
posterior probability was used to quantify the support for 
each hypothesis. The posterior probability for H4 (PP4) 
that was higher than 80% under different priors and win-
dows was considered strong evidence of colocalization. 
The “LocusCompareR” package [31] was used to visual-
ize the region results of colocalization. To further explain 
the colocalization evidence driven by trans pQTL, we 
used Reactome (https:// react ome. org/) to obtain pathway 
information of the identified proteins with trans pQTLs 
and the candidate mapping genes of the trans pQTLs and 
tested the relationship of mapping gene coding proteins 
with CRC by colocalization analysis.

Summary‑data‑based MR (SMR) analysis
Summary-data-based MR (SMR) analysis was further 
conducted as a complementary method to verify the 
causal associations between proteins and CRC [32]. The 
heterogeneity in dependent instruments (HEIDI) test, 
using multiple SNPs in a region, was employed to distin-
guish proteins that were associated with CRC risk owing 
to a shared genetic variant rather than genetic linkage 
[32]. The SMR and HEIDI tests were performed using 
SMR software (SMR v1.3.1) [32]. A P value < 3.85×10−3 
(0.05/13) was defined as the significance level for SMR. 
The P value of the HEIDI test > 0.05 indicated that the 
association of protein and CRC was not driven by linkage 
disequilibrium.

After the identification of CRC-related proteins, we 
conducted a comprehensive literature search and defined 
proteins that have not been reported to be associated 
with CRC in either gene polymorphisms, mRNA levels, 
or protein levels as novel protein markers for CRC.

Single cell‑type expression analysis
The cell type-specific expression of target genes with evi-
dence for a potential causal effect on CRC at the plasma 
protein levels was further evaluated by employing sin-
gle-cell RNA-seq data of human colon tumor tissue and 
adjacent normal tissues profiled from the Gene Expres-
sion Omnibus (GEO) from Wang R et al. [33]. The RNA-
seq data of colon cancer tumor tissue included 24,871 
genes in 1632 cells. Using the “Seurat” package [34], we 
first carried out data preprocessing and transformation 
based on the raw single-cell RNA-seq data. The genes 

https://reactome.org/
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with fewer than three counts in one cell and cells with 
unique feature counts of less than 50 were removed. The 
NormalizeData and ScaleData functions were then used 
to normalize and scale the RNA TPM. The “SingleR” 
package [35] was used to annotate cell types. To examine 
whether the identified CRC causal protein-coding genes 
were highly expressed in a particular cell type in colon 
cancer tumor tissue, the differential expression analysis 
based on the Wilcoxon Rank Sum test was performed to 
compare gene expression levels between a cell type and 
the rest of the other cell types. The genes with an aver-
age  Log2 fold change  (Log2FC) more than 0.5 and a false 
discovery rate (FDR) adjusted P value less than 0.05 were 
identified as enrichment genes in a cell type.

Protein‑protein interaction (PPI) and druggability 
evaluation
To explore the potential interactions between identi-
fied proteins, a PPI network was constructed using the 
STRING database (https:// string- db. org/). We further 
assessed whether the identified proteins can serve as 
potential therapeutic targets by searching the interac-
tions between these proteins and drugs using DGIdb 
[36], ChEMBL [37], and DrugBank [38] databases, which 
prioritized the potential druggable targets by integrating 
information from drug-gene interactions, gene function, 
text mining, and expert curation. The information on 
drug names and the development process of drugs that 
targeted identified proteins were documented.

Results
Proteome‑wide MR analysis identified 13 circulating 
proteins for CRC 
The F-statistics of all genetic instruments were higher 
than 10, indicating a good strength (Additional file  1: 
Table S3). Using the Wald ratio or IVW method, a total 
of 13 proteins were significantly associated with CRC risk 
after Bonferroni correction (P < 1.03×10−5) (Table 1 and 
Fig.  2). Genetically predicted higher levels of GREM1 
and CHRDL2 were associated with an increased risk of 
CRC, while the other 11 proteins (CLSTN3, POLR2F, 
ADPGK, CSF2RA, CSAG1, STXBP6, CD86, CXADR, 
FUT3, MMP2, and TIMP2) were negatively associated 
with CRC risk, suggesting that lower levels of the 11 pro-
teins were associated with a higher risk of CRC. These 
associations were generally consistent in additional anal-
yses, including weighted mode, weighted median, and 
MR-Egger, except for simple mode. No heterogeneity 
and pleiotropy were found (Pheterogeneity > 0.05, Ppleiotropy > 
0.05) (Additional file 1: Table S4). All results of the dis-
covery proteome-wide MR are shown in Additional file 1: 
Table S5.

In the replication stage, ten proteins were success-
fully validated in the FinnGen or the UKBB dataset (P < 
0.05) based on the Wald ratio or IVW method (Table 1 
and Fig.  3). In the meta-analysis of these three sources, 
11 proteins showed significant associations, and the odds 
ratio (OR) (95% confidence interval, CI) of CRC per SD 
increase in genetically predicted levels of protein was 1.12 
(1.09–1.15) for GREM1, 1.32 (1.15–1.50) for CHRDL2, 
whereas 0.29 (0.19–0.44) for CLSTN3, 0.24 (0.15–0.38) 
for POLR2F, 0.23 (0.14–0.36) for ADPGK, 0.23 (0.14–
0.36) for CSF2RA, 0.92 (0.90–0.94) for CSAG1, 0.90 
(0.87–0.93) for STXBP6, 0.34 (0.20–0.58) for CD86, 0.83 
(0.71–0.96) for CXADR, and 0.92 (0.90–0.95) for FUT3 
(Fig. 3).

In stratified analysis by tumor site (Additional file  1: 
Tables S6 and S7), eight (STXBP6, CSAG1, CD86, 
POLR2F, CLSTN3, ADPGK, CSF2RA, CHRDL2) of the 
13 proteins were associated with colon cancer risk using 
Wald ratio or IVW method, and two (CHRDL2, CD86) 
were associated with rectal cancer risk (P < 0.05). Among 
them, CHRDL2 and CD86 were associated with both 
colon and rectal cancers, with consistent direction. No 
heterogeneity and pleiotropy were found (Pheterogeneity > 
0.05, Ppleiotropy > 0.05).

In sensitivity analysis (cis only MR), four of 13 proteins 
had cis pQTLs, and three (GREM1, CHRDL2, FUT3) of 
them were still significantly associated with CRC risk (P 
< 2.70×10−5) based on Wald ratio or IVW method, with a 
consistent direction with the primary analysis (cis+trans 
MR). Additionally, three other proteins (LAMB1_
LAMC1_LAMA1, CABLES2, KLK1) were also found to 
be significantly associated with CRC risk (P < 2.70×10−5) 
in cis only MR (Additional file 1: Table S8).

Colocalization analysis supported the causality of six 
proteins with CRC 
Of the 13 potential causal proteins identified by pro-
teome-wide MR, two proteins (POLR2F and CXADR) 
did not have complete summary-level data available and 
therefore could not be tested by colocalization analysis. 
Six of the other 11 proteins (GREM1 and FUT3 with cis 
pQTL; CLSTN3, CSF2RA, CD86, and ADPGK with trans 
pQTL) were supported by strong evidence of genetic 
colocalization (PP4 > 80%) under different priors and 
windows (Table  1, Additional file  1: Table  S9), indicat-
ing high probability for a shared causal variant between 
protein level and CRC risk. CSF2RA, CD86, and their 
trans pQTLs mapping gene (SH2B3) were involved in the 
same biological pathways (Additional file  1: Table  S9). 
The same biological pathways were not found between 
CLSTN3 and its trans pQTL mapping gene (ATXN2) and 
ADPGK and its trans pQTL mapping gene (SH2B3), and 
no colocalization evidence between SH2B3 and CRC was 

https://string-db.org/
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found. Additional file  2: Fig. S1–S11 show the regional 
association for colocalization results.

SMR and HEIDI tests verified seven causal proteins
To further verify the observed findings, we performed 
SMR and HEIDI tests for 11 proteins with full sum-
mary-level data. All of 11 proteins passed the SMR test 
(P < 3.85×10−3), and seven of them passed the HEIDI 
test (P > 0.05) (Table  1). The SMR locus plot and effect 
plots of seven proteins are shown in Additional file 2: Fig. 
S12–S18. Combining the above evidence, we classified 
these proteins into three tiers. Four proteins (GREM1, 
CLSTN3, CSF2RA, CD86) passed all tests and were clas-
sified into tier 1 (Table 1). Five proteins that failed colo-
calization analysis or HEIDI test or that were not able 
to be tested due to the lack of data (CHRDL2, POLR2F, 
ADPGK, CXADR, FUT3) were classified into tier 2. Four 
proteins (CSAG1, STXBP6, MMP2, TIMP2) failed in the 
replication MR and meta-analysis or failed in both colo-
calization analysis and HEIDI test were classified into tier 
3.

Cell‑type specificity expression in the colon tumor tissue
To explore whether the coding genes of 13 circulat-
ing proteins had any cell type-specific enrichment in 

colon tumor tissue, we further performed single cell-
type expression analysis using single-cell RNA-seq 
data from GEO. Cells were clustered into 11 clusters 
and were further classified into six cell types (epithe-
lial cells, B cell, monocyte, tissue stem cells, T cells, 
endothelial cells) (Fig.  4A). 12 of the 13 protein-cod-
ing genes had expression data in colon tumor tissue, 
whereas CSF2RA expression was undetected; Fig. 4 (B 
and C) shows single-cell expression of these 12 cod-
ing genes in every cluster. Among them, six protein-
coding genes had cell type-specific enrichment in 
colon tumor tissue at average  Log2FC > 0.5 and FDR < 
0.05 level (Fig. 4D). GREM1, MMP2, and TIMP2 were 
mainly enriched in tissue stem cells, whereas FUT3 
and CXADR were enriched in epithelial cells, and 
CD86 was enriched in monocyte. In normal colon tis-
sue, 10 of the 13 protein-coding genes had expression 
data, whereas the expression of CHRDL2, CSF2RA, 
and CSAG1 was undetected. Five protein-coding genes 
had cell type-specific enrichment in normal colon 
tissue at average  Log2FC > 0.5 and FDR < 0.05 level: 
CD86 and TIMP2 were mainly enriched in dendritic 
cell (DC), whereas MMP2 was enriched in fibroblasts, 
and FUT3 was enriched in epithelial cells (Additional 
file 2: Fig. S19).

Fig. 2 Volcano plot showing results from proteome-wide Mendelian randomization (MR) in the discovery stage
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PPI and druggability evaluation on the potentials 
of therapeutic targets
The protein-protein interaction analysis found lim-
ited interactions between the identified potential causal 
proteins, and only the interaction between GREM1 
and CHRDL2, and the interaction between MMP2 and 
TIMP2 were identified (Additional file 2: Fig. S20) which 
were involved in osteoclast differentiation and tumori-
genesis pathways, respectively. In druggability evaluation, 
we found that four of these proteins (POLR2F, CSF2RA, 
CD86, MMP2) have been targeted for drug development 
(Additional file 1: Table S10). Drug (TAS-106) targeting 
POLR2F has been found to inhibit the growth of colo-
rectal and gastric tumors in mice. Some drugs target-
ing CSF2RA have been developed to treat autoimmune 
diseases (sargramostim, KB002), diabetic foot ulcers 
(foreskin fibroblast), and accelerate wound closure and 
healing (foreskin keratinocyte). Among them, clove oil 
with antioxidant and antimicrobial activity has been 

categorized as generally recognized as safe (GRAS) as 
a food additive or for use in dental cement by the Food 
and Drug Administration (FDA). Some drugs targeting 
CD86 have been approved for the treatment of rheuma-
toid arthritis (abatacept, belatacept) and acute graft-ver-
sus-host disease (abatacept, belatacept, antithymocyte 
immunoglobulin). Drugs targeting MMP2 have been 
used for the treatment of cancer (marimastat), renovas-
cular hypertension, and congestive heart failure (capto-
pril), or investigated in clinical trials for the treatment of 
lung cancer (oleandrin).

Discussion
In this study, we present a comprehensive investigation 
on the causal associations between 4853 plasma pro-
teins and CRC risk. The discovery proteome-wide MR 
identified 13 protein markers, among which genetically 
determined higher levels of two proteins and lower lev-
els of 11 proteins were associated with increased CRC 

Fig. 3 Estimates of meta-analysis from discovery dataset and replication datasets for 13 proteome-wide identified proteins. Discovery dataset: CRC 
meta-GWASs. Replication datasets: CRC GWAS summary data from FinnGen and UK Biobank (UKBB)



Page 9 of 13Sun et al. Genome Medicine           (2023) 15:75  

susceptibility. Two proteins were significantly associated 
with both colon and rectal cancers in stratified analysis 
by tumor site. The replication MR and meta-analysis vali-
dated 11 of these 13 candidate proteins. Bayesian colo-
calization highlighted the causal effects of six protein 
biomarkers, and seven proteins were verified by SMR 
and HEIDI tests. Collectively, we identified four pro-
teins (GREM1, CLSTN3, CSF2RA, CD86) with the most 
convincing evidence (tier 1), five proteins with convinc-
ing evidence (tier 2), and four proteins with middle con-
vincing evidence (tier 3), among which six (CLSTN3, 
POLR2F, ADPGK, CSAG1, STXBP6, FUT3) were novel 
plasma protein makers associated with CRC. We further 
verified the differential expressions of these protein-cod-
ing genes in the tissue stem cells, epithelia, and mono-
cytes. Druggability evaluation prioritized four protein 
biomarkers, which have been developed as drug targets 
for autoimmune diseases and cancer, with the potentials 
of being repurposed as therapeutic targets for CRC.

Our analysis implicated candidate proteins that have 
been reported evidence with CRC in either gene poly-
morphisms, mRNA levels, or protein levels from previ-
ous genetic or experiment studies, including GREM1, 
CHRDL2, CSF2RA, CD86, CXADR, MMP2, and TIMP2, 
among which three (GREM1, CSF2RA, CD86) were 

prioritized with the most convincing evidence (tier 1). 
GREM1 (Gremlin-1) acts as an antagonist of bone mor-
phogenic protein (BMP), and BMP is closely involved in 
the development of CRC [39]. GREM1 gene polymor-
phisms have been observed to be associated with CRC 
risk in multiple ethnic groups [40], and a higher expres-
sion of GREM1 was associated with poor survival in 
CRC patients [41]. Experiment studies have also shown 
that the overexpression of GREM1 led to colonic tumo-
rigenesis [42]. In line with these findings, we expanded 
the evidence and confirmed the causal role of elevated 
GREM1 protein levels in CRC risk. Although lack of 
drug information targeting GREM1, studies have been 
found that specific anti-GREM1 therapeutic antibody 
has a strong tumor-inhibitory effect on prostate cancer 
[43] and CRC tumoroid [41]. CSF2RA (Granulocyte-
macrophage colony-stimulating factor receptor subunit 
alpha, known as GM-CSF) is a growth factor with bio-
logical functions of mediating inflammation and pain. 
Laboratory experiments showed a significant inhibit-
ing effect of GM-CSF-stimulated macrophages on the 
proliferation of CRC cells, and GM-CSF production by 
CRC cells was related to improved survival [44]. Consist-
ently, we expanded the evidence from the population and 
confirmed the causal effect of reduced CSF2RA protein 

Fig. 4 Single-cell type expression in colon tumor tissue for the coding genes of proteins identified by proteome-wide Mendelian randomization. 
A A total of 11 cell clusters and six cell types were identified. B and C show the expression of protein coding genes in each cluster. D Six 
protein-coding genes had evidence of enrichment in a cell type at average  Log2FC > 0.5 and FDR < 0.05 level
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levels on CRC risk. Drug targeting CSF2RA, such as 
sargramostim, has shown clinical activity against auto-
immune diseases and diverse solid tumors [45]. CD86 
(T-lymphocyte activation antigen CD86) is the costimu-
latory molecule on antigen-presenting cells, playing an 
important role in autoimmunity and tumor immunity. 
CD86 gene polymorphism has been linked to CRC risk 
in multiple populations [46]. The CD86 protein level was 
negatively associated with the CRC tumor differentiation 
and tumor node metastasis (TNM) stage, and was related 
to improved survival [47].

We additionally found several novel candidate pro-
teins for CRC, including CLSTN3, POLR2F, ADPGK, 
CSAG1, STXBP6, and FUT3, among which CLSTN3 
was prioritized with the most convincing evidence (tier 
1). CLSTN3 (Calsyntenin-3), localizing to the post-
synaptic membrane, serves as a synaptogenic adhesion 
molecule and can trigger presynaptic differentiation. 
CLSTN3 gene polymorphism led to dysfunction in white 
adipose tissue [48] and was associated with obesity that 
was closely related to CRC risk. Although direct evi-
dence on CLSTN3 protein and CRC risk is unreported, 
evidence from the human protein atlas has shown that 
high expression of CLSTN3 is favorable for prognostic 
of pancreatic cancer, breast cancer, and urothelial cancer 
[49]. Further epidemiological studies and experimental 
researches are needed to ascertain our findings.

The strength of this study is that we systematically 
examined the associations between plasma protein bio-
markers and CRC risk by employing a two-stage pro-
teome-wide MR design with the advantages of large 
sample sizes, rich proteome coverage, and minimal risk of 
reverse causation and confounding bias. The consistency 
of results among multiple rigorous analyses confirmed 
the robustness of the study findings. Additional evidence 
from single cell-type expression analysis, PPI, and drug-
gability evaluation provided insights into the potential 
pathogenic effect of candidate proteins on CRC and fur-
ther prioritized druggable targets. Although the lack of 
drug information of several proteins (e.g., GREM1 and 
CHRDL2), these proteins still deserve to be a promising 
new therapeutic target for CRC. In particular, GREM1 
has been found that anti-GREM1 therapeutic antibody 
has a strong tumor-inhibitory effect on prostate cancer 
[43] and CRC tumoroid [41]. Nevertheless, several limi-
tations of this study should also be considered. First, the 
current analysis was restricted to European populations. 
The generalization of these findings to other ancestries 
needs to be further confirmed. However, several candi-
date biomarkers have also previously been reported to 
be linked to CRC as gene polymorphisms, mRNA levels, 
or protein levels based on different ethnic groups, which 
may imply a degree of generalization between ancestries. 

Second, we assessed the role of plasma proteins in CRC 
but could not estimate the levels of relevant proteins in 
other tissues. Assessing the role of protein levels from 
other tissues in CRC may provide more insight into CRC 
pathogenesis, especially intestinal tissue. Third, the strict 
significance threshold and evidence grading criteria may 
lead to underestimation the convincing of the associated 
proteins, such as POLR2F, which could not be tested by 
colocalization and SMR due to the lack of full summary-
level data. Furthermore, the current statistical analyses 
and strict significance threshold might filter out these 
plasma proteins that are “downstream” of the “driver” 
proteins. Further mechanistic studies are needed to 
uncover the “driver” and “downstream” proteins involved 
in CRC onset and development. Fourth, 62% of protein 
markers had only trans pQTLs. Although trans pQTLs 
can help to expand the understanding of the relationship 
between proteins, diseases, and the etiology of diseases 
[12, 50], the interpretation of the current findings is dif-
ficult. This is due to insufficient biological understand-
ing of trans pQTLs and proteins, which does not allow 
to ascertain causality with CRC. Nevertheless, some pro-
teins with trans pQTLs (e.g., CSF2RA, CD86) had robust 
colocalization evidence and shared the same biological 
pathways between them and their trans pQTLs mapping 
gene, indicating potential vertical pleiotropy. Addition-
ally, 1.4% of proteins (e.g., LAMB1_LAMC1_LAMA1) 
are unable to be distinguished by the current assay, so it 
is difficult to ascertain the specific relationships of them 
with CRC. Lastly, plasma protein may also be affected by 
factors other than genetics. In the current study, the pro-
tein levels explained by independent genetic instruments 
 (R2_sum) ranged from 0.09% to 82.54%, and future epide-
miological studies of measured plasma protein levels and 
CRC risk are needed to validate the findings.

Conclusions
Our study identified several plasma proteins that were 
associated with CRC risk and provided new insights into 
the etiology of CRC and promising targets for the devel-
opment of screening biomarkers and therapeutic drugs 
for CRC. Further experimental and clinical studies are 
needed to evaluate the utility and efficacy of these candi-
dates to ascertain the current findings.
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