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Abstract 

Background  T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells 
and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development 
of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-
throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell 
epitopes have emerged. Despite recent developments, most immunogenicity algorithms struggle to learn features 
of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-
specific CD8 + T-cell epitopes.

Methods  We developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learn-
ing workflow for predicting CD8 + T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses 
transfer learning, deep learning architecture and MHC binding information to make context-specific predictions 
of CD8 + T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those 
in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic 
peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoanti-
gens and tumour-associated antigens), as a complementary to ‘dissimilarity to self’ from cancer studies.

Results  TRAP was used to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it 
outperformed other algorithms in both cancer and pathogenic settings. TRAP was especially effective at extracting 
immunogenicity-associated properties from restricted data of emerging pathogens and translating them onto related 
species, as well as minimising the loss of likely epitopes in imbalanced datasets. We also demonstrated that the novel 
metric termed RSAT was able to estimate immunogenic of pathogenic peptides of various lengths and species. TRAP 
implementation is available at: https://​github.​com/​Chloe​HJ/​TRAP.

Conclusions  This study presents a novel computational workflow for accurately predicting CD8 + T-cell epitopes 
to foster a better understanding of antigen-specific T-cell response and the development of effective clinical 
therapeutics.
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Background
T-cells are essential for eliminating intracellular infec-
tions, triggering anti-tumour response as well as devel-
oping an immunological memory. Their ability to 
induce antigen-directed cytotoxicity has proven instru-
mental in fighting diseases, as evidenced by checkpoint 
blockade immunotherapy, adoptive cellular therapy, 
and cancer vaccinology [1–3]. With the growing inter-
est in identifying the cognate antigens of antigen-spe-
cific T-cells, many efforts have been made to improve 
experimental and computational methods for screen-
ing, predicting or characterising T-cell epitopes. How-
ever, current experimental approaches for identifying 
T-cell targets are labour-intensive, low-throughput and 
expensive [4–6], and computational methods are still in 
their infancy [7].

An effective antigen-specific CD8 + T-cell response to 
exogenous pathogens or endogenous threats relies on 
tightly regulated processing and presentation of antigenic 
peptides by class I MHCs, followed by recognition of the 
peptide-MHC (pMHC) by cognate CD8 + T-cells. There-
fore, immunogenic peptides encompass features associ-
ated with MHC presentation and T-cell recognition  [8]. 
Among these, it has been demonstrated that features 
attributed to MHC presentation are more prominent 
than those attributed to TCR recognition, with strongly 
conserved motifs at anchor positions being one such fea-
ture [9, 10]. Indeed, recent cutting-edge models [11, 12], 
such as the widely used NetMHCpan [12], have demon-
strated impressive performance in predicting MHC pres-
entation on certain alleles. On the other hand, the dual 
nature of the peptide-specific TCR recognition interface, 
comprised of both peptide and MHC, makes predicting 
the interaction between TCR and pMHC uniquely chal-
lenging. In addition, the scarcity of peptides tested by 
T-cell assays, as well as the lack of true negative datasets 
(i.e. presented but not recognised by T-cells), hampers 
our understanding of the properties underlying T-cell 
recognition.

Despite these challenges, a plethora of computational 
models have been developed to aid in the prediction of 
T-cell targets and to foster a better understanding of the 
characteristics underpinning peptide immunogenicity [8, 
13–17]. These models utilise features such as amino acids 
at contact position, large and aromatic side chains  [13], 
hydrophobicity  [17–20], peptide-MHC binding affin-
ity and stability  [16] as correlates to T-cell recognition. 
Specifically for cancer neoepitopes, agretopicity (i.e. the 
ratio of binding affinity between neoepitope and wild-
type counterpart), foreignness score (i.e. similarity of 
neoepitope to previously characterised epitopes) [8] and 
dissimilarity to human proteome [21, 22] were found to 
indicate T-cell recognition.

However, we previously found that cancer and patho-
genic epitopes often do not share the same immuno-
genicity features, which may differ in directionality or 
magnitude  [23]. In addition to the context-specific dif-
ferences, other factors, such as limited training data and 
a highly diverse T-cell receptor (TCR) repertoire con-
tributed to the difficulty of predicting T-cell recognition 
potential. As a result, many existing models perform 
poorly against both cancer and emerging viral patho-
gens [7], and progress in improving performance appears 
to be incremental, suggesting that there are still remain-
ing challenges in predicting T-cell epitopes.

Over the last decade, deep learning and natural lan-
guage processing (NLP) have transformed biomedi-
cal research and offered breakthrough discoveries  [24]. 
Because of their ability to extract complex patterns from 
large amounts of data, deep neural network (DNN) 
models have been used for predicting peptide-HLA 
binding  [12, 25, 26] as well as TCR specificity  [27–29]. 
Furthermore, transformer-based pre-trained language 
models (PLMs) have advanced the prediction of protein 
structure and function [30–33] by combining the power 
of transformers, self-supervised learning and trans-
fer learning  [34–36]. Indeed, as a solution to data con-
straints, these protein PLMs, which contain knowledge 
learned from a large volume of protein sequences, could 
serve as an additional source of information for related 
downstream tasks.

In addition, more research has recently been con-
ducted on providing reliable predictions for safety–criti-
cal applications. Most of DNN models are trained under 
the assumption that test data distribution will be similar 
to the training data distribution. However, when used 
in real-world tasks, out-of-distribution (OOD) exam-
ples that deviate from the training data are common [37, 
38], resulting in a significant drop in model perfor-
mance  [39–41]. While this may be acceptable for some 
applications such as movie recommendations, it can be 
disastrous in safety–critical applications, such as medical 
diagnosis [42, 43]. Therefore, the ability to identify OOD 
inputs and respond appropriately, whether by abstaining, 
requesting human intervention or gathering additional 
information, has become critical  [42]. Recently, several 
methods for estimating the degree of correctness have 
been proposed and have been successfully applied in 
the Natural language Inference (NLI) and/or OOD data-
sets  [44–48]. One of the major challenges in immuno-
genicity prediction has been the limited data and OOD 
generalisation problem for peptides derived from dif-
ferent hosts, organisms and diseases. As such, the OOD 
detection module would facilitate making reliable predic-
tions on a real-world set of peptides that are often highly 
diverse and heterogeneous.
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Here, we present TRAP (T-cell recognition poten-
tial of HLA-I presented peptides), a deep learning-
based workflow that addresses the current limitations 
and effectively captures T-cell recognition motifs from 
HLA-I presented pathogenic or self-peptides. Novel 
strategies were implemented, such as (a) building sepa-
rate models for pathogenic and self-peptides to account 
for divergent immunogenicity-related features, (b) using 
transfer learning to deliver amino acid embeddings from 
pre-trained large-scale protein language models, (c) cap-
turing T-cell recognition motifs with a deep learning 
architecture, and (d) detecting low-confidence predic-
tions to abstain from making incorrect predictions. We 
further developed RSAT (relative similarity to autoan-
tigens and tumour-associated antigens) to estimate the 
immunogenicity of pathogenic peptides when they are 
abstained due to low-confidence predictions. The TRAP 
was then used to identify cancer neoepitopes from glio-
blastoma patients and showed superior performance to 
other methods. While many immunogenicity algorithms 
are based on MHC binding, TRAP goes one step further 
by predicting T-cell targets from MHC-I ligands. This 
novel workflow will enable more accurate identification 
of CD8 + T-cell epitopes, facilitating the development of 
effective vaccines and therapeutics.

Methods
Data preparation
PeptideTcell data
Peptides that bind MHC-I molecules are typically 
restricted to 8–10 amino acids (aa) in lengths due to 
closed structure of peptide-binding groove. Given the 
limited number of 8aa peptides in databases, peptides of 
lengths 9–10aa characterised by T-cells were retrieved 
from IEDB  [49]. These included cancer neoepitopes, 
autoantigens or pathogenic peptides. The peptides with-
out HLA allele or serotype annotations were removed. To 
ensure MHC binding, peptides were subjected to NetM-
HCpan 4.0 prediction and only those with rank ≤ 2.0 (i.e. 
predicted MHC binder) were retained. Peptides having 
contradictory immunogenicity annotations were catego-
rised as ‘Positive’ and we only included Negatives that 
were characterised negative in ≥ 3 tests. This resulted 
5093 immunogenic (‘Positive’) and 6628 non-immuno-
genic (‘Negative’) peptides in PeptideTcell data. The data-
set includes information about peptide sequence, binary 
immunogenicity, HLA allele, source antigen and organ-
ism. This data is the foundation for sequence pattern 
analysis, model development and RSAT validation.

Pathogenic data
For the analysis of sequence patterns and the devel-
opment of deep learning-based models, datasets for 

pathogenic and self-antigens were prepared separately. 
For pathogenic datasets, we subset peptides originating 
from non-human species, resulting 4000 Positive and 
6097 Negative pathogenic peptides (Additional file  3: 
Table S1).

Self‑antigen data
For immunogenic self-peptides, autoantigens, tumour-
associated antigens and cancer neoepitopes having 9–10 
amino acids were collected from different databases. 
We gathered 162 epitopes from cancer peptide database 
(https://​caped.​icp.​ucl.​ac.​be), 228 from dbPepNeo  [50], 
1506 from IEDB  [49], 256 from McPAS-TCR  [51] and 
256 from NEPdb  [52]. For Negative self-antigens, we 
gathered HLA-I ligands expressed in thymus suggested 
to be involved in the negative selection of T-cells. Two 
hundred forty HLA-I ligands were collected from Ada-
mopoulou et  al.  [53], which were expressed in nega-
tively selecting dendritic cells, 187 HLA-I ligands from 
Espinosa et  al. [54], which were expressed in thymus, 
and 10,840 benign HLA-I presented peptides from HLA 
Ligand Atlas  [55] expressed in thymus. Of note, we did 
not include ‘Negatives’ from IEDB for self-antigen data 
because many were tested due to their association with 
tumour-associated antigens, e.g. cancer/testis antigen 1, 
melanoma-associated antigen 9; yet, there was little evi-
dence that these peptides were immunogenic. Therefore, 
only MHC-I peptides expressed in thymus were included. 
After pre-processing, removing duplicates and filtering 
for peptides with NetMHCpan rank ≤ 2, 1260 Positive 
and 2868 Negative peptides were retained for the self-
antigen model. Since MHC binding filter removed many 
peptides, we prepared another self-antigen dataset with 
relaxed threshold (NetMHCpan rank ≤ 10) to include as 
many self-epitopes as possible for model training and 
validation, resulting 1606 Positive and 10,915 Negative 
peptides (Additional file  3: Table  S2). For all analysis, 
the self-antigen dataset with relaxed threshold was used, 
unless otherwise specified.

Benchmarking data
The benchmarking analysis has been done in HLA-
agnostic (i.e. peptide-based) or HLA-restrictive (i.e. 
peptide-HLA based) manner depending on the nature of 
different models. The TRAP makes prediction based on 
the peptide sequence and HLA binding rank score, which 
allows it to predict in both HLA-agnostic and restric-
tive manner. The HLA-agnostic approach was applied 
on all peptides in the aforementioned pathogenic and 
self-antigen datasets. The HLA-restricted prediction 
was made against epitopes that were bound to 13 HLAs 
for which NetTepi could be performed, which are HLA-
A*02:01, HLA-B*58:01, HLA-B*15:01, HLA-B*35:01, 

https://caped.icp.ucl.ac.be
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HLA-B*07:02, HLA-A*01:01, HLA-A*03:01, HLA-
A*11:01, HLA-A*24:02, HLA-A*26:01, HLA-B*27:05, 
HLA-B*39:01, HLA-B*40:01. The list of models con-
ducted in HLA-restricted manner are iPred  [17], 
PRIME  [56], NetTepi  [16], IEDB  [13] and DeepIm-
muno  [57]. Specifically for DeepImmuno, an additional 
filter was applied to exclude peptides that were bound to 
HLAs that DeepImmuno could not process.

DeepImmuno data
DeepImmuno training data was retrieved from GitHub 
repository and used for evaluating the DeepImmuno per-
formance (https://​github.​com/​frank​ligy/​DeepI​mmuno).

10‑fold CV and cross‑species comparison
The peptideTcell data was divided randomly or in cross-
species manner: (i) 90% train vs. 10% test random split 
(i.e. representation of 10-fold cross-validation), (ii) Non-
SARS-CoV-2 (Non-SARS-2) train vs. SARS-2 test, and 
(iii) Non-vaccinia virus (Non-VACV) train vs. VACV 
test.

To compare the performance of the XGBOOST clas-
sifier on random vs. cross-species datasets, amino acids 
at contact positions were first represented by their phys-
icochemical properties using ‘aaDescriptors’ function 
in R Peptides v2.4.4 package. The amino acid descrip-
tors included kideraFactor, zScales, tScales, vhseScales, 
protFP, stScales, blosumIndices, mswhimScores, cru-
cianiProperties and fasgaiVectors, which described 
properties such as polarity, electronic properties, hydro-
phobicity, α-helix/bend preference, β-sheet, bulkiness/
size of side-chains, hydrogen-bonding, isoelectric point 
and structural topology  [58]. In addition to amino acid-
level embedding, the peptide-wide property was added 
by averaging these aaDescriptors across all positions 
for each peptide. The embeddings from random split 
and cross-species datasets were used to generate the 
XGBOOST classifier using ‘XGBClassifier’ function in 
python xgboost v0.90 package. The set of hyperparam-
eters, such as alpha, gamma, max_depth and colsample_
bytree, were optimised by grid search for each dataset. 
The models were trained using training datasets: 90% 
train, Non-SARS-2 and Non-VACV peptides by 10-fold 
cross-validations. The trained models were tested on 10% 
test, SARS-2 and VACV peptides, respectively as repre-
sentatives of 10-fold CV and cross-species comparisons.

To analyse sequence homology between training vs. 
test datasets, differential position-specific scoring matri-
ces (dPSSMs) were generated for each training and test 
datasets. The probability frequency of each amino acid in 
each position was represented by position-specific scor-
ing matrices using ‘consensusMatrix’ function from R 
Biostrings v2.56.0 package. The PSSMs from Positive and 

Negative peptides were standardised by centre and scal-
ing, and differential PSSMs were generated by subtract-
ing the two. To estimate the discriminative power of the 
dPSSM scores, we generated dPSSMs using training data 
and used the matrices to score respective test peptides 
for their immunogenicity potential.

Immunogenicity positivity score
The positivity score was computed by taking three factors 
into account: (1) the number of experiments conducted, 
(2) the percentage tested positive and (3) the number of 
cognate TCRs if available, using the following equations.

(1) computes positivity score (PS) for Positives pep-
tides that do not have TCR information available, where 
pr = % responded positive, TN = total number of tests 
conducted and Qp = the number of tests designated as a 
minimum number of tests required to support positivity 
(Qp = 3). (2) computes PS for Negative peptides, where 
Qn = number of tests designated as a minimum number 
of tests required to support negativity (Qn = 5). (3) and 
(4) compute for Positives with cognate TCR informa-
tion. (3) is a sigmoid function that translates the num-
ber of cognate TCR (nTCR) to values in a logistic growth 
curve and (4) scales the distribution to align with scores 
from (1), where min’ equals mean of the distribution 
(~ 1.28 equivalent to 1 test and 1 responded positive) 
and max’ = 2.0. Due to limited pool of peptides with cog-
nate TCRs, the majority of peptides’ positivity score was 
computed by translating the number of experiments con-
ducted and % tested positive, and the number of cognate 
TCRs was incorporated to add greater weights to positiv-
ity (all positivity scores with cognate TCR had values > 1). 
The positivity scores were computed for each entry for 
each peptide-HLA pair, and ranged from 0 to 2.3, with 
Negatives ranging from 0 to 1 and Positives ranging from 
1 to 2.3.

Intra‑ and inter‑HLA variability
The HLA effect was computed on 2349 peptides having 
entries from multiple HLA alleles. One-way ANOVA 

(1)PS = pr +
(

1− e
−

TN
Qp

)

(2)PS = 1− pr + 1− e
−

TN
Qn

(3)x =
1

1+ e−nTCR

(4)PS = min′ +
max′ −min′

max(x)−min(x)
∗ (x −min(x))

https://github.com/frankligy/DeepImmuno


Page 5 of 24Lee et al. Genome Medicine           (2023) 15:70 	

was conducted for the effect of HLA on the positiv-
ity score for each peptide-HLA pair using ‘aov’ function 
from R stats v4.0.5 package. The distributions show mean 
squared from summary output.

Differential sequence patterns
The n-grams (i.e. contiguous sequence of n-amino acids) 
were generated using ‘ngram’ function from R ngram 
v3.1.0 package. The number of peptides containing the 
n-grams was counted for Positive and Negative respec-
tively and normalised for the total number of Positive 
and Negative peptides, respectively. Then, we computed 
ration-gram = normalised # of Positive peptides contain-
ing the n-gram / normalised # of Negative peptides con-
taining the n-gram, and shortlist top differential n-grams 
by the ratio score. Similarly, we generated all possible 
combinations of position-specific k-mer motifs (i.e. con-
tiguous or non-contiguous sequence of k amino acids 
restricted to peptides of same lengths), where e.g..M.W. 
denotes MW pattern at P2 and P4 of 5 amino acid pep-
tide. We computed ratio positional k-mer = normalised # of 
Positive peptides containing the positional k-mer / nor-
malised # of Negative peptides containing the positional 
k-mer to shortlisted top differential position-specific 
k-mer motifs. For visualisation, patterns were categorised 
by their normalised ratios, where ‘lows’ have ¼ < ratio < 4, 
‘high in pos’ have ratio ≥ 4, ‘high in neg’ have ratio ≤ ¼, 
and ‘onlys’ have motifs in either positive or negative sets, 
and top differential patterns from ‘high’ or ‘only’ cat-
egories were visualised by barplot. To identify shared 
enriched patterns between pathogenic and self-antigens, 
only n-grams or positional k-mer motifs having ratio ≥ 3 
or ≥ 3 positive peptides (for onlys) were pre-selected for 
comparison. The pairwise sequence similarity between 
peptides was computed using ‘pairwiseAlignment’ func-
tion in Biostrings v2.56.0 package [59], using BLOSUM62 
substitution matrix and default parameters. For clusters 
of highly similar peptides, the peptides having alignment 
scores ≥ 22 with ≥ 3 other peptides were visualised into 
network graph using R ggnetwork v0.5.10 package. The 
toolkits for generating the sequence patterns are depos-
ited in: https://​github.​com/​Chloe​HJ/​diffS​eqPat​terns [60].

Deep learning models for pathogenic and self‑epitope 
prediction
The peptide sequences at contact positions, i.e. P3-P8 of 
9aa and P3-P9 of 10aa peptides, were encoded either by 
one-hot-encoding having dimension [m, 7, 21], amino 
acid descriptors [m, 7, 49] or amino acid embeddings 
from protein transformer-based pre-trained language 
models (PLMs) [m, 7, 1024], where m represents the 
number of peptides. The amino acid descriptors included 
kideraFactors, tScales, protFP, BLOSUM, stScales and 

MSWHIM captured by ‘aaDescriptors’ function from 
R Peptides v2.4.4 package, and Atchley factors from 
‘AAMetric.Atchley’ function in R HDMD v1.2 pack-
age. In addition, amino acids were embedded using five 
protein transformer-based PLMs, including prot_t5_xl_
uniref50, prot_bert, prot_bert_bfd and prot_t5_xl_bfd, 
prot_xlnet from Rostlab using Tokenizer and Encoder-
Model functions from python transformers v4.19.0 pack-
age. These models are based on T5 or BERT and were 
pre-trained on a large corpus of protein sentences, e.g. 
UniRef50, a dataset consisting of 45 million protein 
sequences, in a semi-supervised fashion. Further details 
about transformer-based PLMs can be found in https://​
huggi​ngface.​com/​Rostl​ab.

To account for peptides of varying lengths, the pep-
tides coming from 9aa peptides were padded (i.e. adding 
non-relevant number to the borders of the matrix) either 
in the front (i.e. pre-padding) or at the back (i.e. post-
padding). First, we computed all possible n-grams from 
6- and 7-mer peptides and analysed if the same n-grams 
were present in both 6- and 7-mers. We found that many 
n-grams were present in both 6- and 7-mers. We then 
aligned by their respective positions and observed that 
many 3-g located in P3-P5 of 9aa peptides were posi-
tioned at P4-P6 of 10aa peptides, indicating padding in 
front of 6-mer peptide (i.e. pre-padding) would align with 
hotspots in 7-mers.

The classification accuracies of different deep learn-
ing architectures were compared between simple dense 
layer (i.e. classification), biRNN, biLSTM, 1D CNN, 2D 
CNN and transformer models. The biRNN model con-
tained two biRNN layers each having 512 units, followed 
by a dense layer of 256 units and a classification layer 
with dropouts in-between. The biLSTM model had the 
same structure as the biRNN model, but LSTM cell is 
used instead of the RNN cell. 2D CNN model had two 
Conv2D layers, with filters = 16 and 32 respectively, fol-
lowed by MaxPool2D, Flatten, a dense layer of 256 units 
and a classification layer with dropouts in-between. The 
transformer model for pathogenic and self-antigen data 
had 10 and 2 attention heads respectively and 32 hid-
den layers in a feed forward network, followed by Globa-
lAveragePooling1D, dense layer with 128 units and 
classification, with dropouts in-between. The 1D CNN 
had kernel sizes 1, 3, 5 and 7, each max pooled and con-
catenated to a layer. In parallel, − log transformed Net-
MHCpan rank and hydrophobicity (i.e. the proportion 
of A, V, L, M, W) have been added as a MLP layer. 1D 
CNN and MLP layers were concatenated and put into 
a dense layer of 256 units followed by classification. 
The hyperparameters of the final 1D CNN models were 
optimised by grid search. The final hyperparameters for 
pathogenic model are as follows: learning rate = 1e − 05, 

https://github.com/ChloeHJ/diffSeqPatterns
https://huggingface.com/Rostlab
https://huggingface.com/Rostlab
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weight decay = 1e − 06, dropout rate = 0.1, batch size = 50, 
dense layer node = 2000 and dense layer node = 256, giv-
ing ROC-AUC of 0.764 by 10-fold cross-validation. The 
final hyperparameters for self-antigen model are as fol-
lows: learning rate = 0.001, weight decay = 0.01, dropout 
rate = 0.2, batch size = 100, MLP dense = 1500 and dense 
layer node = 512, giving ROC-AUC of 0.943 by 10-fold 
cross-validation. All deep learning architectures are 
implemented using python TensorFlow v2.8.0 package.

Out of distribution (OOD) detection
The out-of-distribution was defined as test samples hav-
ing different properties from the training data, and thus 
cannot be predicted with high accuracy. We found that 
one of the significant sources of out-of-distribution is the 
origin of the peptides, i.e. pathogenic vs. self-antigen or 
different pathogenic organisms, and that peptides origi-
nating from species not well represented in the training 
data have lower predictive accuracy. Given the limited 
number of biologically homogeneous (i.e. in-domain) 
peptide as well as technical variation coming from differ-
ent T-cell assays, experimental setups and laboratories, 
it was difficult to collect enough peptides for in-domain 
analysis, so we used predictive accuracy as the proxy to 
build OOD classifier, trained to classify correctly vs. 
incorrectly predicted peptides.

Autoencoder is a type of unsupervised neural network 
that have a smaller number of neurons in the hidden lay-
ers than the input layer. This allows the architecture to 
extract essential information from the input layer, pre-
serve in lower-dimension and employ to reconstruct 
output. We used the difference between the input and 
reconstructed output (i.e. reconstruction loss) as a metric 
for anomaly detection, as autoencoders cannot effectively 
reconstruct patterns not learnt from training data [61].

For anomaly detection, peptides encoded by prot_t5_
xl_uniref50 transformer-based PLM were applied onto 
2D and 3D autoencoders, variational autoencoder and 
denoising autoencoder models, using ‘AutoEncoder’ 
function from python pyod v1.0.1 package. The autoen-
coder models were trained using 90% random train and 
non-SARS-CoV-2 data and were used to predict 10% test 
and SARS-CoV-2 data respectively. Then, we computed 
reconstruction loss between original and predicted test 
values.

For calibration methods, the 1D CNN model was 
trained using softmax activation function. We then 
computed maximum softmax probability (MaxProb) 
and temperature-scaled softmax probability (T = 2) for 
each test peptide. The MaxProb is the maximum soft-
max probability between class 0 (Negative) and 1 (Posi-
tive) classes. The temperature scaling softens the softmax 
probability with T > 1, making the network slightly less 

confident, reflecting the true probabilities  [62]. For 
Ensemble, we used 10-folds of the training dataset to gen-
erate 10 different models. These models were then used 
to predict test data points, producing prediction scores 
for each. We averaged softmax probabilities across 10 dif-
ferent models and computed MaxProb of the average. For 
Monte Carlo dropout (MCDropout), Monte Carlo mod-
els were reiterated 100 times with stochastic dropout of 
0.6. The softmax probabilities were averaged across 100 
scores, and MaxProb was generated from them.

The final OOD classifier predicts correct vs. incor-
rect predictions by using MCDropout, which have been 
shown to be more robust than maximum softmax prob-
abilities (MSP). The MSP is often not suitable when over-
fitting is likely, as the values will either be 0 or 1, whereas 
MCDropout provides a better estimate of uncertainty by 
combining multiple confidence scores generated by many 
models and providing informative statistics (e.g. mean 
and variation of the confidence scores) as opposed to a 
single scalar value. We built linear regression model with 
MCDropout, using the ‘LinearRegression’ function from 
python sklearn v1.0.2 package.

Relative Similarity to Autoantigens or Tumour‑associated 
antigens (RSAT)
To compute RSAT, a total of 5023 unique cancer 
neoepitopes, autoantigens, tumour-associated antigens 
and other self-epitopes were retrieved from IEDB, dbPep-
Neo, NEPdb, McPAS-TCR and tumour antigenic peptide 
database. First, only pathogenic peptides having compa-
rable self-epitope counterparts are retrained by comput-
ing Match score  [63] (5) between pathogenic peptides 
and self-epitopes, where BL represents the global–local 
alignment score using BLOSUM62 matrix, p represents 
pathogenic peptide and se self-epitopes. Only pathogenic 
peptides having a match score ≥ 0.6 are retained to com-
pute RSAT.

For pathogenic peptides having comparable self-
epitope counterparts, RSAT was computed (6). First, we 
computed the maximum global–local alignment score 
between pathogenic peptides and AATs (a set of autoim-
munity, allergy tor tumour-associated antigens) using the 
BLOSUM62 substitution matrix. Second, we computed 
the maximum global alignment score between patho-
genic peptide and AAT’s best counterpart in human 
proteome. Third, we computed the ratio between align-
ment scores from self-epitope and human proteome 
counterpart. In the Eq. (6) below, p = pathogenic peptide, 

(5)Match score =
BL(p, se)

√

BL(p, se) ∗ BL(p, se)
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AAT = autoimmunity, allergy tor tumour-associated anti-
gens, hp = human proteome.

Application of TRAP to shortlisting glioblastoma 
neoantigens
In previous in-house study  [64], tumours of four HLA-
A2 glioblastoma patients were sequenced and cancer 
neoepitopes were shortlisted using an in-house version 
of MuPeXI  [65] named TUNAPASTA v0.5. We then 
selected 153 predicted neoepitopes for functional T-cell 
assays, 33 of which were characterised Positive. From 
these 153 tested peptides, we filtered out predicted 
HLA*02:01 non-binders and retained 9–10 amino acid 
peptides that were applicable to TRAP. This left 124 GBM 
peptides, 25 of which were Positives and 99 Negatives. 
We used a pre-trained self-antigen TRAP model on this 
dataset to predict the immunogenicity of GBM peptides 
as well as the confidence of prediction by the OOD detec-
tion module. Because identifying cancer neoepitopes is 
thought to be a ‘needle in a haystack’ problem, we identi-
fied predicted Negatives with low-confidence prediction, 
and added 24 more candidates for validation, resulting in 
a ROC-AUC of 0.705.

Results
TRAP: a robust deep learning workflow to predict 
CD8 + T‑cell recognition of MHC‑I presented pathogenic 
and self‑peptides
We present TRAP as a comprehensive workflow for pre-
dicting CD8 + T-cell immunogenicity of HLA-I presented 
pathogenic and self-peptides (Fig. 1A).

(6)RSAT =
BL(p,AATs)

BL(p, hp)

In this workflow, peptide sequences of 9–10 amino 
acids in length are predicted to bind HLAs. The predicted 
HLA-I ligands are encoded using amino acid embeddings 
derived from protein transformer-based pre-trained 
language models (PLMs). TRAP then employs a 1D 
convolutional neural network to extract T-cell recogni-
tion motifs, which are then combined with MHC bind-
ing rank score and hydrophobicity to predict peptide 
immunogenicity. Following that, TRAP includes a linear 
regression classifier to detect low-confidence predic-
tions to improve accuracy. The immunogenicity of patho-
genic peptides with low-confidence predictions can be 
predicted using a novel metric called relative similarity 
to autoantigens or tumour-associated antigens (RSAT), 
which is developed as a complement to ‘dissimilarity to 
self ’ from cancer studies.

TRAP has been developed as a user-friendly web 
application and is accessible from https://​github.​com/​
Chloe​HJ/​TRAP [66]. Here, users can input their peptide 
list and select the model of interest (pathogenic or self-
antigen), and the application will compute the prediction 
scores along with its confidence (Additional file  1: Fig. 
S1, Additional file  2). In the following sections, we will 
describe the rationales behind the model architecture 
and strategies for overcoming the current constraints and 
improving model performance.

Out‑of‑distribution uncertainty and HLA bias result in poor 
performance
We previously reported that the existing immunogenic-
ity algorithms showed suboptimal performance in pre-
dicting epitopes from both cancer and an emerging viral 
pathogen [7]. We then attributed the poor performance 
to divergent discriminative features between cancer 

(See figure on next page.)
Fig. 1  Schematic of TRAP workflow and cross-species variation in T-cell recognition features. A Schematic diagram of TRAP (T-cell recognition 
potential of HLA-I presented peptides), a robust deep learning-based workflow to predict CD8 + T-cell epitopes from MHC-I presented pathogenic 
or self-peptides. Once peptides have been predicted by NetMHCpan to bind HLA alleles, the TRAP uses the peptide sequence and NetMHCpan 
rank scores as inputs to predict the immunogenicity of the peptide with the respective HLA binding affinity. The TRAP workflow will output TRAP 
prediction score along with confidence in its prediction. If the prediction is detected to have a low confidence, we recommend predicting cancer 
neoepitopes using TESLA [52], which is known to use more general features such as agretopicity and dissimilarity to self-proteome, and pathogenic 
peptides with RSAT (relative similarity to autoantigens or tumour-associated antigens). B, C Distribution of MHC binding rank scores predicted 
by NetMHCpan (B) and hydrophobicity (C) for peptides derived from different pathogenic species. CMV: cytomegalovirus; EBV: Epstein-Barr virus; 
HCV: hepatitis C virus; HBV: hepatitis B virus; SARS-2: SARS-CoV-2; VACV: vaccinia virus; YFV: yellow fever virus. D Statistics of peptides in cross-species 
dataset (i.e. non-vaccinia virus (non-VACV) peptides for training and VACV peptides for testing, non-SARS-CoV-2 (non-SARS2) peptides for training 
and SARS-2 peptides for testing), and data randomly divided into 90% train and 10% test, as a resemblance of 10-fold cross-validation. E, F Models 
trained using cross-species datasets could not effectively predict the immunogenicity of peptides derived from unseen pathogens. ROC-AUC 
curves of XGBOOST classifiers on training data by 10-fold cross-validations—on 90% data, non-SARS-2 and non-VACV peptides (E). ROC-AUC 
curves of XGBOOST classifiers on test datasets—10% data, SARS2 and VACV peptides (F). G Sequence logo of amino acids enriched in epitopes 
(Positive) compared to non-epitopes (Negative) in contact positions for randomly split data (i), SARS-2 data (ii) and vaccinia virus data (iii). H, I High 
performance may be a reflection of HLA bias. ROC curve of DeepImmuno algorithm on single HLA allele, for peptides bound on HLA-A*02:01 (H) 
or HLA-A*24:02 (I). J Performance of DeepImmuno algorithm on per-HLA down-sampled dataset, i.e. the number of peptides has been down

https://github.com/ChloeHJ/TRAP
https://github.com/ChloeHJ/TRAP


Page 8 of 24Lee et al. Genome Medicine           (2023) 15:70 

A

B

D GE

F H

I J

C

Fig. 1  (See legend on previous page.)
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neoepitopes and pathogenic epitopes in directionality or 
magnitudes [7, 23].

Here, we investigated additional sources of subop-
timal performance to aid in the development of accu-
rate, robust and biologically meaningful classifiers. We 
retrieved peptides of lengths 9–10aa, characterised by 
T-cell assays from IEDB and retained predicted MHC 
binder from NetMHCpan 4.0, resulting in 5093 immu-
nogenic (‘Positive’) and 6628 non-immunogenic (‘Nega-
tive’) peptides (named PeptideTcell data, ‘Methods’) 
(Additional file 1: Fig. S2A). Notably, no peptides may be 
considered truly non-immunogenic as they may be rec-
ognised by at least one TCR in the repertoire under the 
right physiological conditions. However, there is a con-
tinuum of immunogenicity potential where some pep-
tides are likely to trigger greater T-cell response and/or 
are able to bind numerous TCRs. Therefore, we desig-
nated the ‘Negatives’ as peptides with very low putative 
immunogenicity potential, defined as peptides character-
ised negative in more than three T-cell assays.

First, we evaluated the extent to which known hall-
marks of immunogenicity, such as MHC binding affin-
ity  [12, 16] and percentage of hydrophobic amino acids 
in peptide sequence [20], can be used to identify immu-
nogenic peptides from different species. Notably, these 
features have been used as predictors in models such 
as TESLA  [8], iPred  [17], NetTepi  [16] and GAO  [67]. 
Although two features could effectively distinguish 
epitopes from non-epitopes at a macroscopic level, where 
epitopes had higher MHC binding rank (− log trans-
formed) and hydrophobicity with medium effect sizes 
(Additional file 1: Fig. S2B-C), they no longer showed sta-
tistical significance at the species level (Fig. 1B,C), which 
was caused in part by the small sample size. For exam-
ple, hydrophobicity alone could not discriminate SARS-
CoV-2 epitopes from non-epitopes.

Second, we assessed the extent to which cross-species 
peptides (i.e. peptides derived from other species) can 
predict epitopes of unseen pathogens. We divided Pep-
tideTcell data randomly or in a cross-species manner: (i) 
random split to 90% train vs. 10% test (i.e. representation 
of 10-fold cross-validation), or (ii) cross-species split to 
Non-SARS-CoV-2 (Non-SARS-2) train vs. SARS-2 test, 
and Non-vaccinia virus (Non-VACV) train vs. VACV 
test (Fig.  1D). We then compared the performance of 
XGBOOST classifiers on these datasets (‘Methods’). 
While no substantial difference was observed during 
training (Fig. 1E), the cross-species model showed lower 
accuracy and higher root mean squared error (RMSE) 
on test datasets (Fig. 1F). This implied that cross-species 
peptides may not share common features in predicting 
immunogenicity (i.e. predictive features in training and 
test data are likely to be different which is known as an 

out-of-distribution generalisation problem), resulting in 
limited accuracy on unseen pathogens.

To support this, we generated differential position-
specific scoring matrices (dPSSMs) to compare immu-
nogenicity-related sequence patterns between train and 
test datasets (‘Methods’). While random split data shared 
similar patterns between train and test datasets, such as 
enrichment of L, G/E, G, hydrophobic resides and T on 
P3-P8 (Fig. 1Gi), cross-species data showed low homol-
ogy (Fig.  1Gii-iii), and dPSSM scores failed to predict 
immunogenicity on cross-species test datasets (Addi-
tional file 1: Fig. S2D, ‘Methods’).

Third, we observed that high reported performance 
from the latest models incorporating peptide-HLA pairs 
might be driven by HLA bias from an imbalanced data-
set. Recently, deep learning models incorporating pep-
tide-HLA pairs reported ROC-AUC of ~ 0.85 by 10-fold 
cross-validation [15] (Additional file 1: Fig. S2E-F). While 
they reported the highest accuracy to date, we observed 
poor performance on SARS-CoV-2 peptides in our 
benchmarking study [7]. Here, we hypothesised that this 
poor agreement may be due to differences in datasets and 
investigated the cause of disagreement.

First, we evaluated the ability of the model to discrimi-
nate Positive vs. Negative bound on the same HLA allele. 
We trained and tested models in single HLA level on 
HLA-A*02:01 and HLA-A*24:02, which had the highest 
numbers of characterised peptides per HLA. We then 
compared them to the model trained using the same 
number of randomly sampled pMHCs (Additional file 1: 
Fig. S2G). Here, the model showed marginally better 
than random performance on the balanced HLA-A*02:01 
dataset (Fig.  1H), and high variation on the relatively 
imbalanced and smaller HLA-A*24:02 dataset (Fig.  1I). 
We further found that HLA-balanced data substantially 
reduces classifier performance (Additional file  1: Fig. 
S2H, Fig. 1J), suggesting that current models are skewed 
towards classifying for certain over- or under-repre-
sented HLA alleles and their reported performance does 
not reflect their real-world accuracy.

Mitigate HLA bias by employing peptide sequences at TCR 
contact positions
Previous studies reported the contribution of anchor 
positions (i.e. position 2 (P2) and P9 of 9aa peptide) for 
MHC binding  [68] and contact positions (i.e. P3-P8) in 
T-cell recognition  [13]. Correspondingly, HLA super-
types drove the clustering of peptides at anchor posi-
tions (Fig. 2A) and TCR specificities at contact positions 
(Fig. 2B,C, Additional file 1: Fig. S3A-B) on our data, with 
peptides bound by the same TCR showing conserved 
motifs (Fig.  2D). However, because of the strong con-
served pattern in anchor positions, the HLA supertype 
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not only drove the clustering of peptides at anchor posi-
tions but also acted as the strongest covariate driving the 
clustering of peptides in full sequence (Fig.  2E, Addi-
tional file  1: Fig. S3C). With such a strong conserved 
pattern, MHC binding features may dominate immuno-
genicity predictions when the full peptide sequence is 
used for model training. In fact, we observed that some 
of the existing immunogenicity classifiers were more 
capable of predicting dominant HLA type (i.e. whether 

peptides were bound to HLA-A*02:01 or not) than pep-
tide immunogenicity [7]. As we aimed to predict T-cell 
recognition potential once peptides are bound to HLA 
alleles, we incorporated contact positions only, i.e. posi-
tions 3–8 (P3-P8) of 9aa peptide and P3-P9 of 10aa pep-
tides, not only to focus on T-cell recognition patterns, 
but also to rule out the need to balance the number of 
epitopes vs. non-epitopes by the HLA supertypes for 
model development.

Fig. 2  Effect of anchor and contact positions on peptide immunogenicity. A t-SNE embedding of peptides, coloured by HLA supertypes. 
Peptides at anchor positions (i.e. P2 and P9 of 9aa peptides) were represented by amino acid descriptors (aaDescriptors) and all amino acids 
across the peptide sequence were averaged to compute peptide-wide aaDescriptors. Each peptide was represented by positional (only 
at anchor positions) and peptide-wide aaDescriptors. B, C t-SNE embedding of peptide-wide descriptors and amino acids at contact positions, 
coloured by cognate TCRs for 9aa peptides (B) and 10aa peptides (C). D Sequence logos of peptides recognised by the same TCR, coloured 
by the physicochemical properties. Notably, these are examples of TCRs having the most cognate peptides in the database. However, except for the 
first TCR, the low number of peptides may limit statistical confidence in representing sequence conservation. E t-SNE embeddings of peptide-wide 
descriptors and amino acids at all positions, coloured by HLA supertype (left), immunogenicity (middle) and species of origin (right). F Distribution 
of intra-HLA and inter-HLA variation for peptides having different peptide-HLA entries. The variation described by ANOVA means squared
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To take such an approach, we first investigated whether 
neglecting HLA information would not result in a sig-
nificant loss of information when predicting T-cell rec-
ognition potential of MHC-presented peptides from the 
current dataset. First, a novel metric was developed for 
converting qualitative measurements (i.e. Positive or 
Negative) to a quantitative ‘positivity score’ that reflects 
confidence in the immunogenicity (‘Methods’). Briefly, 
the metric took into account (a) the number of experi-
ments conducted (Additional file 1: Fig. S4A), (b) the per-
centage tested positive (Additional file 1: Fig. S4B) and (c) 
the number of cognate TCRs where available (Additional 
file  1: Fig. S4C) to compute the positivity score (Addi-
tional file 1: Fig. S4D).

Using the positivity scores of each peptide-HLA entry, 
the extent of inter-HLA variation (i.e. variation across dif-
ferent HLA alleles) was compared to intra-HLA variation 
(i.e. variation within the same HLA allele) for peptides 
bound on multiple HLA alleles. The intra-HLA variation 
accounted for the majority of data variability, while inter-
HLA variation contributed less (Fig. 2F). This is because 
other biological (e.g. different effector cell, antigen pre-
senting cells etc.) or technical (e.g. assay type, culture 
conditions, research groups etc.) factors were causing 
greater discrepancies in positivity score than HLA alleles 
(Additional file 1: Fig. S4E-F). This implied that when it 
came to each peptide, there was not much difference in 
the immunogenicity based on the HLAs to which it was 
bound, but when it came to HLAs, each HLA had a dif-
ferent pool of peptides, resulting in a different distribu-
tion of positive and negative peptides, resulting in HLA 
bias. As a result, an HLA-generalised approach was 
adopted in which peptide-HLA binding information was 
used instead of the HLA allele itself.

Deep learning architecture captures T‑cell recognition 
motifs
As the potential causes of poor performance, previous 
sections discussed limited training dataset, HLA bias 
and out-of-distribution (OOD) generalisation problem. 
These issues were addressed in TRAP by (a) using pep-
tide sequence at contact positions, (b) building separate 
models for pathogenic and self-peptides, (c) encoding 
peptide sequences using amino acid properties derived 
from protein transformer-based pre-trained language 
models (PLMs), (d) devising one-dimensional convolu-
tional neural network (1D CNN) architecture designed 
to capture T-cell recognition motifs and (e) employing 
OOD detection module. These novel strategies enabled 
TRAP to offer more accurate and reliable predictions of 
CD8 + T-cell targets against cancer and viral diseases.

First, pathogenic and self-antigen datasets were pre-
pared to build context-specific models (‘Methods’). 

Briefly, the pathogenic dataset is a subset of the Pepti-
deTcell data, comprising only pathogen-derived peptides 
(Additional file 1: Fig. S5A). For the self-antigen dataset, 
autoantigens, tumour-associated antigens and cancer 
neoepitopes were retrieved from Cancer peptide data-
base, dbPepNeo, IEDB, McPAS-TCR and NEPdb data-
bases as epitopes, and benign HLA-I ligands expressed in 
thymus as non-epitopes (Additional file 1: Fig. S5B-C).

Given the lack of non-immunogenic self-peptides, we 
used HLA-I ligands expressed in the thymus as ‘non-
immunogenic’ peptides in the self-antigen model. T-cells 
are selected within the thymus to establish a repertoire 
that is pathogen-protective but not self-reactive. While 
self-peptides are used in both positive and negative selec-
tions, we reasoned that self-peptides expressed in the 
thymus are unlikely to be immunogenic in the periph-
ery for the following reasons. First, self-peptides will 
eliminate high-affinity or strong-response T-cells, leav-
ing no repertoire to recognise these peptides [69]. Sec-
ond, while T-cells may recognise self-peptides through 
positive selection, it is theorised that the interactions 
are very weak and that once T-cells leave the thymus, 
they will not be able to induce an immune response to 
that same antigen due to the low affinity, but will instead 
react to another peptide that was not present in the thy-
mus and has a higher affinity [70, 71]. Hence, we rea-
soned that thymus-expressing peptides would not be 
immunogenic, either because they cause the elimination 
of strong-response T-cells or because they promote the 
retention of low-affinity T-cells, allowing the formation 
of a T-cell repertoire that avoids self-reactivity in general. 
To our knowledge, this is the first study to use the con-
cept of thymic selection in classifying self-epitopes from 
non-epitopes.

Second, because peptides vary in lengths, we investi-
gated the optimal padding strategy for aligning 6-mer 
with 7-mer contact position peptides. The predictive 
accuracies of simple dense layer classification, 1D CNN, 
2D CNN and bidirectional recurrent neural network 
(biRNN) models were evaluated using pre- and post-pad-
ding strategies. No significant difference was observed 
across pathogenic and self-antigen data, with pre-pad-
ding achieving slightly better performance in self-antigen 
data on the BiRNN model (Fig. 3A). Furthermore, the rel-
ative location of k-gram motifs was compared on 6-mer 
and 7-mer peptides, and many 3-g motifs found at P3 
of the 9aa peptide were found at P4 of the 10aa peptide 
(Fig. 3B). Therefore, to align T-cell recognition hotspots 
with biological context, peptides of shorter length were 
pre-padded to align with longer peptides.

Third, to address data limitation, we adopted transfer 
learning to encode peptides using amino acid proper-
ties derived from protein transformer-based pre-trained 
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language models (PLMs). The protein transformer-based 
PLMs were trained using millions to billions of pro-
tein sequences and carry the most representative 1024 
embeddings, which describe the physicochemical, struc-
tural or electrostatic properties of amino acids in pro-
tein space [33]. The performance of classification models 
were compared when peptides were encoded by one-hot-
encoding (OHE), amino acid descriptors and embeddings 
from five protein transformer-based PLMs (‘Methods’). 
ProtT5-XL-UniRef showed the highest performance, 
with an average ROC-AUC of 0.72 for pathogenic 
(Fig. 3Ci) and 0.724 for self-antigen datasets (Fig. 3Cii).

Fourth, the capability of different machine learning and 
deep learning architectures to classify immunogenicity 
potential was assessed. The performances of XGBOOST, 
BiRNN, bidirectional long short-term memory (BiL-
STM), 1D CNN, 2D CNN and transformer models were 
compared. Briefly, RNNs or LSTMs are popular sequen-
tial models efficient in addressing sequential text data 
[72], whereas CNNs are suitable for scanning across text 
or images and detecting local patterns by using ‘ker-
nels’. 1D CNNs have widely been used for text and 2Ds 
for image classifications [73]. The 1D CNN model using 
ProtT5-XL-UniRef embeddings achieved the highest 
average ROC-AUC of 0.74 for pathogenic (Fig. 3Di) and 
0.75 for self-antigens (Fig. 3Dii). We surmised that T-cell 
recognition motifs captured by the 1D CNN model have 
more predictive power than sequential relationship cap-
tured by the RNN-based models.

In addition to peptide sequences, we examined 
whether incorporating other hallmarks of immunogenic-
ity, such as predicted MHC binding rank score [12, 16] 
and hydrophobicity [20], can further improve the per-
formance. Particularly, given that the current model only 
takes contact positions into account, adding MHC bind-
ing rank would allow the model to accommodate pep-
tide-MHC binding information. This strategy has several 
advantages. First, it feeds the binding information with 

a minimal HLA-associated bias, circumventing the need 
to balance the training data by HLAs. Second, the most 
accurate binding information from NetMHCpan predic-
tion can be incorporated without having to re-train the 
model using a massive peptide-HLA binding data. By 
integrating MHC binding rank and hydrophobicity as 
fully connected layers (i.e. Multilayer perceptrons, MLPs) 
and optimising hyperparameters (Fig.  3E, ‘Methods’), 
performance was improved to an average ROC-AUC of 
0.76 for pathogenic (Fig.  3Fi) and 0.87 for self-antigens 
(Fig.  3Fii). It is worth noting that, in comparison to the 
pathogenic model, the number of self-epitopes is limited, 
and the additional MHC rank filter significantly reduced 
the training dataset. Therefore, we trained another self-
antigen model with a relaxed threshold (MHC rank = 10 
instead of 2) to account for as many self-epitopes as pos-
sible, resulting a training dataset of 12,521 peptides for 
accurate extraction of differential sequence patterns 
(Additional file 1: Fig. S5D).

Therefore, representing peptide sequences at contact 
positions by ProtT5-XL-UniRef amino acid embeddings, 
extracting T-cell recognition motifs by 1D CNN kernels, 
and adding MHC binding rank and hydrophobicity as 
MLPs could effectively achieve superior performance in 
classifying immunogenicity.

Sequence patterns discriminating immunogenicity
Among different architectures, the 1D CNN model that 
captures local motifs achieved the best performance. 
Moreover, extensive screening of pMHC library against a 
single TCR revealed dominant hotspots or motifs in the 
cognate peptides [74, 75]. We therefore set out to expand 
this observation and explore the enrichment of n-grams 
(i.e. contiguous sequence of n-amino acids) [76] and posi-
tion-specific k-mer motifs (i.e. contiguous or non-contig-
uous sequence of k amino acids at specific positions) in 
contact residues of pathogenic and self-peptides.

(See figure on next page.)
Fig. 3  Optimise TRAP architecture. A Performance of pre- and post-padding strategies. ROC-AUC values of respective deep learning models 
with pre- vs. post-padding strategies for pathogenic (i) and self-antigens (ii). Each point represents the ROC-AUC value from one round of 10-fold 
cross-validations. B Example of n-grams found in both 9aa and 10aa peptides, coloured by the start position of the respective n-gram 
in the peptides. C Comparing amino acid embedding strategies. ROC-AUC values of a single dense classification prediction using different 
encoding strategies, including one-hot encoding (OHE), amino acid descriptors (aaDescriptors) and embeddings from protein transformer-based 
PLMs on pathogenic peptides (i) and self-antigens (ii). Each point represents the ROC-AUC value from one round of 10-fold cross-validations. 
D Comparing the performance of different deep learning architectures. ROC-AUC values comparing the performance of different machine 
learning and deep learning architectures using embeddings from 5 protein transformer-based PLMs for pathogenic (i) and self-peptides (ii). 
XGBOOST: an extreme gradient boosting. BiRNN: bidirectional recurrent neural network. BiLSTM: bidirectional Long short-term memory. 1DCNN: 
1-dimensional convolutional neural network. 2DCNN: 2-dimensional CNN. Each point represents ROC-AUC value from one round of 10-fold 
cross-validations. E Schematic diagram of the model incorporating MHC binding and hydrophobicity. F Adding hallmarks of the immunogenicity. 
ROC curve comparing the performance of models after adding MHC binding rank score and/or hydrophobicity to peptide sequence-based 1D 
CNN model for pathogenic (i) and self-peptides (ii)
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We first computed the ratio (in normalised frequency) 
of n-gram or positions-specific k-mer motifs between 
epitopes and non-epitopes (‘Methods’). The top-ranking 
n-grams were GIG, GINA, GIF, LGIN, VEG and SGSP 

for pathogenic epitopes and SC, GIGI, IC, QC and CA 
for self-epitopes (Additional file 1: Fig. S6C). In addition, 
top position-specific k-mer motifs were.EG.L.,.E.IL. and.
GIG… for pathogenic epitopes and GIG..,..M.P.,.G.GI.., 
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and AGI…. for self-epitopes (Additional files 4 and 5). 
Notably, GIG, which was previously associated with 
DMF5 TCR, was one of the top n-grams and position-
specific k-mer motifs.

To identify sequence patterns enriched in both path-
ogenic and self-epitopes, we compared n-grams and 

position-specific k-mer motifs from each analysis. The 
48 n-grams and total 298 position-specific k-mer motifs 
from 9 and 10aa peptides (Fig. 4A) were shared between 
pathogenic and self-epitopes. These include GIG, GINA, 
GMP, ALGI and APTG n-grams (Fig.  4B, Additional 
file  1: Fig. S6D), and ….VP, W..P..,.G.GI.., and.GIG… 

Fig. 4  Out-of-distribution detection using calibration methods. A Identifying motifs that are enriched in both pathogenic and self-epitopes. Venn 
diagram comparing the enriched n-grams (left) or position-specific k-mer motifs from 9aa (middle) or 10aa peptides (right) between pathogenic 
and self-peptides. B Normalised enrichment ratio of shared n-grams enriched in both pathogenic and self-epitopes. C Clusters of peptides 
with high sequence similarity in contact positions, demonstrated by pairwise global alignment scores. Network graph illustrating the pairwise 
global alignment score between 9aa pathogenic peptides. Shown are peptides having ≥ 22 alignment scores with ≥ 3 other peptides. D–G 
Distribution of different calibration-based metrics on pathogenic (i) and self-(ii) peptides, discriminating correctly vs. incorrectly predicted peptides. 
The calibration-based metrics include maximum softmax probability (MaxProb) (D), temperature scaling using different levels of temperatures 
that scale the logit values (E), the maximum on average softmax probability over 10 ensembled models (MaxProb on Avg) (F) and maximum 
on average softmax probability from Monte Carlo dropout iterations (G). The Monte Carlo models were reiterated 100 times with stochastic 
dropouts of 0.6. T: temperature. Statistical significance by p-values from Student’s t test. ns: non-significant. H Venn diagram comparing 
the pathogenic peptide predictions using different calibration metrics. MCDropout: Monte Carlo Dropout. I. ROC curve illustrating the performance 
of the out-of-distribution (OOD) linear regression classifiers using MCDropout on pathogenic (i) and self-peptides (ii)
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position-specific k-mer motifs (Additional file  1: Fig. 
S6E-G).

Furthermore, we computed pairwise global alignment 
scores across pathogenic peptides to identify clusters of 
epitopes sharing high sequence homology (‘Methods’). 
Plotting highly similar peptides revealed clusters domi-
nated by Positive peptides (Fig. 4C). These clusters con-
tained peptides having patterns, such as YNTI… FG(Y/F)
PV(F/Y). F(E/D)(K/R)S.., G.GW...DR.WC, GPG.R.P, 
P.DFFP.,.GIGI..,.DRGM., VALG.NA. and.LGLNA (Addi-
tional file 1: Fig. S5H-I).

Our analyses therefore suggest that TCR contact posi-
tions of immunogenic peptides exhibit preferences 
towards presenting certain motifs while disfavouring 
others. We also observed similarities and differences 
between pathogenic and self-peptides. The toolkits for 
analysing differential sequence patterns between pep-
tides of the same length are developed as a R diffSeq-
Patterns package. We believe these shortlisted sequence 
patterns can be target for functional validations in identi-
fying immune hotspots.

Detect low‑confidence predictions to improve robustness
While the DNN models could achieve higher accura-
cies than existing models, they are nonetheless far from 
making a perfect prediction. Partially due to the limited 
number of peptides characterised to fill the full combi-
natorial peptide space, the performance of sequence-
based model drops substantially in predicting peptides 
non-homologous to those of training data, called the 
out-of-distribution (OOD) generalisation problem [43]. 
In contexts where incorrect predictions can have severe 
consequences such as in healthcare or security, using 
model uncertainty to decide when to trust or abstain the 
prediction can facilitate rejecting false predictions and 
improving model accuracy.

There are generally two types of OODs: background 
shift (i.e. a shift in population-level features that do not 
depend on classification labels) and semantic shift (i.e. a 
shift in features that are correlated with the context and 
label) [45]. In previous NLP studies, density or prox-
imity-based models were found to be better at detect-
ing background shifts, while calibration methods (i.e. 
using model’s prediction confidence) performed better 
at semantic shifts. In our study, the greatest OOD came 
from peptides originating from different species that 
have moderately different features associated with immu-
nogenicity (i.e. semantic features). This aligns with pre-
vious findings that the majority of OOD stems from the 
semantic shift and thus calibration methods generally 
outperform proximity-based methods (i.e. autoencoder 
reconstruction) [45].

Here, several OOD detection methods were tested to 
detect low-confidence predictions. Different autoencoder 
architectures, which are often used for anomaly detec-
tion, were first investigated [61] (Additional file  1: Fig. 
S7A-F, ‘Methods’). However, we observed no significant 
difference in reconstruction loss between correctly and 
incorrectly predicted peptides, implying that the autoen-
coder-based methods cannot effectively identify OOD 
inputs.

Therefore, calibration methods such as maximum soft-
max probability (MaxProb), temperature scaling, Max-
Prob from averaged softmax probability from ensemble 
of 10 models (called Ensemble) and MaxProb from aver-
aged softmax probability from 100 Monte Carlo drop-
outs (called MCDropout) were tested, because they were 
reported to effectively detect semantic shifts (‘Methods’). 
We observed that all four methods could significantly dif-
ferentiate correct vs. incorrect predictions for both path-
ogenic and self-antigens (Fig.  4D–G). We also observed 
that these metrics produce similar profile of correctly and 
incorrectly predicted peptides (Fig. 4H, Additional file 1: 
Fig. S7H). Therefore, we trained a linear regression model 
on MCDropout, which proved to be the most robust 
on cross-species dataset (Additional file  1: Fig. S7G, 
Method). The linear regression models could achieve 
average ROC-AUC of 0.65 for pathogenic and 0.82 for 
self-antigens (F  ig. 4I). With these, a MCDropout-based 
OOD detection module was introduced downstream of 
1D CNN model prediction to report peptides that are 
likely to have a correct prediction.

Relative Similarity to Autoantigens or Tumour‑associated 
antigens (RSAT) as a novel feature of pathogenic peptide 
immunogenicity
We and others [23, 77] have shown that some of the 
highly predictive metrics found from cancer neoepitope 
studies, such as ‘dissimilarity to self ’, may not be appli-
cable to pathogenic peptides. To address this, we pre-
sent an alternative solution, termed a relative similarity 
to autoantigens or tumour-associated antigens (RSAT), 
to estimate the immunogenicity potential of pathogenic 
peptides. For pathogenic peptides that suffer from low-
confidence prediction, RSAT can provide an additional 
estimate of immunogenicity potential.

The ‘dissimilarity to self ’ stems from the paradigm of 
negative selection where T-cells that bind strongly to self-
peptides should have been negatively selected and thus 
no T-cell repertoire should be present to bind peptides 
homologous to self-proteome [21, 22] (Fig. 5A). However, 
there is another side of the story where T-cells that have 
low or moderate binding to self-peptides should have 
been positively selected. In fact, recent studies attrib-
uted the inability of the immune system to recognise a 
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large number of pathogenic peptides—most of which are 
highly dissimilar to human proteome—to the mechanism 
of positive selection where only T-cells bound by low or 
moderately binding self-peptides survive to trigger an 
immune response [77]. Therefore, we hypothesised that 
pathogenic peptides homologous to immunogenic self-
peptides, such as autoantigens or tumour-associated anti-
gens, may be more likely to trigger an immune response, 
and assessed whether relative similarity to autoantigens 
or tumour-associated antigens compared to reference 
human proteome can be a predictor of immunogenicity 
for pathogenic peptides.

To test our hypothesis, 5023 unique Autoimmun-
ity, Allergy or Tumour-associated antigens (AATs) were 
retrieved from NEPdb [52], dbPepNeo [50], McPAS-TCR 
[51], IEDB [49] and cancer antigenic peptide database 
(https://​caped.​icp.​ucl.​ac.​be) (Fig. 5B). We then computed 
the similarity between pathogenic peptides and AATs, 

and only retained pathogenic peptides having compa-
rable AAT counterparts (‘Methods’). On these patho-
genic peptides, we then computed the similarity between 
pathogenic peptide and AAT’s closest human proteome 
counterparts, and the ratio between the two, i.e. relative 
similarity of the pathogenic peptide to autoantigens or 
tumour-associated antigens (named RSAT).

From pathogenic data, 346/3793 pathogenic epitopes 
and 295/6080 non-epitopes had comparable AAT coun-
terparts by a threshold match score of 0.6 (Method, 
Fig.  5C). The RSAT was computed on these peptides 
and found a significant difference between epitopes 
vs. non-epitopes (Fig.  5D) across peptide lengths 9 and 
10aa (Fig.  5E), and across different pathogenic species 
(Fig.  5F), indicating that RSAT could effectively clas-
sify peptides of varying lengths and pathogen species. 
Despite the fact that each species had a limited number 
of peptides, epitopes had higher RSAT values with low 

Fig. 5  Relative similarity to autoantigens and tumour-associated antigens (RSAT). A Schematic of positive and negative selection of T-cells 
in thymus. B Number of self-peptides, such as cancer neoepitopes, autoantigens and tumour-associated antigens, retrieved from different 
databases. C Distribution of Match score between pathogenic peptides and best self-peptide counterparts. Contains the Cohen’s d value showing 
the effect sizes differentiating positives versus negatives as well as the number of positive and negative peptides in each species. Cohen’s d values 
describe effective sizes, which are small (d = 0.2), medium (d = 0.5) and large (0.8). D RSAT of pathogenic peptides that have comparable self-antigen 
counterparts (by match score ≥ 0.6). E, F RSAT can effectively discriminate pathogenic epitopes from non-epitopes of varying lengths and species. E 
Distribution of RSAT for pathogenic peptides having 9aa (left) and 10aa (right) in length. F RSAT of peptides derived from different pathogens

https://caped.icp.ucl.ac.be
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(SARS-CoV-2 and M. tuberculosis), medium (EBV) or 
high (HCV and vaccinia virus) effect sizes.

Here, we developed a novel metric, RSAT, to estimate 
the immune potential of pathogenic peptides based on 
relative similarity to known auto- or tumour-associated 
epitopes. We demonstrated that RSAT can effectively 
discriminate epitopes of different lengths and pathogens. 
The RSAT is available as a separate module in the TRAP 
GitHub repository and is recommended to be used in 
conjunction with TRAP when the pathogenic peptides 
have low prediction confidence. We appreciate that 
the low number of Autoimmunity, Allergy or Tumour-
associated antigens (AATs) limits the use of RSAT on a 
broader range of peptides. However, we envision that as 
data becomes more abundant, RSAT can become more 
popular.

Benchmark TRAP performance to state‑of‑the‑art 
algorithms
The performance of TRAP was benchmarked against 
existing immunogenicity models, namely NetTepi, IEDB, 
PRIME, DeepImmuno and TESLA by 10-fold cross-
validation on the same datasets (‘Methods’). Due to the 
nature of the existing models, HLA-agnostic predic-
tions were performed for IEDB, iPred, NetTepi PRIME 
and Repitope, and HLA-restrictive prediction for Deep-
Immuno. TRAP was able to make both HLA-agnostic 
and restrictive predictions by incorporating the peptide 
sequence at contact positions and MHC as a rank score. 
The HLA-restrictive prediction was made using HLA-
balanced data where the number of epitopes and non-
epitopes were balanced per HLA to validate their 
prediction irrespective of HLA-associated bias.

TRAP was the best self-antigen model, achieving 
ROC-AUC of 0.931 for HLA-agnostic and 0.703 for 
HLA-restrictive predictions (Fig.  6A, Additional file  1: 
Fig. S8A). It was also one of the best pathogenic models, 
with ROC-AUC of 0.751 for HLA-agnostic and 0.709 for 
HLA-restrictive predictions (Fig.  6B, Additional file  1: 
Fig. S8B).

While Repitope slightly outperformed TRAP in path-
ogenic datasets, the robustness of TRAP predictions 
was assessed on emerging pathogens. The coronavirus 
TRAP and Repitope models were trained using 1511 
coronavirus peptides except Wuhan SARS-CoV-2 pep-
tides (Fig.  6C), and then used to predict the immuno-
genicity of 66 Wuhan SARS-CoV-2 peptides (Fig.  6D). 
Given that they are derived from the same family, the 
coronavirus peptides in the training dataset would 
share high homology with those in the test dataset, and 
we aimed to demonstrate the model’s ability to make 
accurate predictions on homologous peptides in com-
parison to other models. We found that TRAP was 

better at extracting immunogenicity-related features 
from limited data of emerging pathogens, and translat-
ing them onto related species (Fig. 6D).

Therefore, TRAP can predict CD8 + T-cell epitopes 
in both HLA-agnostic and restrictive contexts, and 
performed better in both. The TRAP can also make 
accurate predictions about emerging pathogens and is 
suitable for shortlisting therapeutic candidates when 
data is limited.

Application of TRAP to identify glioblastoma neoantigens
Here, we demonstrate how the TRAP can be used for 
identifying cancer neoepitopes from glioblastoma 
patients. We previously sequenced the tumours of 
four HLA-A2 glioblastoma patients and shortlisted 
the cancer neoepitopes by using an in-house version 
of MuPeXI [65] codenamed TUNAPASTA v0.5. This 
method ranked peptides by the immunogenicity poten-
tial, taking into account NetMHCpan affinity, gene 
expression level, and mutant allele frequency. We then 
selected 153 predicted epitopes for functional valida-
tion, of which 33 were characterised positive by T-cell 
assay [64]. With only a small proportion of the short-
listed candidates found to be positive, the other existing 
models showed comparable levels of performance, PR-
AUC ranging from 0.201 to 0.437 in our benchmarking 
study [7].

Of the 153 tested peptides, we filtered out predicted 
HLA-A*02:01 non-binders and retained 9–10 amino 
acids peptides that were applicable to TRAP. This left 
124 GBM peptides, of which 25 were characterised to be 
immunogenic and 99 non-immunogenic by T-cell assays. 
Of these, TRAP predicted 9/25 epitopes to be Positives 
and 84/99 non-epitopes to be Negatives (Fig. 6E), yield-
ing 0.75 accuracy with ROC-AUC of 0.684 (Fig. 6F).

Identifying cancer neoepitopes is typically regarded as 
a ‘needle in a haystack’ problem in which an extremely 
small number of positives are sought from vastly imbal-
anced data. In this scenario, minimising the loss of true 
Positives from the candidate list was regarded to be more 
important than maximising accuracy. Therefore, we 
examined the confidence of predictions using the out-
of-distribution detection module (Fig.  6G) and found 
that many incorrectly predicted Negatives had low-con-
fidence predictions (Fig. 6H). By adding them to the can-
didate list, 28 more glioblastoma antigens were predicted 
positive, yielding 16/25 epitopes (Fig. 6I) and ROC-AUC 
of 0.734 (Fig. 6J).

Here, we applied TRAP for shortlisting glioblastoma 
cancer neoepitopes and showed that TRAP not only out-
performs existing algorithms but also allow optimising 
candidates to minimise loss of likely epitopes.
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Fig. 6  Benchmark TRAP performance and use it to identify tumour antigens in glioblastoma. A, B ROC curve comparing the performance 
of TRAP with existing models, such as IEDB, iPred, NetTepi, PRIME, Repitope and DeepImmuno for self- (A) and pathogenic peptides (B). Due 
to the nature of these models, IEDB, iPred, NetTepi PRIME and Repitope were predicted in an HLA-agnostic manner (i.e. by peptide sequence 
only) (i), and DeepImmuno predicted in an HLA-restrictive manner (i.e. by peptide-HLA) using HLA-balanced data (ii). C ROC curve comparing 
the performance of TRAP and Repitope that have been trained using 1511 Non-Wuhan SARS-CoV-2 peptides by 10-fold cross-validations. D ROC 
curve comparing the performance of Non-Wuhan SARS-CoV-2 trained TRAP and Repitope models in predicting 66 Wuhan SARS-CoV-2 peptides. 
E–J Application of TRAP in identifying glioblastoma neoepitopes. E Confusion matrix of GBM cancer neoepitope prediction using self-antigen 
TRAP model in reference to T-cell assay readout. F ROC curve of TRAP performance on GBM dataset. G Distribution of MCDropout values for GBM 
peptides predicted to be non-immunogenic. H The proportion of GBM epitopes (Positive) and non-epitopes (Negatives) predicted Positive 
or Negative with high or low confidence based on MCDropout. The confidence has been determined by the self-antigen out-of-distribution linear 
regression classifier at threshold 0.76. I. ROC curve of TRAP performance taking confidence into account, in which peptides that were predicted 
Negative with low confidence were removed to be considered as the potential epitope candidates. J Confusion matrix of TRAP prediction 
after taking the confidence into account, in which peptides that were predicted Negative with low confidence were included as Positive
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Discussion
In this study, we present TRAP, a robust deep learn-
ing workflow for predicting CD8 + T-cell epitopes 
from MHC-I presented pathogenic and self-peptides. 
To address the current limitations, we used peptide 
sequences only at contact positions to avoid HLA bias 
caused by capturing dominant HLA binding features at 
anchor positions. Second, we built separate models for 
pathogenic and self-peptides to address the out-of-distri-
bution generalisation problem. Third, to overcome data 
limitations, we encoded peptide sequences using amino 
acid properties derived from protein transformer-based 
pre-trained language models (PLMs). This enabled more 
information about the physicochemical, electrostatic or 
biophysical properties of amino acids to be fed into the 
system. Fourth, we captured T-cell recognition motifs 
using a one-dimensional convolutional neural network 
(1D CNN) architecture. Fifth, we added the MHC bind-
ing rank score predicted by the most accurate algorithm 
(NetMHCpan) to provide the information about MHC 
binding. Lastly, we devised an out-of-distribution detec-
tion module to abstain from low-confidence predic-
tions for peptides that are very different from those in 
the training dataset. By taking these novel approaches, 
TRAP offers a more robust prediction compared to other 
machine learning algorithms.

Another metric proposed to estimate immunogenicity 
from cancer neoepitope studies was dissimilarity to self. 
However, the dissimilarity to self could not be applied to 
pathogenic peptides because pathogens have highly het-
erologous sequences compared to the human proteome. 
Therefore, a novel metric termed RSAT (relative similar-
ity to autoantigens or tumour-associated antigens) was 
developed to estimate the immunogenicity of peptides 
from emerging pathogens. To compensate for the high 
dissimilarity between pathogenic and human proteomes, 
this metric compares the similarity of pathogenic pep-
tides to the reference human proteome (‘healthy’) with 
respect to ‘immunogenic’ self-peptides such as autoan-
tigens or tumour-associated antigens. This allowed 
the identification of pathogenic epitopes despite their 
sequence dissimilarity to the human proteome.

The application of TRAP was demonstrated by using 
it to identify cancer neoepitopes from glioblastoma 
patients. We showed that the out-of-distribution detec-
tion module is well-suited for the ‘needle in a haystack’ 
problem by identifying those predicted negative with low 
confidence. In another study, we used TRAP to investi-
gate the immune escape potential of SARS-CoV-2 vari-
ants [78]. By combining TRAP with in silico mutagenesis, 
we evaluated the extent to which all possible theoretical 
single point mutations can give rise to variants of con-
cern and be detrimental to T-cell immunity. Based on 

the groundwork of this work, using models like TRAP 
to systematically evaluate the impact of mutations on 
the emergence of deleterious pathogens will be of great 
interest. Emerging pathogens have posed a significant 
threat in recent years, and new variants and pathogens 
are expected to rise in the coming years [79]. It is there-
fore critical to surveil variants of concern and assess the 
immune escape potential of these variants. Furthermore, 
in order to accurately determine deleterious variants, it 
is essential to assess the extent to which models trained 
by other pathogens can be generalised and thus used for 
emerging pathogens. Thus, an iterative process of refin-
ing the training data, model architecture and validating 
predictions should be followed to mitigate the impact of 
another pandemic.

For the self-antigen model, the autoantigens, tumour-
associated antigens and cancer neoepitopes were col-
lected as epitopes, and benign HLA-I ligands expressed 
in thymus as non-epitopes. We assumed that HLA-I 
ligands expressed in the thymus are involved in the selec-
tion of T-cells, and thus there is either no repertoire rec-
ognising these peptides or have weak interaction with the 
peptides. Notably, our novel approach of incorporating 
the HLA-I ligands allowed for a clearer separation of self-
epitopes versus non-epitopes. When the data is limited, 
biological knowledge, such as thymic selection, can serve 
as a useful resource to bridge the data gap, and aid in the 
development of a more accurate classifier.

In benchmarking TRAP performance, we found that 
although Repitope performed well on pathogenic data, 
it was limited in extracting immunogenicity-related 
features from limited data and transferring them onto 
related species, resulting in poor performance on emerg-
ing pathogens. Our previous analysis revealed that 
Repitope was one of the models with skewed prediction 
for prevalent HLAs, with HLA-A*02:01-bound peptides 
having a higher immunogenicity score than non-HLA-
A*02:01 bound peptides [7]. This suggested that the 
model considered A02:01 binding as a superior feature to 
the T-cell recognition potential, skewing the prediction. 
While TRAP performed slightly lower on the pathogenic 
dataset, the HLA-generalised approach of TRAP miti-
gates the possibility of HLA bias. Therefore, end users 
should choose which model to pursue based on the pep-
tides and HLA alleles of interest.

While these approaches improved the accuracy and 
robustness of the prediction, there still remains limi-
tations. First, while the calibration methods could 
effectively detect incorrect prediction in a 10-fold cross-
validation, they failed on the cross-species dataset (Addi-
tional file 1: Fig. S7G-H). We surmised this is because of 
‘spurious semantic features’ (i.e. features that have dis-
criminative power in training data but not in test data) 
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that were driving overly confident incorrect predictions. 
In a recent case study, Arora et al. benchmarked calibra-
tion methods on real-world challenge data and reported 
that models were over-confident on the OOD examples 
because of spurious semantic features and often pro-
duced accuracies close to random [45]. With spurious 
semantic shift being one of the remaining challenges in 
NLP, further advances in deep learning and NLP will 
also facilitate improving the robustness of predictions on 
complex biological data.

Second, following our workflow, peptides may be 
abstained due to low-confidence predictions. For can-
cer peptides, TESLA [8] that incorporates generic fea-
tures for neoepitope prediction could be an alternative 
solution. Pathogenic peptides having low-confidence 
predictions can be directed to RSAT to estimate the 
immunogenicity potential with respect to self-epitopes. 
However, because RSAT is only applicable to peptides 
with self-epitope counterparts, it has limited cover-
age with 346/3792 (9.1%) pathogenic epitopes currently 
having counterparts. Further characterisation of self-
epitopes will expand RSAT coverage to embrace a 
broader range of pathogenic peptides.

Third, TRAP takes an HLA-generalised approach to 
avoid HLA bias, as the current dataset contains little 
intra-HLA variation in peptide immunogenicity. How-
ever, characterising peptide immunogenicity on a broader 
range of HLAs may provide insight into the effect of HLA 
on overall immunogenicity. Moreover, because the spe-
cific interaction between peptide and T-cell receptor is 
MHC-restricted [80, 81], MHC-focused studies would be 
required to model specific TCR:pMHC recognition.

Fourth, T-cell recognition depends not only on pep-
tide-MHC complex, but also on multiple other factors, 
such as cytokine microenvironment, co-stimulatory mol-
ecules in vivo and availability of TCR repertoires that are 
often highly stochastic and individualised [82], adding 
complexity to T-cell activation and function [83]. While 
there are almost no record of these determinants [84], 
studies highlighting the influence of microenvironment 
on T-cell response will be pivotal to recapitulating T-cell 
function for therapeutic applications.

In TRAP, we incorporated peptide sequence at the con-
tact position to gauge on T-cell recognition motifs. How-
ever, some studies showed that position 1 (P1) of 9-mer 
peptide may play an important role in T-cell binding, as 
demonstrated by P1, 3, 4, 5, 9 being critical for MAGE 
A3 binding by a3a-engineered T-cells [85]. Although it is 
difficult to deconvolute the roles of different positions in 
MHC and T-cell binding, more studies may shed light on 
the role of P1.

Fifth, due to the lack of true Negative self-antigens, we 
retrieved benign HLA-I ligands expressed in thymus for 

their relevance to central tolerance. While there have 
been studies describing Tregs reacting to self-peptides 
present in the thymus [86, 87], given that the models are 
targeted for CD8 + T-cells, we reasoned that majority of 
peptides presented by HLA class I in the thymus will be 
non-immunogenic. However, we acknowledge that con-
cept of thymic selection is still evolving and that not all 
peptides expressed in the thymus may be involved in 
selection [88]. On that note, some studies have shown 
that cTECs may generate and display distinct private self-
peptides that may support the selection of T-cells with 
low self-reactivity in the periphery [89, 90]. While experi-
mental data linking the selection of ‘low self-affinity’ TCR 
with cTEC-displayed private peptides is still lacking, 
future studies characterising HLA-I ligand expressed in 
medulla thymic epithelial cells (mTEC) will improve con-
fidence as ‘non-immunogenic self-antigens’.

Sixth, it will be valuable to extend the work of peptide 
immunogenicity to investigate the ability of peptides 
to be recognised by specific T-cells. Here, the peptide 
immunogenicity was investigated at the organismal 
level, i.e. whether the peptide can elicit a response from 
any T-cell. The limitation was largely due to the limited 
pool of available peptides characterised for their cognate 
TCRs; however, advances in screening methods will lead 
to availability of more comprehensive datasets in the 
future, thus enabling the development of more tailored 
immunogenicity models. It is becoming apparent that 
predicting specific interactions between TCR and cog-
nate pMHCs is crucial for developing personalised thera-
pies and tailoring vaccines or treatments to individuals’ 
TCR repertoire. Therefore, screening antigen-specific 
TCR against a larger pool of epitopes from various ori-
gins and pathologies will greatly aid in learning peptide 
features that allow interaction with specific TCRs.

In addition, the immunogenicity of an epitope can be 
altered by the presence of other epitopes, as demon-
strated by immunodominance effects, in which a hierar-
chy exists in the magnitude of the immune response that 
epitopes can elicit [91–94]. Several factors may influence 
immunodominance, including competition for MHC, 
presentation levels, TCR affinity, timing of CTL clonal 
expansions, individual’s TCR diversity and/or strength of 
T-cell response [95–97]. The immunogenicity algorithms 
are designed to predict the peptide immunogenicity once 
the peptides are bound on HLA molecules. We used 
MHC rank as one of the parameter to describe binding 
affinity and relative MHC presentation levels. But, even 
if the peptides are stably presented, immunodominance 
may vary depending on an individual’s TCR diversity, 
T-cell affinity and/or strength of T-cell response. There-
fore, while the model may serve as a useful tool to short-
list peptides for testing, additional experiments will be 
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required to characterise their immunogenicity in pres-
ence of other epitopes. Future studies into the impact of 
other epitopes will aid in understanding the dynamics of 
immune response in the presence of multiple epitopes 
and foster the development of more accurate models.

Lastly, the current breadth of peptides characterised 
by T-cell assays is far from filling the full combinatorial 
peptide space, especially for CD4 + T-cell targets. Also, 
while this model is limited to peptide-specific binding of 
CD8 + T-cells, other T-cells are specific for lipid or small 
molecules like metabolites. As such, high-throughput 
screening of immune targets and antigen-specific TCRs 
by the help of recent technological advancement will 
greatly foster the process of model development.

Despite current data and model constraints, the novel 
computational strategies allowed TRAP to outperform 
existing models in predicting CD8 + T-cell epitopes and 
provide more robust, accurate and biologically mean-
ingful candidates for functional validations. We believe 
that this workflow will foster a better understanding of 
TCR:pMHC interaction and aid in basic, clinical and 
translational research for a wide range of therapeutic 
applications.

Conclusions
In summary, our study introduces TRAP, a robust deep 
learning framework designed to predict CD8 + T-cell 
epitopes from MHC-I presented pathogenic and self-
peptides. Overcoming existing limitation, TRAP incorpo-
rates novel strategies to enhance predictive accuracy and 
confidence. Moreover, the novel metric, RSAT, addresses 
the challenge of immunogenicity estimation for emerging 
pathogens by comparing pathogenic peptides to immu-
nogenic self-peptides. The demonstrated applications of 
TRAP in identifying cancer neoepitopes and assessing 
immune escape potential of SARS-CoV-2 variants under-
scored its practicality. In the face of ongoing threat posed 
by emerging pathogens and variants, TRAP’s ability to 
systematically assess the impact of mutations would be 
invaluable. Our study showcases the TRAP’s capacity to 
contribute to immunogenicity prediction, variant surveil-
lance and neoepitope identification guided by both com-
putational methodologies and biological understanding. 
Altogether, we envision models like TRAP, designed for 
the accurate identification of T-cell targets, will be instru-
mental in decoding the fundamental principles of T-cell 
recognition of antigens in time and space.
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