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Abstract 

Background Breast cancer patients from the indigenous Arab population present much earlier than patients 
from Western countries and have traditionally been underrepresented in cancer genomics studies. The contribution 
of polygenic and Mendelian risk toward the earlier onset of breast cancer in the population remains elusive.

Methods We performed low‑pass whole genome sequencing (lpWGS) and whole‑exome sequencing (WES) 
from 220 female breast cancer patients unselected for positive family history from the indigenous Arab population. 
Using publicly available resources, we imputed population‑specific variants and calculated breast cancer burden‑
sensitive polygenic risk scores (PRS). Variant pathogenicity was also evaluated on exome variants with high coverage.

Results Variants imputed from lpWGS showed high concordance with paired exome (median dosage correlation: 
0.9459, Interquartile range: 0.9410–0.9490). After adjusting the PRS to the Arab population, we found significant 
associations between PRS performance in risk prediction and first‑degree relative breast cancer history predic‑
tion (Spearman rho=0.43, p = 0.03), where breast cancer patients in the top PRS decile are 5.53 (95% CI 1.76–17.97, 
p = 0.003) times more likely also to have a first‑degree relative diagnosed with breast cancer compared to those 
in the middle deciles. In addition, we found evidence for the genetic liability threshold model of breast cancer 
where among patients with a family history of breast cancer, pathogenic rare variant carriers had significantly lower 
PRS than non‑carriers (p = 0.0205, Mann‑Whitney U test) while for non‑carriers every standard deviation increase 
in PRS corresponded to 4.52 years (95% CI 8.88–0.17, p = 0.042) earlier age of presentation.

Conclusions Overall, our study provides a framework to assess polygenic risk in an understudied population using 
lpWGS and identifies common variant risk as a factor independent of pathogenic variant carrier status for earlier age 
of onset of breast cancer among indigenous Arab breast cancer patients.
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Background
Individuals from the Greater Middle Eastern (GME) 
regions are significantly underrepresented in genomic 
studies, with less than 0.01% of the samples in Genome-
wide Association Studies (GWAS) Catalog [1] and less 
than 0.8% of the samples in the Genome Aggregation 
Database (gnomAD) [2] reporting GME origin [3]. Com-
pared to their European counterpart, GME populations 
have roughly a doubled rate of recessive Mendelian dis-
ease [4] and the region is experiencing a growing bur-
den of breast cancer [5], with the average breast cancer 
patients presenting a decade earlier compared to patients 
in Western countries [6]. While prior studies have attrib-
uted the lower age of onset to lower population median 
age and other environmental and cultural factors [5, 
7], the contributions from hereditary risk factors spe-
cific to the GME populations remain unknown. As part 
of the effort to increase genomic representation from 
GME populations, recent progress has been made with 
the Qatar Genome Programme, which sequenced over 
6000 Qatari subjects with diverse GME ancestry back-
grounds and revealed significant differences in breast 
cancer polygenic risk score (PRS) distributions between 
cancer-free populations with different GME ancestry 
backgrounds [8]. However, it remains unclear whether 
elevated PRS would correlate with decreased age of onset 
at a significant magnitude and for which subgroup would 
information on PRS be potentially clinically relevant. 
Furthermore, PRS is known to underperform in non-
European populations [9], and its ability to capture bio-
logically plausible hereditary breast cancer risk in GME 
populations has yet to be tested. Therefore, finding meth-
ods to accurately capture the common variant risk in 
GME populations, as well as understanding its relation to 
other known genomic risk factors such as carrying path-
ogenic rare variants in cancer-predisposition genes, is 
crucial for a holistic view of the genomic risk in the GME 
population and can lead to better design of intervention 
strategies in a population facing growing genomic health 
disparities [10].

Low-pass whole genome sequencing (lpWGS), or WGS 
with an average sequencing depth of around 1.0x, has 
recently been proposed as a cost-effective alternative data 
modality to study genetic architectures in understudied 
populations. Compared to the traditional genotyping 
arrays, lpWGS has reduced genetic variant ascertainment 
bias and has been shown to be sensitive to population-
specific novel variants [11]. In addition, lpWGS has also 
been shown to outperform genotype arrays in imputa-
tion performance and statistical power [12–14]. Given 
these advantages, lpWGS appears as an attractive option 
to understand the polygenic architecture of breast can-
cer in GME populations, but its accuracy has yet to be 

systematically evaluated in a clinical setting. In this multi-
center study, we collected blood samples from 220 female 
breast cancer patients from the indigenous Arab popula-
tion who were not selected for positive family history or 
early age of onset and concurrently performed lpWGS 
and whole-exome sequencing (WES) on each sample. We 
imputed germline variants using publicly available refer-
ence panels and assessed their accuracy using the paired 
WES samples. Using the imputed variants, we calculated 
a population-adjusted PRS and discovered various inter-
actions between polygenic risk and other clinical features 
such as family history, pathogenic rare variant burden, 
and age of onset (Fig.  1). Altogether, our investigation 
demonstrated an approach of using PRS to understand 
the polygenic risk landscape in an understudied popula-
tion using patient data only without ancestry-matching 
cancer-free controls and highlighted the complementary 
role of rare and common risks in hereditary breast cancer 
in the indigenous Arab population.

Methods
Study participants
Blood samples from 220 female breast cancer patients 
from the indigenous Arab population unselected for early 
age of onset or family history of cancer were collected 
from 2 participating institutions in Eastern Saudi Arabia: 
King Fahd Hospital - Alhafouf and King Fahd University 
Hospital - Dammam. All individuals in this study con-
sented to institutional review board-approved protocols 
that allowed for comprehensive genetic analysis of ger-
mline samples.

Sequencing and library preparation
All samples (n=220) prepared for lpWGS had sufficient 
starting material (100 ng of double-stranded gDNA). 
Normalized DNA was fragmented (Covaris sonication) 
to 350 bp and then ligated to specific adapters during 
automated library preparation (Roche/KAPA, Hyper 
KK8504) using the Beckman FXp liquid handling robot. 
Libraries were pooled in equal volume and sequenced 
on an Illumina nano flow cell to estimate each library’s 
concentration based on the number of index reads per 
sample. Library construction is considered success-
ful if the yield is larger than or equal to 250. All samples 
were successful. Libraries were normalized, pooled, and 
sequenced using Illumina platforms. Pooled samples 
were demultiplexed using the Picard tools version 1.130 
[15].

For whole-exome sequencing (WES), a total amount of 
1.0μg genomic DNA per sample was used as input mate-
rial for the DNA sample preparation. Whole-exome cap-
ture libraries were generated using Agilent SureSelect 
Human All ExonV6 kit, and fragmentation was carried 
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out by a hydrodynamic shearing system (Covaris, Mas-
sachusetts, USA) to generate 180–280bp fragments. 
Products were purified using the AMPure XP system 
(Beckman Coulter, Beverly, USA) and quantified using 
the Agilent high-sensitivity DNA assay on the Agilent 
Bioanalyzer 2100 system. The qualified libraries were 
fed into Illumina sequencers after pooling according to 
their effective concentration and expected data volume. 
All case samples had satisfactory effective read rates (> 
97%) and error rates (< 0.03%) and are included in further 
analysis.

Alignment
All raw sequencing data were uploaded to Terra (https:// 
firec loud. terra. bio/), a collaborative cloud-computing 
platform utilized for genomic analyses, developed as 
part of the NCI Cloud Pilot program and supported by 
the Broad Institute [16]. Using Genome Analysis Toolkit 
(GATK) version 4.1.8.1 [17], all FASTQ files were first 
converted into unaligned Binary Alignment Map (uBAM) 
files, then aligned to the human reference genome b38 
using BWA (version 0.7.15), as recommended by the 
GATK best practice workflows [18].

Sequencing coverage
The average sequencing coverage of all lpWGS and WES 
samples was calculated using the GATK’s (version 3.7) 
tool “DepthofCoverage”. A sample-wide mean coverage 

of 0.1× was considered the minimum acceptable cover-
age for lpWGS, and a 15× average coverage over exon 
intervals was considered the minimum acceptable cover-
age for WES.

Whole‑exome variant calling
DeepVariant (version 1.0.0) [19], a deep learning-based 
variant calling method that has been demonstrated to 
have superior performance at detecting pathogenic vari-
ants compared to the standard joint-genotyping approach 
[20, 21], was used to call germline variants from WES 
data (docker image: gcr.io/deepvariant-docker/deep-
variant:1.0.0). All variants annotated with “PASS” in the 
FILTER column of the VCF were deemed high qual-
ity. Variants passing QC from all samples were then 
merged into one VCF file using GATK’s (version 3.7) tool 
“CombineVariants”. Subsequently, the “vt” tool (version 
3.13) was used on the cohort VCF file to normalize and 
decompose multiallelic variants.

Functional and clinical annotation of germline variants
The cohort VCF file was annotated using Variant Effect 
Predictor (VEP, release 104.3) [22] with the publicly avail-
able GRCh38 cache file with a custom plug-in to include a 
recent “ClinVar” database release (accessed in June 2021). 
Using the tier criteria used by the Catalogue of Somatic 
Mutation in Cancer (COSMIC) [23], only variants in 
“germline tier 1” genes were considered. All detected 

Fig. 1 A graphical overview of the study. Low‑pass whole genome sequencing (lpWGS) and high‑coverage whole‑exome sequencing (WES) 
were performed on blood samples collected from 220 indigenous Arab breast cancer patients. Variants were subsequently imputed and validated, 
and the polygenic risk scores (PRS) were calculated to facilitate downstream analysis of various clinical variables

https://firecloud.terra.bio/
https://firecloud.terra.bio/
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variants were then classified into five categories: benign, 
likely benign, variants of unknown significance, likely 
pathogenic, and pathogenic, using the American College 
of Medical Genetics (ACMG) guidelines [24]. Moderately 
or highly penetrant variants classified as likely patho-
genic or pathogenic are then collectively referred to as 
pathogenic variants (PV).

Low‑pass whole genome imputation
To obtain variant calls from lpWGS, GLIMPSE v1.1.1 [25] 
was used to perform genome-wide variant imputation. 
Following the recommended steps, the genome-wide 
genotype likelihood was first calculated on each sam-
ple using bcftools then separated into smaller genomic 
intervals before imputation. To maximize the number 
of variants imputed, we used Eagle v2.4.1 [26] to com-
putationally phase the publicly available 1000 Genome 
[27] (1KG) WGS VCFs that were called using DeepVari-
ant [28] (v1.0.0, GLnexus v1.2.7, GRCh38 reference), 
and used the output as the reference panels for imputa-
tion. After imputation was carried out on each genomic 
chunk, they were combined using the “GLIMPSE_ligate” 
command with default arguments, producing the final 
imputed VCF.

Imputed variant quality control
To assess variant imputation accuracy and to select a 
proper filtering threshold, the concordance of exonic var-
iants was calculated based on the intersection of variants 
called both by DeepVariant using WES data and imputed 
by GLIMPSE using lpWGS. The “INFO” score output-
ted by GLIMPSE, which is a value that ranges from 0 to 
1 where 1 indicates high confidence in the variant call, 
is referred to as the imputation quality score. The linear 
transformation of the posterior genotype probabilities 
generated by imputation, which is a number ranging from 
0 to 2 where a number close to 1 indicates confidence in a 
single alternate allele at the location while a number close 
to 2 reflects confidence in having 2 alternate alleles at the 
location, is referred to as variant dosage. Variants were 
binned based on minor allele frequency, and the corre-
lation between variant dosage and the number of alter-
nate alleles (0, 1, or 2) called by DeepVariant, referred to 
as dosage correlation, was calculated within each bin for 
every sample. Allele frequencies were calculated based 
on allele counts in the cohort.

Relatedness inference
To control for confounding effects from related individu-
als, PLINK 1.9 [29] was first used to extract biallelic sin-
gle-nucleotide polymorphisms (SNPs) from the merged 
WES VCF file. Subsequently, LDAK 5.2 [30] was used 
to compute a kinship matrix assuming the LDAK-Thin 

heritability model with a correlation squared thresh-
old of 0.98 and window size of 100 kb, as recommended 
(https:// dougs peed. com/ calcu late- kinsh ips/). Samples 
were then removed until no pairs have a kinship value 
greater than 0.125. Five samples were removed after this 
step.

Polygenic risk score calculation
To assess the clinical applicability of PRS, we adopted a 
similar PRS calculation methodology proposed by Hao L. 
et al. [31] and curated the initial sets of PRS weights from 
“CancerPRSWeb” [32], a repository that contains PRS 
coefficients for major cancer traits derived from multi-
ple large population databases such as the UK BioBank 
(UKB) [33], Michigan Genomics Initiative (MGI) [34], 
and GWAS Catalog [1]. To pick PRS sets most relevant 
to breast cancer, we selected “Breast Cancer [Female]” 
as the cancer trait and manually curated 20 sets of non-
subtype-specific weights which had validation perfor-
mance in either MGI or UKB. The number of SNPs in the 
selected weights ranged from 79 to 1,120,410, and they 
were derived using various methods with different per-
formances in UKB or MGI, as measured by area under 
the receiver-operator characteristic curve (AUC popula-

tion). After downloading the associated weight file and 
metadata, SNPs with hg19 coordinates were lifted over 
to hg38 using the python liftover library [35] for down-
stream compatibility. For each set of PRS weights, we 
calculated the unadjusted raw PRS in PLINK 1.9 [29] by 
using the “--score” command with the “score-no-mean-
imputation” option enabled.

PRS population stratification adjustment
To obtain the genetic principal components (PCs) of 
every sample, we first merged the Arab breast cancer 
cohort WES VCF with the WES VCF from the 1000 
Genomes Project [27]. The merged WES VCF was then 
loaded using Hail v0.2 [36] and filtered for variants with 
allele frequency > 0.05 and p-value greater than 1e−6 
from the Hardy-Weinberg Equilibrium test. LD-pruning 
was then performed on passing variants with greater than 
0.1 correlation within a 1 million base pair window. The 
Hail function “hwe_normalized_pca” was then applied to 
the resulting set of common variants (n=58,286), and the 
top 10 PCs were kept for further analysis.

To create a population-adjusted PRS, an ordinary least 
square model was fitted using the top 10 PCs as features 
with the raw PRS as the output variable. The differ-
ence between the predicted PRS and raw PRS was then 
standardized, creating the population-adjusted, residu-
alized PRS. This process was then repeated for every set 
of PRS weights, and the CancerPRSWeb ID of the PRS 
weights with the highest performance at detecting breast 

https://dougspeed.com/calculate-kinships/
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cancer in first-degree relatives (AUC family) as well as any 
degree relatives (AUC family-any) was “PRSWEB_PHE-
CODE174.1_Onco-iCOGS-Overall-BRCA_LASSO-
SUM_MGI_20200608.”

Statistical analysis
Unless otherwise specified, all odds ratios, 95% confi-
dence intervals, and p-values were computed based on 
the two-sided Fisher’s exact test, as implemented in the 
exact2x2 R package [37] with the argument “minimum 
likelihood correction.” Confidence intervals of the area 
under the receiver-operator characteristic curves (AUC) 
were calculated based on the formulation by J. Hanley 
and B. McNeil [38]. Statistical diagrams were visualized 
using Seaborn v0.11.2 [39]. Statistical models were con-
structed using the python package “statsmodel” [40]. The 
clinical characteristics table was constructed using the 
package “tableone” [41]. The effect of PRS standard devi-
ation increase on the age of onset is estimated by fitting 
a generalized linear model (GLM) using the statsmodel 
package with standardized ancestry-adjusted PRS as 
the feature and age of presentation as the outcome. The 
coefficient of the PRS and its 95% confidence intervals as 
indicated by the GLM is then reported.

To evaluate the change in PRS AUC after removing 
pathogenic variant carriers from the cohort, the p-values 
were obtained by calculating the proportion of samples 
in which the AUC was lower after removing pathogenic 
variant carriers using 10,000 bootstrapped samples of the 
analysis cohort.

Results
Sample characteristics
All samples (n=220) met the minimum sequencing cover-
age cut-off, where the median genome-wide coverage for 
lpWGS was 1.3× (interquartile range [IQR] 1.25–1.36×, 
Fig.  2a) and median exome-wide coverage for WES was 
48.1X (IQR 44.8–51.8×, Fig.  2b). After removing related 
individuals, defined as having a kinship coefficient above 
0.125, a total of 215 female breast cancer patients of Middle 
Eastern ancestry were included in the final analysis (Meth-
ods). The WES variant calls were merged with variant calls 
of the 1000 Genomes Project [27], and the first 10 genetic 
principal components were calculated (Methods). As 
expected, due to the lack of Middle Eastern ancestry rep-
resentation from the 1000 Genomes Project the PCs of the 
cohort form a cluster distinct from the rest of the samples 
(Fig.  2c, d). Among those whose clinical information was 
available, the mean age of presentation was 47.7 years (SD 
10.1 years). The clinical characteristics of the breast can-
cer cases including histology and estrogen receptor status 

stratified by family cancer history status can be found in 
Additional File 1: Supplementary Table 1.

lpWGS enables accurate imputation of low‑frequency 
population‑specific variants
To assess the quality of lpWGS-derived genotypes using 
publicly available reference panels, we systematically ana-
lyzed the imputation performance of lpWGS in the exome-
regions using high-coverage WES-derived high-quality 
variants as the ground truth. The median number of inter-
secting variants both called by WES and imputed by lpWGS 
per sample was 62,495 (IQR 60,518–63,495), where at least 
87.05% of the overlapping variants had imputation quality 
score greater than 0.8 across all samples (Fig. 3a). To assess 
the reliability of the imputation quality score in reflecting 
the true posterior probability of the imputed variant having 
the specified variant dosage, we grouped imputed variants 
into bins by their imputation quality scores and calculated 
the dosages correlation for each sample within each bin 
(Methods). We observed good correspondence between 
imputation quality scores and genotype called from WES 
where variants in the 0.8–0.9 imputation quality score bin 
have median dosage correlation in a similar range (0.8441, 
IQR 0.8355–0.8515) (Fig. 3b, Additional File 1: Supplemen-
tary Table  S2). Collectively, the medians of dosage corre-
lation per bin were highly positively correlated (Pearson 
correlation: 0.944, p < 0.001).

Next, we evaluated the impact of minor allele frequency 
(MAF) on variant imputation quality by stratifying the 
variants into MAF bins and calculating the dosage corre-
lation within each bin. We found after filtering out vari-
ants with imputation quality scores below 0.8, the dosage 
correlations are consistently strong regardless of MAF 
(Fig.  3c, Additional File 1: Supplementary Table  S3), and 
collectively, the median dosage correlation per sample 
after filtering was 0.9459 (IQR 0.9410–0.9490). As such, all 
variants with imputation quality score > 0.8 are included 
in downstream analysis without further filtering on MAF. 
To evaluate if the imputed variants are population-specific, 
we obtained the gnomAD [2] population allele frequencies 
for all imputed variants used for performance evaluation 
(n=284,601 variants) and calculated its Pearson correlation 
with the allele frequency in each of the gnomAD ancestry 
groups. As expected, we found our cohort’s variant minor 
allele frequencies to be the highest correlated with the 
Middle Eastern gnomAD ancestry group (Pearson correla-
tion = 0.944, p < 0.001, Fig. 3d).

Imputed variants enables calculation of breast cancer 
burden‑sensitive polygenic risk score in the Arab 
population
Using the high-quality imputed variants of Arab breast 
cancer patients, we adopted a PRS calculation pipeline 
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similar to the one proposed by Hao et al. [31] and cal-
culated 20 sets of breast cancer PRS for every sample 
using publicly available weights from “CancerPRSWeb” 
[32], a repository that contains PRS coefficients for 
major cancer traits derived from multiple large popu-
lation databases, as well as the widely used 313 SNPs 
breast cancer PRS (Methods) [42]. To account for 
population stratification, each PRS was residualized 
against the top 10 genetic principal components and 
then standardized for subsequent analysis (Methods, 
Additional File 1: Supplementary Table  S4). To evalu-
ate each PRS’s ability to detect polygenic risk burden, 
we calculated the AUC of each PRS at the task of pre-
dicting patients with a self-reported family history of 
breast cancer at the first degree (AUC family). We found a 
positive correlation between the reported performance 
of the PRS from previous studies at detecting breast 
cancer patients in larger, mostly European populations 

(AUC population) and AUC family (Spearman coefficient = 
0.417, p-value = 0.0301) (Fig.  4a), suggesting the cal-
culated PRS was able to detect similar breast cancer 
burden from family cancer history as well as in general 
population.

To evaluate the effect of population adjustment on PRS, 
we compared the difference in AUC family before and after 
applying residualization. We found the original popula-
tion performance of the PRS to be positively correlated 
with the improvement in AUC Family after adjusting for 
ancestry (Spearman correlation 0.7052, p-value 0.0002) 
(Fig.  4b). That is, for PRS with a lower AUC population, 
population adjustment resulted in lower performance 
in AUC family, while for PRS with a higher AUC population, 
population adjustment resulted in higher performance in 
AUC family. This suggests the population adjustment pro-
cess was able to mask population-specific signals from 
PRS with lower AUC population while amplifying causal 

Fig. 2 Sequencing metrics and sample characteristics of the cohort. a The average genome‑wide coverage of lpWGS. b The average exome 
coverage of WES. c, d The first three genetic principal components based on the exomes merged with the 1000 Genomes data
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signals from PRS with high AUC population, which improves 
the power for our subsequent analysis.

Among the 21 sets of PRS for which the perfor-
mance was evaluated (Additional File 1: Supplementary 
Table  S4), the PRS with the highest AUC family perfor-
mance was chosen for downstream analysis (AUC family 
0.663, AUC population 0.639, Number of SNPs 118,388). To 
further validate the biological plausibility of the calcu-
lated PRS, we evaluated its performance at identifying 
patients with a family history of breast cancer or other 
cancers at varying degrees. We found the performance of 
the PRS to be the strongest at identifying patients with 
first-degree relatives with breast cancer (AUC family 0.663, 
95%CI 0.540–0.785), and the performance decreased 
when higher-degree relatives with breast cancer were 
included (AUC family-any 0.605, 95%CI 0.514–0.697) or 
when non-breast cancer was included (AUC 0.590, 
95%CI 0.492–0.687) (Fig. 4c). As a negative control, age 

was not an effective predictor of family history of breast 
cancer (AUC family 0.531, 95%CI 0.408–0.654) and the 
same performance ranking did not hold (Additional File 
2: Fig. S1).

Genetic liability threshold model in Arab familial breast 
cancers
To understand the relative risk contribution of common 
variants and rare variants to hereditary breast cancer in 
Arab breast cancer patients, we next used WES data to 
identify 34 (15.81%) patients who carried a pathogenic 
variant (PV) in one of the known cancer-predisposition 
genes as outlined by the COSMIC database (Additional 
File 1: Supplementary Table S5, Additional File 2: Fig S2, 
Methods). Compared to patients with no first-degree 
relatives with breast cancer (n=175), Arab breast cancer 
patients who have first-degree relatives with breast can-
cer (n=25) had higher PRS (p = 0.0086, Mann-Whitney 

Fig. 3 Imputation accuracy of lpWGS using high‑coverage WES variants as ground truth. a The number of variants both imputed by lpWGS 
and called by high‑coverage WES per sample and the proportion of these variants with imputation quality score (INFO) at least 0.8. b Boxen 
plot of the dosage correlation per sample grouped by imputation quality score intervals. Dosage correlation is defined as the correlation 
between the imputed variant dosage, which is a continuous value ranging from 0 to 2, and the number of alternate alleles called from WES. c The 
dosage correlation of lpWGS imputed variants grouped by cohort minor allele frequency before and after filtering out variants with imputation 
quality score below 0.8. We observe consistently strong performance after filtering regardless of MAF bins. d The Pearson correlation 
between the allele frequency of the imputed variants in our cohort versus their allele frequencies in gnomAD ancestry groups



Page 8 of 14Al‑Jumaan et al. Genome Medicine           (2023) 15:65 

U test (M.W.U.)) (Fig. 5a) and were 2.13 times more likely 
to carry pathogenic variants (95% CI 0.81–5.59, p = 
0.103). We found no significant difference in PRS distri-
bution between PV carriers and non-carriers in patients 
with no first-degree relative with breast cancer (PV car-
rier: n=27, non-PV carrier: n=148, p = 0.946, M.W.U.), 
but among those who have a first-degree relative with 
breast cancer, non-PV carriers had significantly higher 
PRS than PV carriers (non-PV carrier: n=18, PV carrier: 
n=7, p = 0.0205, M.W.U.), suggesting a genetic liability 
threshold model of breast cancer where the threshold for 
breast cancer may be achieved through a combination of 
rare or common variant risk [43, 44]. In addition, among 

non-PV carrier patients, those with first-degree relatives 
with breast cancer have significantly higher PRS (p = 
0.0002, M.W.U.) compared to those who do not (Fig. 5a). 
In contrast, no significant difference in PRS distributions 
was found among PV carriers based on first-degree rela-
tive breast cancer status (p = 0.3142, M.W.U.).

Common variant risk is associated with earlier age of onset 
in PV‑negative Arab breast cancer patients with family 
history
Given the performance of PRS at detecting familial breast 
cancer risk, we next assessed whether elevated PRS was 
associated with an earlier age of onset. We found no 

Fig. 4 Evaluating the biological plausibility of the calculated PRS. a The Spearman correlation between the performance of PRS at detecting 
breast cancer in first‑degree relatives (AUC family) vs. the reported performance of the PRS at detecting breast cancer patients in larger European 
populations from previous studies (AUC population). Method refers to the original method that was used to derive the weights for the PRS. b The 
original performance of the PRS (AUC population) plotted against the improvement in PRS AUC family after the PRS is adjusted for population. The 
performance improvement is positively correlated with its original performance in the overall population suggesting the adjustment process 
was able to magnify burden effects while suppressing population stratification. c Evaluating the effectiveness of the best‑performing PRS 
at predicting various cancer‑related family histories. The PRS performs the best at predicting the presence of breast cancer in first‑degree relatives 
and performance decreases as the relative degree increases and the cancer type become non‑breast cancer‑specific. BC: breast cancer
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statistically significant negative association between PRS 
and age in the overall cohort (rho=−0.05, p = 0.206). 
However, when conditioned on family history and PV 
carrier status, we found a statistically significant negative 
association between age of onset and PRS in patients with 
a first-degree relative with breast cancer but are negative 
for rare germline pathogenic variants (n = 18), (Spear-
man rho: −0.441, p = 0.033) (Fig. 6), where each stand-
ard deviation increase in PRS corresponded to 4.52 (95% 
CI 8.88–0.17, p = 0.042) years decrease in age of onset 
(intercept term 53.09 years, 95%CI 47.6–58.5, p < 0.001). 
A similar but weaker trend can be found in PV carriers 
without a first-degree relative with breast cancer, where 
each standard deviation increase in PRS corresponded 
to 2.61 (95% CI 0.33–5.56, p = 0.082) years earlier age of 
onset (intercept term: 42.43 years, 95%CI 40.0–44.9, p < 
0.001, Fig.  6). To compare the effect of carrying a high 
common variant risk to carrying a pathogenic variant, 
we further assessed the age of onset distribution differ-
ences between PV carriers and non-carriers conditioned 
on family breast cancer history (Additional File 2: Fig. 
S3). We found that overall PV carriers present on average 
5.5 years earlier compared to non-PV carriers (PV carrier 
mean age 43.3 years, non-PV carrier mean age 48.8 years, 
p = 0.0032, M.W.U.), where the difference in age distri-
bution is mostly driven by PV carrier status in patients 

without a family history (p = 0.0026) and no significant 
difference in age distribution was found by PV carrier 
status within those with family breast cancer history (p 
= 0.56). Taken together, the results suggest common vari-
ant risk plays a prominent role in the earlier age of onset 
in hereditary breast cancer, especially in patients with a 
family history of breast cancer but negative in carrying 
pathogenic variants in known cancer-associated genes.

PRS performance is influenced by rare pathogenic variant 
carrier status
Given the detected interaction of PRS with rare patho-
genic variants and age at diagnosis, we next investigated 
whether the performance of PRS is improved when PV 
carriers were removed from the cohort. We first strati-
fied the cohort by PRS deciles and observed that com-
pared to those in the middle deciles (Q2–Q9), patients 
in the top PRS decile are 5.53 (95% CI 1.76–17.97, p = 
0.003) times more likely to have a first-degree relative 
with breast cancer (Fig. 7a). Upon removing PV carriers 
from the cohort, the bottom decile of PRS was depleted 
of any patients with first-degree relatives with breast 
cancer, and those in the top decile are now 7.34 (95% CI 
2.04–26.66, p = 0.002) times more likely to have a first-
degree relative with breast cancer compared to those in 

Fig. 5 The interaction between rare pathogenic variant, PRS, and family breast cancer history in Arab patients with breast cancer. a Violin plots 
of the distributions of PRS between patients with or without first‑degree relatives diagnosed with breast cancer, stratified by rare pathogenic variant 
carrier status (Patients with no first‑degree relative with breast cancer: n=175, PV carriers: n=27, non‑PV carriers: n=148. Patients with first‑degree 
relatives with breast cancer: n=25, PV carriers: n=7, non‑PV carriers: n=18). The dotted line indicates the first and third quartiles and the dashed line 
indicates the median
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the middle deciles (Fig.  7b). A similar trend was seen 
for other groups, where the odds ratio of the top decile 
group having a family member with breast or other 
cancer compared to lower decile groups increased 
upon removing PV carriers. To systematically assess 
the impact of removing pathogenic variants from our 
cohort on the performance of PRS AUC, we reevalu-
ated the performance of PRS at detecting relatives with 
breast cancer using 10,000 bootstrapped samples of the 
cohort. We calculated the p-value as the proportion of 
samples in which the AUC was lower after removing 
PV carriers and found that the removal of PV carriers 
leads to statistically significant (P < 0.05) increases in 
AUC performance across tasks (Fig.  7c). In particular, 
the performance increased the most in detecting first-
degree relatives with breast cancer where the difference 
in AUC was 0.11, or a 16.5% relative increase in AUC 
Family after the removal of PV carriers (Additional File 1: 
Supplementary Table S6, Fig. 7c).

Discussion
Breast cancer is a significant global health burden that 
affects millions of people worldwide. While our under-
standing of breast cancer genetics has improved, lead-
ing to changes in screening and intervention strategies, 
the benefits of these advancements have not been evenly 
distributed, particularly among understudied popula-
tions where the architecture of rare and common ger-
mline genetic determinants of the disease remains largely 
unexplored. In this multicenter study, we made progress 
toward characterizing the common variant landscape of 
indigenous Arab breast cancer patients and addressed 
disparities in genetics research in four ways. First, we 
demonstrated that lpWGS can be utilized to impute high-
quality population-specific variants for the indigenous 
Arab population. Compared to high-coverage WGS, 
lpWGS is a cost-effective option both in storage and 
computation, which makes it a viable option for rapidly 
increasing data collection in populations where genotype 
data is scarce and budget may be a significant constraint. 

Fig. 6 The interactions between age and polygenic risk score (PRS) conditioned on family breast cancer history (1st‑degree relative) 
and pathogenic variant (PV) carrier status. The overall cohort had no significant correlation between age and PRS (gray line in all panels) 
but among patients with first‑degree relatives diagnosed with breast cancer, age of onset is negatively correlated with PRS in patients 
with no detected pathogenic variants (top right panel). A similar trend can also be seen among PV carriers with no family history of breast cancer 
(bottom left panel)
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As WGS methods continue to improve, existing analy-
sis pipelines on high-coverage WGS may eventually be 
applied to lpWGS data without substantial loss of power. 
Second, we have identified an effective ancestry-adjust-
ment method for the calculation of PRS in the Arab pop-
ulation and demonstrated its effectiveness by evaluating 
its sensitivity at detecting familial breast cancer burden 
and comparing PRS performance differences before and 
after the ancestry adjustment. This could increase the 
power of PRS association studies in understudied popu-
lations and serve as a quality-control step for investi-
gating the transferability of existing PRS weights across 
ancestries. Third, we found individuals with first-degree 
relatives with breast cancer have complementary PRS 
distributions based on PV carrier status, providing evi-
dence for the genetic liability threshold model of breast 
cancer where the threshold for breast cancer may be 
achieved through a combination of rare or common 
variant risk [43, 44]. This could have implications for 
current genetic screening guidelines, as individuals who 
qualify for genetic screening through a family history of 
breast cancer but receive negative results from targeted 

gene panels may now have an additional way of assess-
ing their genetic risks through PRS as more progress is 
being made toward incorporating PRS into clinical genet-
ics testing practices [31, 45]. Moreover, we showed rare 
variant risk and common variant risk had distinct roles 
in contributing to the earlier age of onset among Arab 
breast cancer patients. While previous studies have also 
pointed to similar findings where PRS modify the risk for 
early-onset breast cancer [46–48], most were European-
based and did not account for pathogenic variant carrier 
status or did not quantify the effect of common variant 
risk on the number of years in earlier onset. To the best 
of our knowledge, this is the first time a similar observa-
tion is made in the Arab breast cancer population with 
such a large effect size independent of PV carrier status. 
These observations may elucidate the best subgroup for 
which PRS testing may yield clinically relevant results 
and refine Arab population-specific risk assessment of 
breast cancer. For future studies with sufficient sample 
sizes and power, focusing on identifying common vari-
ants associated with the age of onset among Arab breast 
cancer patients may be a promising direction to take to 

Fig. 7 PRS Performance improves when pathogenic variants are accounted for. a The proportion of patients in different PRS deciles having 
a family history of breast cancer or other cancers. b The proportion of patients in different PRS deciles having a family history of breast cancer 
or other cancers after PV carriers are removed. c The performance of the PRS at detecting familial cancer risk before and after removing PV carriers 
from the cohort, as measured by AUC. P‑values are based on the proportion of samples with lower AUC after removing PV carriers from 10,000 
bootstrapped samples of the dataset. AUC delta refers to the relative difference in AUC after removing PV carriers in the original cohort
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uncover the biological mechanism explaining early-onset 
breast cancers in the indigenous Arab population. Finally, 
we showed the performance of PRS can be increased 
by accounting for rare pathogenic variant carrier sta-
tus among patients. For other studies that may want to 
investigate the interactions between PRS and other clini-
cal variables, especially in low-sample settings such as 
those from understudied populations, this may be a use-
ful strategy to employ to increase the power in detecting 
biological signals.

As our understanding of how polygenic risk may affect 
breast cancer presentation expands, research focusing on 
incorporating such information in diverse populations is 
becoming increasingly important. In this study, we have 
shown that a PRS that performs the best in detecting 
breast risk from the general population may not also be 
the best PRS at predicting familial breast cancer burden. 
In addition, some PRS have decreased performance when 
adjusted for the population while some improved. Under-
standing how to create PRS that is robust to population 
adjustment will be crucial to creating a PRS that is gen-
erally applicable to diverse populations. Moreover, while 
many methods are being developed to ensure PRS has 
comparable risk prediction performance across ancestry 
[49], few have looked at the interactions between PRS 
with other clinical variables, especially in the context 
of understudied populations, which could be a missed 
opportunity to understand how ancestry-specific poly-
genic risk may affect disease presentation. Compared 
to cancer-predisposition variants that are under strong 
selection pressure, variants that do not affect fitness until 
certain phenotypes develop have less selection pressure 
and as a result they may vary significantly across ances-
tries. By evaluating both the risk prediction capability of 
PRS and its ability to establish clinical correlations, we 
can reduce the likelihood of a “secondary disparity” sce-
nario whereby even though a developed PRS can predict 
risk well across ancestries, it is unable to provide further 
clinical values such as predicting prognosis or responses 
to therapeutics in non-Europeans. Overall, understand-
ing the potential utility of PRS in understudied popula-
tions is important to both addressing existing health 
inequalities and revealing novel biological insights.

This study has several limitations. First, due to the 
limited number of publicly available genome-wide vari-
ant calls from individuals of Middle Eastern ancestry, 
the quality of the PRS is assessed indirectly using family 
cancer history instead of a case-control analysis. Second, 
while the imputation quality was satisfactory, due to the 
lack of publicly available servers for lpWGS imputation, 
we opted to use 1KG as the reference panel as it is more 
computationally manageable. A reference panel with a 
larger number of population-specific reference samples 

could further increase imputation quality. Third, the 
imputation performance was evaluated based on exome-
only, and we assume the imputation performance would 
be similar in non-coding regions, which may not neces-
sarily hold. Fourth, while this is one of the largest studies 
that investigated the polygenic risk of breast cancer in the 
GME region, the sample size is still relatively small com-
pared to studies conducted on European populations, 
which may underpower our analysis. Fifth, most patients 
did not have complete clinical data and we were unable 
to perform survival analysis based on our findings, which 
may further expand on the utility of PRS. Sixth, while we 
demonstrated the ability of a previously reported work-
flow at constructing a PRS capable of detecting heredi-
tary risk, other PRS adaptation methods specialized in 
generalizing to diverse populations may further improve 
performance. Finally, family histories of cancer are rarely 
fully reported, so some individuals with a negative family 
history may in fact have a family cancer history, further 
underpowering our analysis .

Conclusions
Our multicenter observational analysis of 215 lpWGS 
samples from unrelated breast cancer patients identified 
a set of biologically plausible PRS that can detect breast 
cancer burden in the indigenous Arab population. We 
observed two distinct modes of hereditary breast can-
cer risk transmission through rare and common vari-
ants burden, and found PRS as a potential factor for the 
early age of onset among indigenous Arab breast cancer 
patients. We urge for the expansion of genomic studies 
to include more diverse populations for a comprehensive 
understanding of hereditary breast cancer risk and call 
for PRS analysis in the context of the patients.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073‑ 023‑ 01220‑4.

Additional file 1 Contains Supplementary Tables S1 (Clinical characteris‑
tics by family history), S2 (Imputation performance by imputation quality 
scores), S3 (Imputation performance by variant MAF), S4 (PRS perfor‑
mance), S5 (Pathogenic variant carriers and their variant type), and S6 
(Effect of removing pathogenic variant carriers on AUC).

Additional file 2 Contains Supplementary Figures Fig S1 (ROC curve 
of age as a predictor of family breast cancer history), Fig S2 (Number of 
pathogenic variant carriers in known cancer‑predisposition genes), and 
Fig S3 (Age distributions between rare pathogenic variant carriers and 
non‑carriers).

Acknowledgements
We thank all individuals who participated in this study.

Authors’ contributions
AA‑S, MA‑J, YAM, FA, CV, AAN, AA, and AA‑A are responsible for the acquisition 
of clinical data and the enrollment of patients. HC, SHA, SC, and SH created 

https://doi.org/10.1186/s13073-023-01220-4
https://doi.org/10.1186/s13073-023-01220-4


Page 13 of 14Al‑Jumaan et al. Genome Medicine           (2023) 15:65  

the computational pipeline and processed the genetic data. HC and SHA 
performed analysis and interpretation of data. HC and SHA drafted the manu‑
script. HC prepared the figures. AA‑A, SHA, EVA, and RG performed critical 
revision of the manuscript for important intellectual content. All authors read 
and approved the final manuscript.

Funding
Dr. AlDubayan and Dr. Amein had full access to all the data in the study and 
took responsibility for the integrity of the data and the accuracy of the data 
analysis. This work was supported by King Abdulaziz City for Science and Tech‑
nology, Riyadh, Saudi Arabia, grants #12‑MED2226‑46 and #11‑MED2101‑46, 
the Department of Defense Physician Research Award (W81XWH‑21‑1‑0084, 
PC200150) (S.H.A), and the Department of Defense Idea Development Award ‑ 
Early‑Career Investigator (KC210042/W81XWH‑22‑1‑0455) (S.H.A). The funding 
organizations were not responsible for the design and conduct of the study; 
collection, management, analysis, and interpretation of the data; preparation, 
review, or approval of the manuscript; and decision to submit the manuscript 
for publication.

Availability of data and materials
Source code used for data analysis and visualization as well as anonymized 
clinical metadata are available on Github [50]. All tools used in this study are 
publicly available. GLIMPSE is available at the project github page [51]. PRS 
weights can be accessed on CancerPRSWeb [32]. The docker image contain‑
ing DeepVariant is available at “gcr.io/deepvariant‑docker/deepvariant:1.0.0” 
and the 1KG calls can be accessed through the google cloud bucket listed in 
the study: https:// conso le. cloud. google. com/ stora ge/ brows er/ brain‑ genom 
ics‑ public/ resea rch/ cohort/ 1KGP/ cohort_ dv_ glnex us_ opt/ v3. For patient pri‑
vacy and to comply with local regulations, access to the raw sequencing data 
and variant calls analyzed during the current study are controlled and can be 
made available by the corresponding author [S.H.A] upon reasonable request. 
Please allow up to 3 months from request to data sharing to allow enough 
time to satisfy all regulatory requirements.

Declarations

Ethics approval and consent to participate
This study was conducted under the following IRB protocol (IAU‑
IRB#2019‑01‑109). All individuals in this study consented to institutional review 
board‑approved protocols that allowed for comprehensive genetic analysis of 
germline samples. This study conforms to the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
E.M.V.A. holds consulting roles with Tango Therapeutics, Genome Medical, 
Genomic Life, Enara Bio, Manifold Bio, Monte Rosa, Novartis Institute for 
Biomedical Research, Riva Therapeutics and Serinus Bio; he receives research 
support from Novartis, Bristol‑Myers Squibb and Sanofi; he has equity in Tango 
Therapeutics, Genome Medical, Genomic Life, Syapse, Enara Bio, Manifold 
Bio, Microsoft, Monte Rosa, Riva Therapeutics and Serinus Bio; he has filed 
institutional patents on chromatin mutations, immunotherapy response, and 
methods for clinical interpretation. R.G. has equity in Google, Microsoft, Ama‑
zon, Apple, Moderna, Pfizer, and Vertex Pharmaceuticals. The other authors 
declare that they have no competing interests.

Author details
1 College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, 
Saudi Arabia. 2 Department of Medical Oncology, Dana‑Farber Cancer 
Institute, Harvard Medical School, Boston, MA, USA. 3 Cancer Program, The 
Broad Institute of MIT and Harvard, Cambridge, MA, USA. 4 Harvard Medical 
School, Boston, MA, USA. 5 Department of Pediatric Oncology, Dana‑Farber 
Cancer Institute, Boston, MA, USA. 6 Department of Pediatrics, Harvard Medi‑
cal School, Boston, MA, USA. 7 Boston Children’s Hospital, Boston, MA, USA. 
8 Center for Cancer Genomics, Dana‑Farber Cancer Institute, Boston, MA 02115, 
USA. 9 Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA. 
10 College of Medicine, King Saud bin Abdulaziz University for Health Sciences, 
Riyadh, Saudi Arabia. 

Received: 4 May 2023   Accepted: 9 August 2023

References
 1. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone 

C, et al. The NHGRI‑EBI GWAS Catalog of published genome‑wide associa‑
tion studies, targeted arrays and summary statistics 2019. Nucleic Acids 
Res. 2019;47:D1005‑12.

 2. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. 
The mutational constraint spectrum quantified from variation in 141,456 
humans. Nature. 2020;581:434–43.

 3. Abou Tayoun AN, Rehm HL. Genetic variation in the Middle East‑an 
opportunity to advance the human genetics field. Genome Med. 
2020;12:116.

 4. Scott EM, Halees A, Itan Y, Spencer EG, He Y, Azab MA, et al. Characteriza‑
tion of Greater Middle Eastern genetic variation for enhanced disease 
gene discovery. Nat Genet. 2016;48:1071–6.

 5. Hashim MJ, Al‑Shamsi FA, Al‑Marzooqi NA, Al‑Qasemi SS, Mokdad AH, 
Khan G. Burden of breast cancer in the Arab world: findings from Global 
Burden of Disease, 2016. J Epidemiol Glob Health. 2018;8:54–8.

 6. Najjar H, Easson A. Age at diagnosis of breast cancer in Arab nations. Int J 
Surg. 2010;8:448–52.

 7. Bidoli E, Virdone S, Hamdi‑Cherif M, Toffolutti F, Taborelli M, Panato C, et al. 
Worldwide age at onset of female breast cancer: a 25‑year population‑
based cancer registry study. Sci Rep. 2019;9:14111.

 8. Saad M, Mokrab Y, Halabi N, Shan J, Razali R, Kunji K, et al. Genetic 
predisposition to cancer across people of different ancestries in Qatar: a 
population‑based, cohort study. Lancet Oncol. 2022;23:341–52.

 9. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. 
Analysis of polygenic risk score usage and performance in diverse human 
populations. Nat Commun. 2019;10:3328.

 10. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use 
of current polygenic risk scores may exacerbate health disparities. Nat 
Genet. 2019;51:584–91.

 11. Martin AR, Atkinson EG, Chapman SB, Stevenson A, Stroud RE, Abebe 
T, et al. Low‑coverage sequencing cost‑effectively detects known and 
novel variation in underrepresented populations. Am J Hum Genet. 
2021;108:656–68.

 12. Li JH, Mazur CA, Berisa T, Pickrell JK. Low‑pass sequencing increases the 
power of GWAS and decreases measurement error of polygenic risk 
scores compared to genotyping arrays. Genome Res. 2021;31:529–37.

 13. Wasik K, Berisa T, Pickrell JK, Li JH, Fraser DJ, King K, et al. Comparing low‑
pass sequencing and genotyping for trait mapping in pharmacogenetics. 
BMC Genomics. 2021;22:197.

 14. Homburger JR, Neben CL, Mishne G, Zhou AY, Kathiresan S, Khera AV. 
Low coverage whole genome sequencing enables accurate assessment 
of common variants and calculation of genome‑wide polygenic scores. 
Genome Med. 2019;11:74.

 15. Toolkit P. Picard toolkit. Broad Institute, Github Repository. 2019; Available 
from: https:// broad insti tute. github. io/ picard/.

 16. Birger C, Hanna M, Salinas E, Neff J, Saksena G, Livitz D, et al. FireCloud, a 
scalable cloud‑based platform for collaborative genome analysis: strate‑
gies for reducing and controlling costs. bioRxiv. 2017 [cited 2022 Feb 13]. 
p. 209494. Available from: https://www.biorxiv.org/content/https:// doi. 
org/ 10. 1101/ 20949 4v1.

 17. Van der Auwera GA, O’Connor BD. Genomics in the Cloud: Using Docker, 
GATK, and WDL in Terra. “O’Reilly Media, Inc.”; 2020.

 18. Data pre‑processing for variant discovery. GATK. [cited 2022 Oct 10]. 
Available from: https:// gatk. broad insti tute. org/ hc/ en‑ us/ artic les/ 36003 
55359 12‑ Data‑ pre‑ proce ssing‑ for‑ varia nt‑ disco very.

 19. Poplin R, Chang P‑C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A 
universal SNP and small‑indel variant caller using deep neural networks. 
Nat Biotechnol. 2018;36:983–7.

 20. AlDubayan SH, Conway JR, Camp SY, Witkowski L, Kofman E, Reardon 
B, et al. Detection of pathogenic variants with germline genetic testing 
using deep learning vs standard methods in patients with prostate 
cancer and melanoma. JAMA. 2020;324:1957–69.

 21. Camp SY, Kofman E, Reardon B, Moore ND, Al‑Rubaish AM, Aljumaan M, 
et al. Evaluating the molecular diagnostic yield of joint genotyping‑based 

https://console.cloud.google.com/storage/browser/brain-genomics-public/research/cohort/1KGP/cohort_dv_glnexus_opt/v3
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/cohort/1KGP/cohort_dv_glnexus_opt/v3
https://broadinstitute.github.io/picard/
https://doi.org/10.1101/209494v1
https://doi.org/10.1101/209494v1
https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery
https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery


Page 14 of 14Al‑Jumaan et al. Genome Medicine           (2023) 15:65 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

approach for detecting rare germline pathogenic and putative loss‑of‑
function variants. Genet Med. 2021;23:918–26.

 22. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The 
Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122.

 23. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: 
the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 
2019;47:D941‑7.

 24. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier‑Foster J, et al. Standards 
and guidelines for the interpretation of sequence variants: a joint con‑
sensus recommendation of the American College of Medical Genetics 
and Genomics and the Association for Molecular Pathology. Genet Med. 
2015;17:405–24.

 25. Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing 
and imputation of low‑coverage sequencing data using large reference 
panels. Nat Genet. 2021;53:120–6.

 26. Loh P‑R, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, 
et al. Reference‑based phasing using the Haplotype Reference Consor‑
tium panel. Nat Genet. 2016;48:1443–8.

 27. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Gar‑
rison EP, Kang HM, et al. A global reference for human genetic variation. 
Nature. 2015;526:68–74.

 28. Yun T, Li H, Chang P‑C, Lin MF, Carroll A, McLean CY. Accurate, scalable 
cohort variant calls using DeepVariant and GLnexus. Bioinformatics. 2021; 
Available from: http://dx.doi.org/https:// doi. org/ 10. 1093/ bioin forma tics/ 
btaa1 081.

 29. Purcell S, Neale B, Todd‑Brown K, Thomas L, Ferreira MAR, Bender D, et al. 
PLINK: a tool set for whole‑genome association and population‑based 
linkage analyses. Am J Hum Genet. 2007;81:559–75.

 30. Zhang Q, Privé F, Vilhjálmsson B, Speed D. Improved genetic prediction of 
complex traits from individual‑level data or summary statistics. Nat Com‑
mun. 2021;12:4192.

 31. Hao L, Kraft P, Berriz GF, Hynes ED, Koch C, Korategere V Kumar P, et al. 
Development of a clinical polygenic risk score assay and reporting work‑
flow. Nat Med. 2022;28:1006–13.

 32. Fritsche LG, Patil S, Beesley LJ, VandeHaar P, Salvatore M, Ma Y, et al. 
Cancer PRSweb: an online repository with polygenic risk scores for major 
cancer traits and their evaluation in two independent biobanks. Am J 
Hum Genet. 2020;107:815–36.

 33. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK 
biobank: an open access resource for identifying the causes of a 
wide range of complex diseases of middle and old age. PLoS Med. 
2015;12:e1001779.

 34. Zawistowski M, Fritsche LG, Pandit A, Vanderwerff B, Patil S, Schmidt EM, 
et al. The Michigan Genomics Initiative: a biobank linking genotypes and 
electronic clinical records in Michigan Medicine patients. bioRxiv. 2021. 
Available from: http://medrxiv.org/lookup/doi/https:// doi. org/ 10. 1101/ 
2021. 12. 15. 21267 864.

 35. Liftover. Available from: https:// github. com/ jerem ymcrae/ lifto ver.
 36. Hail 0.2.98. Available from: https:// github. com/ hail‑ is/ hail/ relea ses/ tag/0. 

2. 98.
 37. Fay MP. Confidence intervals that match Fisher’s exact or Blaker’s exact 

tests. Biostatistics. 2010. p. 373–4. Available from: https:// www. niaid. nih. 
gov/ about/ brb‑ staff‑ fay.

 38. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver 
operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

 39. Waskom M. seaborn: statistical data visualization. J Open Source Softw. 
2021;6:3021.

 40. Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling 
with python. Proceedings of the 9th Python in Science Conference. SciPy; 
2010. Available from: https:// confe rence. scipy. org/ proce edings/ scipy 
2010/ seabo ld. html.

 41. Pollard TJ, Johnson AEW, Raffa JD, Mark RG. tableone: an open source 
Python package for producing summary statistics for research papers. 
JAMIA Open. 2018;1:26–31.

 42. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. 
Polygenic risk scores for prediction of breast cancer and breast cancer 
subtypes. Am J Hum Genet. 2019;104:21–34.

 43. Neale B. Wiley StatsRef: Statistics Reference Online. Chichester: Wiley, Ltd; 
2014. https:// onlin elibr ary. wiley. com/ doi/ 10. 1002/ 97811 18445 112. stat0 
6439.

 44. Wray NR, Maier R. Genetic basis of complex genetic disease: the contribu‑
tion of disease heterogeneity to missing heritability. Curr Epidemiol Rep. 
2014;1:220–7.

 45. Polygenic Risk Score Task Force of the International Common Disease 
Alliance. Responsible use of polygenic risk scores in the clinic: potential 
benefits, risks and gaps. Nat Med. 2021;27:1876–84.

 46. Mars N, Widén E, Kerminen S, Meretoja T, Pirinen M, Della Briotta Parolo P, 
et al. The role of polygenic risk and susceptibility genes in breast cancer 
over the course of life. Nat Commun. 2020;11:6383.

 47. Borde J, Laitman Y, Blümcke B, Niederacher D, Weber‑Lassalle K, Sutter C, 
et al. Polygenic risk scores indicate extreme ages at onset of breast cancer 
in female BRCA1/2 pathogenic variant carriers. BMC Cancer. 2022;22:706.

 48. Mars N, Koskela JT, Ripatti P, Kiiskinen TTJ, Havulinna AS, Lindbohm JV, 
et al. Polygenic and clinical risk scores and their impact on age at onset 
and prediction of cardiometabolic diseases and common cancers. Nat 
Med. 2020;26:549–57.

 49. Ruan Y, Lin Y‑F, Feng Y‑CA, Chen C‑Y, Lam M, Guo Z, et al. Improving 
polygenic prediction in ancestrally diverse populations. Nat Genet. 
2022;54:573–80.

 50. Chu H. MID_lpWGS_Breast_Cancer: The code and data repository for 
the Middle Eastern Breast Cancer Patients lpWGS project. Github; [cited 
2023 Aug 5]. Available from: https:// github. com/ hoyin chu/ MID_ lpWGS_ 
Breast_ Cancer.

 51. Glimpse: The open source diagnostics platform for the web. Github; 
[cited 2023 Aug 8]. Available from: https:// github. com/ Glimp se/ Glimp se.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btaa1081
https://doi.org/10.1093/bioinformatics/btaa1081
https://doi.org/10.1101/2021.12.15.21267864
https://doi.org/10.1101/2021.12.15.21267864
https://github.com/jeremymcrae/liftover
https://github.com/hail-is/hail/releases/tag/0.2.98
https://github.com/hail-is/hail/releases/tag/0.2.98
https://www.niaid.nih.gov/about/brb-staff-fay
https://www.niaid.nih.gov/about/brb-staff-fay
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06439
https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06439
https://github.com/hoyinchu/MID_lpWGS_Breast_Cancer
https://github.com/hoyinchu/MID_lpWGS_Breast_Cancer
https://github.com/Glimpse/Glimpse

	Interplay of Mendelian and polygenic risk factors in Arab breast cancer patients
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study participants
	Sequencing and library preparation
	Alignment
	Sequencing coverage
	Whole-exome variant calling
	Functional and clinical annotation of germline variants
	Low-pass whole genome imputation
	Imputed variant quality control
	Relatedness inference
	Polygenic risk score calculation
	PRS population stratification adjustment
	Statistical analysis

	Results
	Sample characteristics
	lpWGS enables accurate imputation of low-frequency population-specific variants
	Imputed variants enables calculation of breast cancer burden-sensitive polygenic risk score in the Arab population
	Genetic liability threshold model in Arab familial breast cancers
	Common variant risk is associated with earlier age of onset in PV-negative Arab breast cancer patients with family history
	PRS performance is influenced by rare pathogenic variant carrier status

	Discussion
	Conclusions
	Anchor 30
	Acknowledgements
	References


