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Abstract 

Background Novel immunotherapy combination therapies have improved outcomes for patients with hepatocellu-
lar carcinoma (HCC), but responses are limited to a subset of patients. Little is known about the inter- and intra-tumor 
heterogeneity in cellular signaling networks within the HCC tumor microenvironment (TME) that underlie responses 
to modern systemic therapy.

Methods We applied spatial transcriptomics (ST) profiling to characterize the tumor microenvironment in HCC resec-
tion specimens from a prospective clinical trial of neoadjuvant cabozantinib, a multi-tyrosine kinase inhibitor that pri-
marily blocks VEGF, and nivolumab, a PD-1 inhibitor in which 5 out of 15 patients were found to have a pathologic 
response at the time of resection.

Results ST profiling demonstrated that the TME of responding tumors was enriched for immune cells and cancer-
associated fibroblasts (CAF) with pro-inflammatory signaling relative to the non-responders. The enriched cancer-
immune interactions in responding tumors are characterized by activation of the PAX5 module, a known regulator 
of B cell maturation, which colocalized with spots with increased B cell marker expression suggesting strong activity 
of these cells. HCC-CAF interactions were also enriched in the responding tumors and were associated with extracel-
lular matrix (ECM) remodeling as there was high activation of FOS and JUN in CAFs adjacent to the tumor. The ECM 
remodeling is consistent with proliferative fibrosis in association with immune-mediated tumor regression. Among 
the patients with major pathologic responses, a single patient experienced early HCC recurrence. ST analysis of this 
clinical outlier demonstrated marked tumor heterogeneity, with a distinctive immune-poor tumor region that resem-
bles the non-responding TME across patients and was characterized by HCC-CAF interactions and expression of can-
cer stem cell markers, potentially mediating early tumor immune escape and recurrence in this patient.
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Conclusions These data show that responses to modern systemic therapy in HCC are associated with distinctive 
molecular and cellular landscapes and provide new targets to enhance and prolong responses to systemic therapy 
in HCC.

Keywords Hepatocellular carcinoma, Spatial transcriptomics, Therapeutic resistance, Neoadjuvant therapy, 
Immunotherapy, Tumor recurrence

Background
Hepatocellular carcinoma (HCC) is one of the most com-
mon causes of cancer-associated deaths globally and the 
most rapidly rising cause of cancer death in the USA 
[1–3]. Immune checkpoint inhibitors (ICIs) that tar-
get programmed cell death protein-1 (PD1) have mod-
est clinical activity as monotherapy in HCC but may be 
more effective in combination with other therapeutic 
agents, including anti-angiogenic therapies. The com-
bination of bevacizumab (an anti-VEGF antibody) plus 
atezolizumab (an ICI targeting the PD1 axis) was recently 
established as a preferred first-line standard of care for 
patients with unresectable HCC, and clinical efficacy has 
also been reported with multiple other anti-angiogenic/
immune checkpoint inhibitor (ICI) combinations (cabo-
zantinib + atezolizumab and apatinib + camrelizumab) 
[4–10]. While anti-angiogenic plus ICI combinations 
have demonstrated clinical benefit, a significant propor-
tion of patients does not respond to such therapies, and 
biomarkers to predict response and determine which 
patients will truly benefit from the treatment are cur-
rently not available [11, 12].

Window of opportunity studies provide an unparalleled 
opportunity to elucidate the mechanisms of response 
and resistance to systemic therapy, yielding abundant 
tissue for deep interrogation of the tumor microenviron-
ment (TME) in patients receiving neoadjuvant systemic 
therapy. We recently reported the results of a window 
of opportunity clinical trial of angiogenic/ICI therapy in 
which HCC patients were treated with 8 weeks of cabo-
zantinib and nivolumab (CABO/NIVO) followed by 
attempted surgical resection (NCT03299946) [10]. In this 
clinical study, 5 out of 15 patients achieved pathologic 
responses, with outstanding disease-free survival noted 
among patients with a pathologic response. Spatial pro-
teomics profiling of the HCC surgical specimens identi-
fied an enriched immune effector infiltrate, and reduced 
immunosuppressive macrophages, among patients with 
pathologic response to CABO/NIVO [10]. Nevertheless, 
molecular pathways that underlie these immune interac-
tions as well as the tumor intrinsic mechanisms of resist-
ance to ICIs in HCC are not clear. In this current study, 
we performed a high-dimensional, unbiased profiling of 
patients enrolled in our window of opportunity clinical 
trial of cabozantinib and nivolumab in HCC to uncover 

the intrinsic molecular and cellular tumor features of the 
tumor microenvironment that underlie the differential 
responses to systemic therapy.

The recent development of technologies that provide 
spatially resolved gene expression data introduced pow-
erful methods to profile the TME and understand how 
tumor intrinsic features are associated with the distribu-
tion of other crucial cell types for tumor development 
and response to therapies [13]. Using spatial transcrip-
tomics (ST), it is possible to examine the samples’ molec-
ular and cellular compositions and interactions among 
the different cellular components as it maintains the tis-
sue architecture [14]. Thus, ST provides spatial visualiza-
tion of immune cell distribution in relation to the cancer 
cells and the correlation with the molecular profile that 
drive the infiltration of certain immune types. Overall, it 
is an exceptional experimental approach to understand 
the responses and resistance to immunotherapies as the 
molecular mechanisms driving or inhibiting effective 
anti-tumor response can now be examined within the 
cellular context.

In this study, we used ST to investigate the tumor-
related features that explain the response or resistance 
to CABO/NIVO. The ST profiling of responder and non-
responder samples identified transcriptional signatures 
that are associated with immune activation and metabo-
lism, respectively. The intercellular interaction analysis 
shows that in responders these cancer-immune commu-
nications lead to B cell activation, while in the areas of 
cancer-cancer associated fibroblasts (CAF) interactions 
there is activation of extracellular matrix (ECM) remod-
eling genes. The molecular and cellular analysis with ST 
indicates that the mechanisms of response depend on the 
infiltration of immune cells into the HCC TME combined 
with the ability of cancer cells to trigger the immune 
response. On the other hand, non-responder samples are 
poor in immune cells because of unsuccessful antigen 
presentation. The ST analysis also identified remarkable 
HCC heterogeneity in one sample with a tumor cluster 
resembling the responders’ samples and another cluster 
resembling a non-responder tumor that is potentially 
associated with disease recurrence due to the expres-
sion of cancer stem cell (CSC) features not observed in 
other samples from our cohort. Our study demonstrates 
the power of ST analysis to understand the responses to 



Page 3 of 14Zhang et al. Genome Medicine           (2023) 15:72  

therapies in the context of TME composition and molec-
ular features and identifies independent mechanisms of 
resistance and recurrence in HCC.

Methods
Patients and sample acquisition
Clinical outcomes and detailed study methods for our 
clinical trial of CABO/NIVO were recently described by 
our group [10]. The trial was prospectively registered at 
ClinicalTrials.gov as NTC03299946 (https:// clini caltr ials. 
gov/ study/ NCT03 299946), and the institutional review 
board of Johns Hopkins University approved the pro-
tocol. All enrolled patients provided written informed 
consent. Briefly, we enrolled 15 patients with potentially 
resectable HCC on a single-arm, open-label, phase 1 clin-
ical trial of neoadjuvant cabozantinib and nivolumab. The 
enrollment period was from 2018–05-14 to 2019–12-12. 
The primary outcome was the safety and feasibility of this 
combination therapy. The secondary outcomes are the 
percentage of patients eligible for resection, percentage 
of participants with complete pathologic response, per-
centage of participants with major pathologic responses, 
objective response rate, median overall survival (OS), 
and disease-free survival. Patients were enrolled at the 
Liver Cancer Multidisciplinary Clinic at the Johns Hop-
kins Sidney Kimmel Comprehensive Cancer Center in 
Baltimore. The key eligibility criteria included border-
line resectable or locally advanced HCC, age greater than 
or equal to 18  years, an Eastern Cooperative Oncology 
Group performance status score of 0 or 1, and preserved 
liver function with a Child–Pugh score of A. The enrolled 
patient population included patients with high-risk 
tumor features that historically predict poor outcomes 
with upfront surgical resection such as multinodular dis-
ease, portal vein invasion, or large tumors. Cabozantinib 
and nivolumab were provided by Exelixis and Bristol 
Myers Squibb, respectively.

Of the 15 patients enrolled in the clinical trial, 12 
patients achieved successful R0 resection. Of these 12 
patients, 5 achieved a major or complete pathological 
response (defined as 90% or greater tumor necrosis in 
the surgical resection specimen) and were classified as 
pathologic responders. The remaining 7 patients were 
considered non-responders [10]. Tumor samples from 
all surgical resections were immediately submerged in 
the optimal cutting temperature (OCT) compound and 
immersed in liquid nitrogen for quick freezing. All OCT 
frozen samples were stored at − 80 °C until use.

Spatial transcriptomics data generation
To prepare the ST slides, the samples preserved in OCT 
were sectioned, stained with hematoxylin and eosin, and 
examined by an experienced pathologist (R.A.). The areas 

for ST analysis were chosen based on tumor viability, 
presence of stroma with immune infiltration, and cancer-
associated fibroblasts when possible. For each sample, a 
6 × 6  mm region with those characteristics was selected 
for sectioning and mounting onto the ST slides.

The ST data was generated using the commercial plat-
form Visium (10× Genomics). Briefly, from each surgi-
cal sample, a 5-µm section was placed in the designated 
area at the Visium slide and immediately stored at − 80 °C 
until use. The sections were fixed in cold methanol for 
30  min at − 20  °C. The fixed samples were stained with 
hematoxylin and eosin (H&E) and imaged using the 
Nanozoomer scanner (Hamamatsu) at 40x magnification. 
Samples were permeabilized for 30 min at 37 °C with the 
permeabilization enzyme provided with the Visium Spa-
tial Gene Expression Reagent Kits (10× Genomics). Fol-
lowing permeabilization, reverse transcription; cDNA 
second strand synthesis, denaturation, and amplifica-
tion; and library construction were performed accord-
ing to the manufacturer’s instructions. All libraries were 
sequenced with a depth of at least 50,000 reads per spot 
(minimum of ~ 250 millions per sample) at the NovaSeq 
(Illumina).

Spatial transcriptomics data analysis
Sequencing data was processed using the Space Ranger 
software (10× Genomics) for demultiplexing and FASTQ 
conversion of barcodes and reads data, alignment of bar-
codes to the stained tissue image, and generation of read 
count matrices. The processed sequencing data were 
inputs for the analyses using the Seurat (version 4.1.1) 
[15]. Data preprocessing with Seurat involved the ini-
tial visualization of the counts onto the tissue image to 
discriminate technical variance from histological vari-
ance (e.g., collagen-enriched regions present lower cel-
lularity that reflects in low counts), removal of necrotic 
regions and tissue folding spots, and normalization with 
SCTransform [16]. Following filtering, all samples were 
merged into a single dataset, and the embedding was cor-
rected for batch effects among samples using Harmony 
[17]. The data dimensionality was reduced with PCA 
and then clustered with Leiden [18]. Cell types to cluster 
assignments were performed based on the most variable 
features (genes) and revised by a pathologist (R.A.) to 
confirm with the liver histological regions.

Differential expression analysis of tumor spots from 
responders versus non-responders was performed using 
pseudo-bulking on DESeq2 [19]. Genes were considered 
differentially expressed when log two fold change was at 
least ± 2 and p-adjusted value ≤ 0.01. The gene set enrich-
ment analysis was performed using the genes ranked 
according to the log-fold change (LFC) determined by the 
differential expression analysis. We evaluated in each of 
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the groups, non-responders and responders, the enriched 
expression of genes belonging to the MSigDB Hallmark 
Pathways [20].

Transcriptional factor regulatory module activity analysis
Inference of regulatory modules between transcription 
factors (TF) and downstream regulated genes was per-
formed using SCENIC (version 0.11.2) [21]. The annota-
tion of cis-regulatory motif and genome ranking database 
are acquired from the cisTarget database available at 
https:// resou rces. aerts lab. org/ cista rget/ datab ases/ homo_ 
sapie ns/ hg38/ refseq_ r80/ mc9nr/ gene_ based/. GRN-
Boost2 was used to fit the putative regulatory module 
based on the co-expression between every expressed gene 
and predefined TF list. Each TF gene with an importance 
measure higher than 95 percentiles is included in the 
module. Modules with < 20 genes are excluded from the 
downstream analysis. RcisTarget identifies TF-binding 
motif enrichments and prune non-direct binding mod-
ules. Finally, regulatory module activities in every spot 
of Visium data are quantified by AUCell. The dependen-
cies cisTarget, GRNBoost2, and AUCell are wrapped into 
SCENIC.

Ligand‑receptor cell–cell signaling network reconstruction
We used Domino (version 0.1.1) [22] to analyze the sign-
aling networks based on the gene regulatory module 
activities in the Visium spots. Prior to calculating sign-
aling relationship, we subset clusters to define spatial 
regions for analysis. Genes that expressed less than 2.5% 
of spots are excluded from our analysis. Similar to the 
implementation of Domino for single-cell RNA-seq, we 
adapted this approach to spatial transcriptomics comput-
ing the spot-based Pearson correlation between regula-
tory modules and normalized, z-score scaled expression 
of receptors obtained from CellphoneDB (version 2.0) 
[23]. Correlations are set to zero if the receptor is tar-
geted by the transcription factor. TF regulatory modules 
are signaled by receptors with a Pearson correlation coef-
ficient larger than 0.3. Cognate ligands identified by Cell-
phoneDB are required for all receptors to be included in 
the signaling network.

TCGA and CIBERSORT analysis
Gene-level RNA sequencing (RNAseq) data was down-
loaded from Genomic Data Commons harmonized 
database for The Cancer Genome Atlas Liver Hepatocel-
lular Carcinoma (TCGA-LIHC) using the TCGAbiolinks 
package (v2.26.0) [24]. As for gene expression, we used 
gene counts from STAR alignment that were log2-tran-
formed for further analysis. We also used CIBERSORT-
predicted cell proportions for TCGA-LIHC (n = 371) 
from Thorsson et al. [25]. We used Spearman correlation 

to find the association between gene expression and T 
cell proportions estimated by CIBERSORT. The analysis 
was done using R/Bioconductor computational environ-
ment (v4.2.2). The heatmap was plotted using Complex-
Heatmap (v2.14.0) [26]

Results
Spatial transcriptomics identifies HCC cell composition 
differences between responders and non‑responders 
to immunotherapy
We profiled HCC samples obtained from patients on a 
recently reported clinical trial of neoadjuvant CABO/
NIVO using ST to examine tumor intrinsic molecular 
and cellular features of response and resistance to the 
treatment. Among the 12 resection specimens analyzed, 
5 had a major or complete pathologic response. ST was 
performed for all 12 frozen surgical HCC specimens 
(Fig. 1A), of which 7 (4 responders and 3 non-respond-
ers) passed pre-determined quality control parameters 
(Fig. 1B, C). For 5 samples, due to extensive necrosis of 
the tumor, the sequencing data did not pass the quality 
control (low number of counts and genes detected per ST 
spot) for the analysis. The remaining 7 samples with ade-
quate quality were carried forward for downstream anal-
ysis. Unsupervised clustering of the gene expression data 
obtained from the merged data after Harmony batch cor-
rection [17] recapitulates the sample architecture. Gene 
expression clusters map to their respective major cell 
types and cell subtypes commonly present in HCC sam-
ples: cancer cells, cancer-associated fibroblasts (CAFs), 
and immune cells (Fig. 1B, C). The marker genes identi-
fied during the clustering analysis are established mark-
ers for these cell types (Additional file  1: Fig. S1). The 
cell types assigned to the spatial gene expression clusters 
were confirmed by a pathologist (R.A.).

The assignment of gene expression profiles to cell 
type composition enables the comparison of cellular 
proportions between responders and non-responders. 
To compare cell proportions, we grouped the identi-
fied types  into three major cell types: tumor, immune, 
and CAF. These broad cell subtypes were obtained for 
each patient by collapsing subclusters of these cell types 
on a per-patient basis. This analysis demonstrated that 
responders have an increased presence of immune 
cells while non-responders present with a higher abun-
dance of cancer cells (Fig.  1D, E). This observation cor-
roborates the previous spatial and single-cell proteomics 
profiling of these samples that showed enrichment for 
cancer cells in non-responders and higher infiltration 
by immune cells in responders [10, 27]. In addition, we 
were able to map the CAF clusters in all 4 responders and 
one non-responder. The prevalence of HCC cells among 

https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc9nr/gene_based/
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc9nr/gene_based/
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non-responders suggests that the lack of response to neo-
adjuvant CABO/NIVO therapy is tightly correlated with 
the absence of immune cells infiltrating the tumor.

Gene expression analysis of tumor compartments shows 
activation of immune‑related pathways in responders 
and of cell growth pathways in non‑responders.
To investigate the tumor intrinsic molecular changes 
associated with response and resistance to the neoad-
juvant treatment, we performed differential expression 
analysis on the ST clusters mapping to HCC cells only. As 
the ST approach provides genome-wide information, it is 
a suitable technology to discover the distinct transcrip-
tional signatures between cancer cells from respond-
ers and non-responders. Additionally, the ability to map 
these signatures to the tissue architecture allows the 
selection of the ST spots that map to HCC cells for a con-
trolled analysis of the cancer components in each sample.

The clusters mapping to tumor areas (Fig. 2A, B) were 
extracted from the ST data and pseudo-bulked for the 
differential expression analysis between responders 
and non-responders. A total of 508 genes are upregu-
lated in responders  (Fig.  2C, red dots), and 47 genes 
are upregulated in non-responders (Fig.  2C, blue dots). 
The top differentially expressed genes in responders are 

immune-related genes (e.g., CCL19, CXCL14, IGHM, 
CXCL6), while in the non-responders, there is increased 
expression of tumor markers (e.g., AFP, IGF2, WNK4) 
(Additional file  2: Table  S1), suggesting that in patients 
responding to CABO/NIVO, there is an active immune 
or inflammatory response not observed in samples from 
non-responders.

Subsequently, gene set enrichment analysis was 
performed to identify the pathways enriched in the 
responders’ HCC samples versus non-responders. Sam-
ples from patients that responded to CABO/NIVO 
are enriched for the expression of genes that belong to 
the pathways associated with active immune response 
(H A L L M A R K_I N FL A MM ATORY_R E SP ON SE , 
H AL L M AR K_TNFA_SIGNAL IN G_V I A_NFK B, 
HALLMARK_ALLOGRAFT_REJECTION, HALL-
MARK_COMPLEMENT) and elevated antigen process 
and presentation machinery genes (Fig.  2D), suggesting 
that among responders, tumor intrinsic transcriptional 
features are leading to the increased immune cell infiltra-
tion observed in these samples relative to non-responders 
samples. This hypothesis is supported by the upregulation 
of genes involved in antigen processing and presentation 
(KEGG_ANTIGEN_PROCESSING_AND_PRESENTA-
TION) among responders relative to non-responders 

Fig. 1 Spatial transcriptomics analysis of HCC samples treated with cabozantinib and nivolumab. A Experimental workflow. B Hematoxylin 
and eosin (H&E)-stained images of the samples profiled and the spatial clusters for responders. C H&E and spatial clusters for non-responders. 
D Tumor-, immune-, and cancer-associated fibroblast (CAF) composition in each responder sample as determined by spatial transcriptomics. E 
Tumor-, immune-, and CAF proportions in non-responders samples. To quantify the cell proportions of tumor, immune, and CAF in each patient, 
the multiple clusters that were classified as the same type were merged into one major category
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(Additional file  3: Fig. S2). On the other hand, non-
responders lack the expression of the immune-related 
pathways and are transcriptionally enriched by genes 
from signaling the pathways that are involved in main-
taining cell proliferation (HALLMARK_E2F_TARGETS, 
HALLMARK_MYC_TARGETS_V1) and metabolism 
(HALLMARK_OXIDATIVE_PHOSPHORYLATION, 
HALLMARK_CHOLESTEROL_HOMEOSTASIS), sug-
gesting that non-responders’ cancer cells have their 
growth features maintained and activated (Fig. 2D).

Overall, the gene expression analysis suggests that in 
HCC samples that did not respond to CABO/NIVO, the 
cancer cells are not affected by the treatment and are able 
to maintain their proliferative and metabolic functions. 

On the other hand, the samples from patients that 
responded to the therapy show that in their cancer cells, 
these functions are overcome by the activation of the 
immune-related pathways that could explain the tumor 
immune infiltration and tumor shrinkage in response to 
the ICI component of the treatment.

Intercellular interaction analyses identify transcription 
factor regulatory networks associated with response 
and resistance to CABO/NIVO
Intercellular interaction analyses are facilitated for ST 
datasets since tissue architecture is maintained simpli-
fying the selection of neighboring cell types to exam-
ine the potential cell-to-cell communication. The active 

Fig. 2 Differential expression analysis of A tumor clusters (subset of spots classified as a tumor in the clustering) from responders versus B 
tumor clusters from non-responders across all patients. C Volcano plot of the differential expression analysis showing the most differentially 
expressed genes in responders (red dots) and non-responders (blue dots), showing the upregulation of immune genes in responders relative 
to the upregulation of hepatocellular markers among non-responders. D Pathway enrichment analysis between responders (red dots) 
and non-responders (blue dots) reveals activation of immune-related pathways in responders’ tumors, while non-responders’ tumors have 
activation of proliferation and metabolic pathways
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interaction between neighboring cell types is critical 
to understand cancer biology and response to therapies 
since the TME has a great influence on tumor biology, 
progression, and response to therapies. Examining these 
cellular relationships and the molecular outcomes is criti-
cal to determine the potential pathways of intervention 
for alternative therapeutic options with increased effi-
cacy. The interaction analyses were performed to under-
stand the cell-to-cell crosstalk of HCC-immune and 
HCC-CAF cells in response to the CABO/NIVO neoad-
juvant treatment. For each of the samples, we used the 
identified spatial clusters and used the Domino software 
to determine the signaling pathways that are activated 
because of the intercellular interactions. Due to HCC 
intrinsic high heterogeneity, interaction analysis was per-
formed for each patient individually.

Among the responders, we observed the activation of 
the PAX5 network in the immune regions adjacent (spa-
tial gene expression clusters in direct contact) (Addi-
tional file 4: Fig. S3) to tumor clusters (Fig. 3A, Additional 
file  5: Fig. S4), while FOS and JUN modules are highly 
active in CAFs surrounding the tumor spots (Fig. 3B, C, 

Additional file 5: Fig. S4). PAX5 is a transcription factor 
that is central to B cell differentiation [28, 29]. The PAX5 
activity, which was investigated in immune-enriched or 
CAF-enriched regions only, co-localizes with spots show-
ing high expression of the genes CD19, CD22, CD79A, 
and CIITA (B cell markers) (Fig.  3D), relative to spots 
corresponding to HCC or CAF clusters confirming that 
this is an essential factor for B cell lineage activation and 
maturation. Moreover, it suggests that B cells are a criti-
cal component of the tumor immune response in HCC 
activated by the CABO/NIVO neoadjuvant therapy. The 
activation of FOS and JUN from the HCC-CAF interac-
tions is related with high expression of ECM remodeling 
markers (COL1A1, COL3A1, VIM) (Fig. 3E).

This spatial distribution of tumor immune response 
and ECM remodeling networks suggests that in the pres-
ence of immune cells, there is an active response mostly 
driven by B cells that could be the initial trigger for tumor 
cell killing by cytotoxic immune cells and recruitment of 
other effector immune cells. The presence of the stroma 
and active remodeling with increased collagen produc-
tion (COL1A1, COL3A1) could be a result of fibrosis as 

Fig. 3 Intercellular interaction analysis. A HCC-immune interaction analysis identified the activation of the PAX5 network. B, C HCC-CAF interaction 
analysis pointed to the activation of the FOS and JUN networks. D PAX5 is a transcription factor that regulates B cell activity, and the PAX5 network 
identified co-localizes with the distribution of B cells as determined by the spatial distribution of B cell markers. E FOS and JUN are transcription 
factors that can regulate genes involved in extracellular matrix remodeling, and the networks regulated by these genes colocalize with CAF marker 
genes
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a response to cell death that recruit CAFs and initiate 
immune exclusion in collagen/CAF-rich regions and so 
creates a niche characterized by a lack of immune cells. 
These findings suggest that drugs that initiate or maintain 
B cells activity combined with CAF inhibitors could be 
alternatives to increase the efficacy of immunotherapies 
to treat HCC.

Spatial transcriptomics analysis reveals specific HCC 
heterogeneity related with recurrence after neoadjuvant 
therapy
Among the 5 patients that responded to CABO/NIVO 
neoadjuvant therapy, four patients remain without dis-
ease recurrence at least 3 years after surgery, whereas a 
single patient developed recurrent disease after 1 year of 
therapy. We utilized ST to investigate the distinct features 
of this single clinical outlier (hereby named HCC1-R) that 
might explain the unexpected early recurrence observed 
in this patient. The initial pathology examination of this 
sample identified striking histological intratumoral het-
erogeneity, unlike any other sample in the cohort. Two 
distinct tumor regions were apparent in this sample: 
one that is immune rich (Fig.  4A, cyan) and another 
that is immune poor (Fig. 4A, dark blue). The histologi-
cal distinction is recapitulated by the spatially resolved 
gene expression profile that identifies these two tumor 
regions by distinct ST clusters (Fig.  4B). As highlighted 
previously, the major advantage of ST is that it provides 
genome-wide gene expression while maintaining tissue 

architecture, thus an ideal approach to analyze such a 
unique sample.

We performed differential expression analysis to com-
pare the immune-rich and immune-poor regions to 
identify the differences that could explain the distinct 
immune infiltration between these two tumor regions. 
The analysis shows that among the top upregulated genes 
from the immune-rich region, the majority are immune 
markers while the immune-poor region expresses 
increased levels of HCC-specific tumor markers (Addi-
tional file 6: Fig. S5 and Additional file 7: Table S2). The 
gene set enrichment analysis, similar to the analyses of 
all responders versus non-responders tumors, reveals the 
enrichment for immune-related pathways in the tumor 
region that is highly immune infiltrated and for growth-
related pathways in the tumor area that is not infiltrated 
by immune cells (Additional file 6: Fig. S5). The expres-
sion and pathway analysis suggest that the immune-rich 
region from the sample collected from patient HCC1-R 
recapitulates the transcriptional profile observed across 
all responders’ tumors while the immune-poor area is 
similar to non-responders cancer cells.

To test our hypothesis that the two distinct regions 
resemble responder (immune rich) and non-responder 
(immune poor) samples, we examined if the expression of 
pathways enriched across responders and non-respond-
ers is reproducible on the immune-rich and immune-
poor regions, respectively, of patient HCC1-R. Using a 
module score analysis of the signaling pathways enriched 
in both patient groups (responders and non-responders), 

Fig. 4 Intra-sample heterogeneity analysis with spatial transcriptomics. A Responder sample with remarkable heterogeneity with two tumor 
regions, one immune-rich (cyan) and one immune-poor (dark blue). B Each of these regions presents distinct transcriptional profiles as determined 
by clustering analysis. C–E The immune-rich tumor region highly expresses immune-related pathways that were initially observed to be enriched 
across responders’ samples. F–H Proliferation and metabolic pathways, which are enriched across non-responders’ tumors, are expressed in high 
levels at the immune-poor region. I‑J The immune-rich tumor region expresses high levels of the antigen processing and presentation machinery 
genes, which is associated with the more efficient attraction of immune cells
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we mapped the averaged expression of the set of genes 
belonging to each of the enriched pathways. Thus, 
we determined if a pathway is enriched in a spot if 
the module score is high. The significantly enriched 
MSigDB pathways in responders are highly expressed 
in the immune-rich tumor region of patient HCC1-R 
(Fig.  4C–E and Additional file  8: Fig. S6A, B, C, D, and 
E), while those enriched in patients from non-respond-
ers are upregulated in the immune-poor tumor region 
(Fig. 4F–H and Additional file 8: Fig. S6F, G, H, I, and J), 
thus suggesting that the HCC heterogeneity in this sam-
ple recapitulates the features of tumors from responders 
(immune rich) and non-responders (immune poor). To 
verify if immune infiltration was associated with more 
efficient antigen processing and presentation, we also 
examined the module score for the expression of the 
antigen processing and presentation machinery (KEGG_
ANTIGEN_PROCESSING_AND_PRESENTATION). 
At the immune-rich tumor region, the module score for 
this pathway is significantly higher when compared to the 
module score at the immune-poor region (Fig.  4I), sug-
gesting that one of the mechanisms driving the immune 
cell infiltration is effective antigen processing and pres-
entation. Finally, the intercellular interaction analysis 

recapitulates what was observed in other responders. 
PAX5 module is more active in the immune-rich region, 
whereas FOS and JUN modules have significantly higher 
activation in CAFs (immune-poor region) (Fig.  5A–C; 
Additional file 9: Fig. S7). The activation of PAX5 is again 
associated with the areas enriched for B cells, but the 
ECM activity is not frequent in those regions (Fig. 5D, E).

To understand the lack of immune infiltration into one 
of the tumor regions from patient HCC1-R, we looked 
at signatures associated with immune evasion. Interest-
ingly, a signature associated with immune evasion and 
resistance to different types of cancer therapies, includ-
ing immunotherapies, and that is highly expressed by 
the immune poor tumor region is from cancer stem 
cells (CSC) (Fig.  6A). This CSC signature comprises 
previously published genes (SP, PROM1, ALDH1A1, 
THY1, EPCAM, ANPEP, CD44, CD24, CXCL12, 
ICAM1, CACNA2D1, CD47, LGR5, KRT19, ABCG2, 
AFP, SOX9, POU5F1, SOX2, NANOG, NOTCH, ZIC2, 
PBX3, ZNF148, TCIM, SALL4, ZFP42, YY1A1, FOXM1, 
MYCN, SCD, MRPS5, PMPCB, ANGPTL4, PDK4, XDH, 
IRAK1, PTPN11, ANXA3, IL6, IL8, OSM, IGF1, FGF2, 
ANGPTL1, CTSS, UBE2T, EPHB2) and was compiled in a 
recent review [30]. CSCs are associated with therapeutic 

Fig. 5 Intercellular interaction analysis in the context of intra-sample heterogeneity. A Intercellular interaction analysis in the immune-rich tumor 
region (cancer-immune) reveals activation of PAX5. B, C FOS and JUN are the active networks from the interaction analysis at the immune-poor 
tumor region (HCC-CAF). D PAX5 activation co-localizes with the expression of B cell markers concentrated at the borders of the immune-rich 
tumor region. E FOS and JUN networks are co-expressed with CAF markers adjacent to the immune-poor tumor region
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resistance, immune escape, recurrence, and metastasis. 
The presence of HCC cells with stemness features has 
been previously observed in HCC and also associated 
with therapeutic resistance [30].

To validate that the CSC molecular signature is asso-
ciated with HCC that fails to elicit an effective immune 
response and so is more prone to resistance to ICIs, we 
verified the expression of the CSC genes in HCC samples 
from The Cancer Genome Atlas (TCGA) (Fig. 6B). Using 
CIBERSORT, we obtained the T cell proportions from 
the same samples. Finally, we examined the Spearman 
correlation between the cell proportions from CIBER-
SORT with the expression of the genes in the CSC signa-
ture (Fig. 6C). Overall, the high expression of a significant 
number of CSC markers in HCC tumors (Fig.  6B) was 
correlated with low proportions of detected T  CD8+ cells 
(negative correlation) (Fig.  6C), a cell type that is asso-
ciated with better outcomes and prolonged response to 
ICIs (Fig.  6B). This finding corroborates the hypothesis 
that CSCs evade the immune system resulting in lower 
infiltration of effector T cells. The presence of CSC in the 
only patient that recurred from the CABO/NIVO neoad-
juvant therapy after pathological response suggests that 

the presence of these cells is associated with therapeutic 
resistance and that this population will then persist and 
lead to recurrence.

Discussion
Modern systemic treatment for HCC combining anti-
VEGF therapy with ICI therapy prolongs survival and is 
widely used in the first-line treatment of patients with 
HCC [5]; however, little is known about the mecha-
nisms of response and resistance to this new treatment 
paradigm. Prior analysis from our group using samples 
from a clinical trial of neoadjuvant CABO/NIVO dem-
onstrates that clinical responses are associated with 
higher infiltration of immune cells while resistance was 
associated with diminished presence of immune cells 
that were in its majority immunosuppressive [10, 27]. 
However, due to the limited marker panels in the experi-
mental approaches in that previous study, the molecular 
pathways that underlie immune response and changes 
in the cancer cells themselves were not investigated to 
determine their role in the response to neoadjuvant ther-
apy. ST analysis is a novel approach that enables whole 
transcriptomics analysis within the tissue architecture 

Fig. 6 Cancer stem cell detection in hepatocellular carcinoma heterogeneous sample. A Cancer stem cell markers are highly expressed 
at the immune-poor tumor region of the responder sample with intrasample heterogeneity as noted by the spatial expression and the levels 
of expression are significantly different between the distinct tumor regions. B Heatmap with the expression of the CSC genes in the TCGA HCC 
samples. C Correlation heatmap with the Spearman correlation coefficient between expression of CSC markers and T cell proportions (CIBERSORT) 
in HCC samples from TCGA showing a negative correlation between T CD8 cell proportions and high expression of some CSC genes
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context. We applied ST to unveil the cancer cells’ intrin-
sic features that are associated with response and resist-
ance to CABO/NIVO. Since the ST approach used to 
profile the specimens collected is genome-wide, the anal-
ysis is not restricted to markers or pathways previously 
selected.

Using ST, we identified gene expression clusters that 
map to specific cell types in the HCC samples. With that, 
the gene expression analysis of the subset of cancer cells 
from each patient demonstrates that in responders, there 
is an active anti-tumor immune response characterized 
by the high expression of immune-related genes and 
recruitment of immune-related pathways. Moreover, in 
non-responders’ cancer cells, we observe the activation 
of proliferation and metabolic pathways. The intercellular 
interaction analysis of cancer-immune cells demonstrates 
that the immune response observed is driven by a strong 
B cell response. The cancer-immune cell interaction is 
associated with the activation of a PAX5 module that is 
enriched in regions with an increased presence of B cells. 
PAX5 is a transcription factor essential for B cell matura-
tion, commitment, immunoglobulin rearrangements, and 
activity [28]. In tumors, B cells are frequently found in 
tertiary lymphoid structures where they act by presenting 
antigens to T cells that could lead to their activation into 
effector cytotoxic cells [31]. Thus, the presence of B cell 
activation suggests that there is also induction of a T cell 
cytotoxic response and effective response to treatment 
with an ICI, in this case, nivolumab. Another observation 
from the intercellular interaction analysis is that in the 
regions with HCC-CAF communication, there is an acti-
vation of ECM remodeling. This was also an observation 
across the responders’ samples. The active ECM remode-
ling in the presence of therapeutic response indicates that 
in the areas of tumor cell death, there is a fibrosis process 
that replaces the space once occupied by the cancer cells. 
Further analysis with a temporal model or sample collec-
tion would reveal if that process will lead to future resist-
ance to the therapy, as the presence of desmoplasia with 
a dense collagen ECM may create a barrier to immune 
cell infiltration into the remaining tumor. Overall, these 
findings suggest that therapeutic resistance is associated 
with the inability of cancer cells to trigger an anti-tumor 
immune response that would increase immune cell infil-
tration and that this response relies on the presence of B 
cells that will prime or activate cytotoxic T cells. Thus, B 
cell presence is a potential cellular biomarker of response 
to therapies with ICIs.

With the spatially resolved analysis of this cohort of 
neoadjuvant-treated HCC samples, it was possible to 
examine a sample from a patient that initially presented 
with a therapeutic response but that later recurred. The 
surgical specimen collected from this patient shows a 

notable tumor heterogeneity pattern with an immune-
poor tumor region separated from an immune-rich 
tumor region. This tissue distribution would have 
been lost if the samples were profiled using single-cell 
approaches as those depend on sample dissociation. The 
immune-poor tumor region molecularly resembles the 
tumors from non-responders, while the immune-rich 
counterpart is similar to the responders’ samples that 
have high immune activity. The immune infiltration is 
a result of more effective antigen presentation by the 
cancer cells from the immune-rich region. Success-
ful antigen presentation is a well-known component of 
prosperous tumor immune response and could be used 
as a molecular biomarker to predict responses to ICIs 
[32]. On the other hand, the immune poor tumor area 
does not express high levels of the antigen-presenting 
machinery and thus evades the immune system. One 
of the reasons that could explain the downregulation 
of antigen presentation is that the cancer cells in that 
cluster express CSC markers. Due to their stemness 
features, these cells are expected to be more successful 
in immune escape and are also more prone to thera-
peutic resistance [30, 33]. Furthermore, the presence of 
CSC could explain the tumor recurrence in this patient 
since these unique cells are frequently present in dis-
ease relapse. Hence, the presence of CSC in the tumor 
is another biomarker that could potentially predict 
response to therapies and the risk of recurrence after 
treatment. Ultimately, with the analysis of this clinical 
outlier, we were also able to demonstrate a distinction 
between intrinsic resistance and recurrence. The CSC 
signature is only upregulated in patient HCC1-R. We 
did not observe the CSC signature in the samples from 
patients that did not respond to CABO/NIVO. Thus, 
the mechanisms of intrinsic resistance and acquired 
resistance, leading to recurrence, are different.

Conclusions
Although our study is limited to a small sample size, 
this is an exceptional cohort that used a therapeu-
tic combination to treat HCC with promising clinical 
benefits to a fraction of patients. Regarding the experi-
mental approach, ST also has limitations as there is no 
single-cell resolution due to the fact that each spot can 
capture the signal of more than one cell limiting the 
ability of specifically identifying individual immune 
cell types and subtypes. However, it demonstrates its 
usefulness since it allows heterogeneity identification 
in the spatial context. As previously mentioned, we 
would have not been able to identify the unique tumor 
architecture of the single responder that recurred 
after therapy. The analysis of that sample allowed 
the identification of an important tumor feature that 
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is potentially associated with the recurrence in that 
specific patient. In summary, the ST analysis of HCC 
clinical trial samples identified molecular and cellular 
mechanisms of therapeutic response and resistance. 
The mechanisms unveiled by the spatially resolved 
gene expression analyses would not be found by bulk 
or single-cell analysis as the lack of the spatial com-
ponent would not have permitted the interpretations 
related to the cellular distributions and interactions 
we were able to extract. Further analysis of other clini-
cal cohorts is essential to corroborate our findings and 
could potentially identify alternative therapeutic inter-
ventions for cancer types that still do not benefit from 
treatment with ICIs.

Abbreviations
AFP  Alpha fetoprotein
CABO  Cabozantinib
CAF  Cancer-associated fibroblast
CCL19  Chemokine ligand 19
CIITA  Class II major histocompatibility complex transactivator
COL1A1  Collagen type I alpha 1 chain
COL3A1  Collagen type III alpha 1 chain
CSC  Cancer stem cell
CXCL6  Chemokine ligand 6
CXCL14  Chemokine ligand 14
cDNA  Complementary deoxyribonucleic acid
CSC  Cancer stem cells
ECM  Extracellular matrix
FOS  Fos proto-oncogene
HCC  Hepatocellular carcinoma
H&E  Hematoxylin and eosin
ICI  Immune checkpoint inhibitor
IGF2  Insulin-like growth factor 2
IGHM  Immunoglobulin heavy constant mu
JUN  Jun proto-oncogene
LFC  Log-fold change
LIHC  Liver hepatocellular carcinoma
NIVO  Nivolumab
OCT  Optimal cutting compound
PAX5  Paired box 5
PCA  Principal component analysis
PD-1  Programmed cell death 1
ST  Spatial transcriptomics
TCGA   The Cancer Genome Atlas
TF  Transcription factor
TME  Tumor microenvironment
Treg  T regulatory cell
VEGF  Vascular endothelial growth factor
VIM  Vimentin
WNK4  WNK lysine-deficient protein kinase 4

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073- 023- 01218-y.

Additional file 1: Fig. S1. Heatmap of cluster markers across samples.

Additional file 2: Table S1. Results from the differential expression analy-
sis between responders and non-responders.

Additional file 3: Fig. S2. Overall expression of the antigen processing 
and presentation signaling pathway in the subset of spots in the spatial 
transcriptomics data from non-responders and responders.

Additional file 4: Fig. S3. Representation of adjacent regions selection for 
interaction analysis in one HCC sample.

Additional file 5: Fig. S4. Heatmap of transcription factor network 
scores from patient HCC3-R as a representation of the DOMINO networks 
obtained from the interaction analysis.

Additional file 6: Fig. S5. Differential expression analysis between the 
immune poor and immune rich regions on sample from patient HCC1-R.

Additional file 7: Table S2. Results from the differential expression 
analysis between immune poor versus immune rich tumor regions from 
patient HCC1-R.

Additional file 8: Fig. S6. Expression of MSigDB Hallmark pathways 
across all spots on the immune poor and immune rich tumor regions from 
patient HCC1-R.

Additional file 9: Fig. S7. Heatmap of transcription factor network scores 
from patient HCC1-R from the DOMINO interaction analysis.

Additional file 10. 

Acknowledgements
We thank the Johns Hopkins University School of Medicine Experimental and 
Computational Genomics Core for performing the sequencing of the spatial 
transcriptomics libraries and for the pre-processing of the raw sequencing 
data.

Authors’ contributions
EJF and LTK instigated and supervised the study. SZ, MY, EJF, and LTK planned, 
designed, and wrote the manuscript with input from all authors. LTK and GM 
performed the experimental methods. SZ, LY, and LD performed the compu-
tational analysis and data interpretation. GM, QZ, AD, ATFB, JE, ASP, and RA pro-
vided technical and material support. MY and EMJ provided clinical expertise. 
All authors approved the final manuscript.

Funding
SU2C/AACR DT-14–14 (E.M.J.), the Emerson Cancer Research Fund (E.M.J., 
E.J.F.), an Allegheny Health Network (AHN) grant (E.J.F.), U01CA212007 (E.J.F. 
and A.SP.), U01CA253403 (E.J.F.), SPORE GI P50CA062924-24A1 (E.M.J., M.Y., 
E.J.F., and L.T.K.), R01CA138264 (ASP), Exelixis (M.Y.), Bristol Myers Squibb (M.Y.), 
P30CA006973, and Johns Hopkins Bloomberg-Kimmel Institute for Cancer 
Immunotherapy. This work was made possible in part through the support of 
the Maryland Cancer Moonshot Research Grant to the Johns Hopkins Medical 
Institutions (FY24).

Availability of data and materials
All spatial transcriptomics preprocessed data from this study are available from 
NCBI GEO GSE238264 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE23 8264) [34]. The raw data is available under controlled access according 
to the institution’s policy for personal patient data protection. Raw data access 
can be obtained by contacting Dr. Luciane T. Kagohara (ltsukam1@jhmi.edu). 
All codes for the analyses presented are available at GitHub (https:// github. 
com/ ltkag ohara/ HCC_ cabon ivo_ visium) [35].

Declarations

Ethics approval and consent to participate
All patients provided written informed consent prior to enrollment, and the 
trial was registered under ClinicalTrials.gov as NCT03299946. The protocol was 
approved by the Institutional Review Board (IRB) at Johns Hopkins University 
under the number IRB00149350. All patients provided written informed con-
sent prior to enrollment for the use of clinical and genomic data for research. 
The study conformed to the principles of the Helsinki Declaration.

Consent for publication
Not applicable.

Competing interests
R.A.A. reports receiving a commercial research support from Bristol-Myers 
Squibb and is a consultant/advisory board member for Bristol-Myers Squibb, 

https://doi.org/10.1186/s13073-023-01218-y
https://doi.org/10.1186/s13073-023-01218-y
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE238264
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE238264
https://github.com/ltkagohara/HCC_cabonivo_visium
https://github.com/ltkagohara/HCC_cabonivo_visium


Page 13 of 14Zhang et al. Genome Medicine           (2023) 15:72  

Merck, AstraZeneca, Incyte, and RAPT Therapeutics. E.M.J. reports other sup-
port from Abmeta, personal fees from Genocea, personal fees from Achilles, 
personal fees from DragonFly, personal fees from Candel Therapeutics, other 
support from the Parker Institute, grants and other support from Lustgarten, 
personal fees from Carta, grants and other support from Genentech, grants 
and other support from AstraZeneca, personal fees from NextCure, and grants 
and other support from Break Through Cancer outside of the submitted work. 
M.Y. reports receiving research grants from Incyte, Bristol-Myers Squibb, and 
Exelixis and is a consultant for AstraZeneca, Eisai, Exelixis, and Genentech. E.J.F. 
is on the Scientific Advisory Board of Viosera Therapeutics/Resistance Bio and 
is a consultant to Mestag Therapeutics. The remaining authors declare that 
they have no competing interests. Cabozantinib was supplied by Exelixis, and 
nivolumab was supplied by Bristol-Myers Squibb.

Author details
1 Department of Biomedical Engineering, Johns Hopkins University School 
of Medicine, Baltimore, MD, USA. 2 Department of Immunology, Johns Hopkins 
University School of Medicine, Baltimore, MD, USA. 3 Bloomberg-Kimmel 
Immunotherapy Institute, Johns Hopkins University School of Medicine, Bal-
timore, MD, USA. 4 Department of Oncology, Sidney Kimmel Comprehensive 
Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 
USA. 5 Convergence Institute, Johns Hopkins University, Baltimore, MD, USA. 
6 Department of Pathology, Johns Hopkins University School of Medicine, Bal-
timore, MD, USA. 7 Department of Ophthalmology, Johns Hopkins University 
School of Medicine, Baltimore, MD, USA. 8 Department of Orthopedic Surgery, 
Johns Hopkins University School of Medicine, Baltimore, MD, USA. 9 Depart-
ment of Applied Mathematics and Statistics, Johns Hopkins University School 
of Medicine, Baltimore, MD, USA. 

Received: 10 January 2023   Accepted: 4 August 2023

References
 1. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman 

M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018. 
https:// doi. org/ 10. 1038/ nrdp. 2016. 18.

 2. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62. 
https:// doi. org/ 10. 1056/ NEJMr a1713 263.

 3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 
Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71:209–49. https:// doi. org/ 10. 3322/ caac. 21660.

 4. Gordan JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brower ST, Gade TP, et al. 
Systemic therapy for advanced hepatocellular carcinoma: ASCO guide-
line. J Clin Oncol. 2020;38:4317–45. https:// doi. org/ 10. 1200/ JCO. 20. 02672.

 5. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab 
plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J 
Med. 2020;382:1894–905. https:// doi. org/ 10. 1056/ NEJMo a1915 745.

 6. Finn RS, Ikeda M, Zhu AX, Sung MW, Baron AD, Kudo M, et al. Phase ib 
study of lenvatinib plus pembrolizumab in patients with unresectable 
hepatocellular carcinoma. J Clin Oncol. 2020;38:2960–70. https:// doi. org/ 
10. 1200/ JCO. 20. 00808.

 7. Kelley RK, Yau T, Cheng AL, Kaseb A, Qin S, Zhu AX, et al. VP10-2021: 
Cabozantinib (C) plus atezolizumab (A) versus sorafenib (S) as first-line 
systemic treatment for advanced hepatocellular carcinoma (aHCC): 
results from the randomized phase III COSMIC-312 trial. Ann Oncol. 
2022;33:114–6. https:// doi. org/ 10. 1016/j. annonc. 2021. 10. 008.

 8. Abou-Alfa GK, Chan SL, Kudo M, Lau G, Kelley RK, Furuse J, et al. Phase 
3 randomized, open-label, multicenter study of tremelimumab (T) and 
durvalumab (D) as first-line therapy in patients (pts) with unresectable 
hepatocellular carcinoma (uHCC): HIMALAYA. JCO. 2022;40 4_suppl:379–
379. https:// doi. org/ 10. 1200/ JCO. 2022. 40.4_ suppl. 379.

 9. Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 antibody SHR-
1210 combined with apatinib for advanced hepatocellular carcinoma, 
gastric, or esophagogastric junction cancer: an open-label, dose escala-
tion and expansion study. Clin Cancer Res. 2019;25:515–23. https:// doi. 
org/ 10. 1158/ 1078- 0432. CCR- 18- 2484.

 10. Ho WJ, Zhu Q, Durham J, Popovic A, Xavier S, Leatherman J, et al. Neo-
adjuvant cabozantinib and nivolumab converts locally advanced HCC 

into resectable disease with enhanced antitumor immunity. Nat Cancer. 
2021;2:891–903. https:// doi. org/ 10. 1038/ s43018- 021- 00234-4.

 11. Zhu AX, Abbas AR, de Galarreta MR, Guan Y, Lu S, Koeppen H, et al. 
Molecular correlates of clinical response and resistance to atezoli-
zumab in combination with bevacizumab in advanced hepatocel-
lular carcinoma. Nat Med. 2022;28:1599–611. https:// doi. org/ 10. 1038/ 
s41591- 022- 01868-2.

 12. Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria J-C. Overcoming 
resistance to tumor-targeted and immune-targeted therapies. Cancer 
Discov. 2021;11:874–99. https:// doi. org/ 10. 1158/ 2159- 8290. CD- 20- 1638.

 13. Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using 
spatial transcriptomics. Nature. 2021;596:211–20. https:// doi. org/ 10. 1038/ 
s41586- 021- 03634-9.

 14 Davis-Marcisak EF, Deshpande A, Stein-O’Brien GL, Ho WJ, Laheru D, 
Jaffee EM, et al. From bench to bedside: single-cell analysis for cancer 
immunotherapy. Cancer Cell. 2021;39:1062–80. https:// doi. org/ 10. 1016/j. 
ccell. 2021. 07. 004.

 15. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. 
Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87. 
https:// doi. org/ 10. 1016/j. cell. 2021. 04. 048.

 16. Hafemeister C, Satija R. Normalization and variance stabilization of 
single-cell RNA-seq data using regularized negative binomial regression. 
Genome Biol. 2019;20:296. https:// doi. org/ 10. 1186/ s13059- 019- 1874-1.

 17. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, 
sensitive and accurate integration of single-cell data with Harmony. Nat 
Methods. 2019;16:1289–96. https:// doi. org/ 10. 1038/ s41592- 019- 0619-0.

 18. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing 
well-connected communities. Sci Rep. 2019;9:5233. https:// doi. org/ 10. 
1038/ s41598- 019- 41695-z.

 19. Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 
https:// doi. org/ 10. 1186/ s13059- 014- 0550-8.

 20. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. 
The Molecular Signatures Database (MSigDB) hallmark gene set collec-
tion. Cell Syst. 2015;1:417–25. https:// doi. org/ 10. 1016/j. cels. 2015. 12. 004.

 21. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, 
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and 
clustering. Nat Methods. 2017;14:1083–6. https:// doi. org/ 10. 1038/ nmeth. 
4463.

 22. Cherry C, Maestas DR, Han J, Andorko JI, Cahan P, Fertig EJ, et al. 
Computational reconstruction of the signalling networks surrounding 
implanted biomaterials from single-cell transcriptomics. Nat Biomed Eng. 
2021;5:1228–38. https:// doi. org/ 10. 1038/ s41551- 021- 00770-5.

 23. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. Cell 
PhoneDB: inferring cell-cell communication from combined expression 
of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15:1484–
506. https:// doi. org/ 10. 1038/ s41596- 020- 0292-x.

 24. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGA-
biolinks: an R/Bioconductor package for integrative analysis of TCGA data. 
Nucleic Acids Res. 2016;44:e71. https:// doi. org/ 10. 1093/ nar/ gkv15 07.

 25. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. 
The immune landscape of cancer. Immunity. 2018;48:812-830.e14. 
https:// doi. org/ 10. 1016/j. immuni. 2018. 03. 023.

 26. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correla-
tions in multidimensional genomic data. Bioinformatics. 2016;32:2847–9. 
https:// doi. org/ 10. 1093/ bioin forma tics/ btw313.

 27. Mi H, Ho WJ, Yarchoan M, Popel AS. Multi-scale spatial analysis of the 
tumor microenvironment reveals features of cabozantinib and nivolumab 
efficacy in hepatocellular carcinoma. Front Immunol. 2022;13:892250. 
https:// doi. org/ 10. 3389/ fimmu. 2022. 892250.

 28. Holmes ML, Pridans C, Nutt SL. The regulation of the B-cell gene expres-
sion programme by Pax5. Immunol Cell Biol. 2008;86:47–53. https:// doi. 
org/ 10. 1038/ sj. icb. 71001 34.

 29. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B 
cell identity and function. Nat Immunol. 2007;8:463–70. https:// doi. org/ 
10. 1038/ ni1454.

 30 Lee TKW, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma 
- from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 
2022;19:26–44. https:// doi. org/ 10. 1038/ s41575- 021- 00508-3.

 31. Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC, 
Medina T da S. B cell orchestration of anti-tumor immune responses: 

https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.3322/caac.21660
https://doi.org/10.1200/JCO.20.02672
https://doi.org/10.1056/NEJMoa1915745
https://doi.org/10.1200/JCO.20.00808
https://doi.org/10.1200/JCO.20.00808
https://doi.org/10.1016/j.annonc.2021.10.008
https://doi.org/10.1200/JCO.2022.40.4_suppl.379
https://doi.org/10.1158/1078-0432.CCR-18-2484
https://doi.org/10.1158/1078-0432.CCR-18-2484
https://doi.org/10.1038/s43018-021-00234-4
https://doi.org/10.1038/s41591-022-01868-2
https://doi.org/10.1038/s41591-022-01868-2
https://doi.org/10.1158/2159-8290.CD-20-1638
https://doi.org/10.1038/s41586-021-03634-9
https://doi.org/10.1038/s41586-021-03634-9
https://doi.org/10.1016/j.ccell.2021.07.004
https://doi.org/10.1016/j.ccell.2021.07.004
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/s41551-021-00770-5
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.3389/fimmu.2022.892250
https://doi.org/10.1038/sj.icb.7100134
https://doi.org/10.1038/sj.icb.7100134
https://doi.org/10.1038/ni1454
https://doi.org/10.1038/ni1454
https://doi.org/10.1038/s41575-021-00508-3


Page 14 of 14Zhang et al. Genome Medicine           (2023) 15:72 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

a matter of cell localization and communication. Front Cell Dev Biol. 
2021;9:678127. https:// doi. org/ 10. 3389/ fcell. 2021. 678127.

 32. Sharma P, Allison JP. Immune checkpoint targeting in cancer ther-
apy: toward combination strategies with curative potential. Cell. 
2015;161:205–14. https:// doi. org/ 10. 1016/j. cell. 2015. 03. 030.

 33. Yoon SK. The biology of cancer stem cells and its clinical implication in 
hepatocellular carcinoma. Gut Liver. 2012;6:29–40. https:// doi. org/ 10. 
5009/ gnl. 2012.6. 1. 29.

 34. Zhang S, Yuan L, Danilova L, Mo G, Zhu Q, Deshpande A, et al. Spatial 
transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in 
advanced hepatocellular GEO Accession viewer. https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE23 8264. Accessed 1 Aug 2023.

 35. Zhang S, Yuan L, Danilova L, Mo G, Zhu Q, Deshpande A, et al. Spatial 
transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in 
advanced hepatocellular codes. 2023. Zenodo. https:// doi. org/ 10. 5281/ 
zenodo. 82101 85.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fcell.2021.678127
https://doi.org/10.1016/j.cell.2015.03.030
https://doi.org/10.5009/gnl.2012.6.1.29
https://doi.org/10.5009/gnl.2012.6.1.29
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE238264
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE238264
https://doi.org/10.5281/zenodo.8210185
https://doi.org/10.5281/zenodo.8210185

	Spatial transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in advanced hepatocellular carcinoma identifies independent mechanisms of resistance and recurrence
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Patients and sample acquisition
	Spatial transcriptomics data generation
	Spatial transcriptomics data analysis
	Transcriptional factor regulatory module activity analysis
	Ligand-receptor cell–cell signaling network reconstruction
	TCGA and CIBERSORT analysis

	Results
	Spatial transcriptomics identifies HCC cell composition differences between responders and non-responders to immunotherapy
	Gene expression analysis of tumor compartments shows activation of immune-related pathways in responders and of cell growth pathways in non-responders.
	Intercellular interaction analyses identify transcription factor regulatory networks associated with response and resistance to CABONIVO
	Spatial transcriptomics analysis reveals specific HCC heterogeneity related with recurrence after neoadjuvant therapy

	Discussion
	Conclusions
	Anchor 22
	Acknowledgements
	References


