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Abstract 

Background  Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent 
genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the her-
itability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified 
beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate 
its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci.

Methods  Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastroin-
testinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture 
and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery 
of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric 
and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) frame-
work. We used functional mapping and gene annotation (FUMA) for functional analyses.

Results  IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap 
between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 inde-
pendent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal 
diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analy-
ses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correla-
tions and shared loci between psychiatric disorders and IBS subtypes were different.

Conclusions  We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes 
beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated 
with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may 
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underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may 
form the basis for the development of individualized interventions.

Keywords  Irritable bowel syndrome, Genetic overlap, Psychiatric disorder, Gut-brain axis

Background
Irritable bowel syndrome (IBS) is an enduring disorder 
of the intestine characterized by recurrent abdomi-
nal pain and bowel habit changes without identifiable 
pathology on clinical or laboratory examination [1, 2]. 
It is a common condition with a prevalence of 9.2% 
and is associated with significant morbidity and poor 
quality of life [3]. Several factors are implicated in the 
development of symptoms of IBS, including dysregula-
tion of the gut-brain axis, disruption in intestinal per-
meability, dysbiosis, dysfunction of gut motility, and 
genetic and psychosocial factors [4, 5]. The knowledge 
gap in the pathophysiology of IBS hinders the develop-
ment of effective treatments [6]. To this end, there is a 
need to advance genetic discoveries in IBS to improve 
our understanding of the pathophysiology of IBS at a 
molecular level [6].

Causal genetic factors are supported by an estimated 
heritability of 19.5 (± 8.5)% and an increased risk of 
IBS among biological children of individuals with IBS 
compared to adoptees [7]. However, the identification 
of genomic risk loci for complex traits such as IBS is 
limited by their polygenic architecture, which requires 
very large sample sizes to detect genetic variants with 
small effect sizes [8]. To date, genome-wide association 
studies (GWAS) of IBS identified a small number of 
genomic loci [9–11], leaving a large portion of the her-
itability due to common genetic variants undiscovered 
[12, 13]. Identification of enough common variants to 
explain a significant part of heritability is crucial for 
more meaningful application of discoveries [13] and for 
characterizing associated molecular pathways.

While larger sample sizes will increase genomic dis-
coveries in highly polygenic traits [12, 14], such an 
undertaking requires investment of time and fund-
ing. Alternatively, advanced methods in statistical 
genetics have demonstrated the potential to boost the 
power of GWAS to increase the discovery of genomic 
risk loci by leveraging auxiliary genetic data to iden-
tify SNPs associated with a trait that did not initially 
reach the genome-wide significance threshold [15–
17]. These methods take advantage of genetic overlap 
between two traits and have been successfully applied 
to improve genetic discovery across psychiatric and 
somatic phenotypes, such as cardiometabolic traits 
and major depression (MD) [18], schizophrenia (SCZ) 
and somatic traits [19], and bipolar disorder (BIP) 

and cardiovascular diseases [17, 20]. This boost in 
genetic discovery relies on the extent of genetic overlap 
between the pair of traits [17, 21].

The existing clinical and epidemiological data sup-
port comorbidity between IBS, and both psychiat-
ric [22–24] and gastrointestinal diseases [25, 26]. We 
confirm and leverage these overlaps to discover novel 
genomic loci [17] for IBS, and thereby, advance the 
knowledge of the molecular pathways involved which 
can form the basis for development of new treatments 
[6]. Furthermore, comprehensive characterization of 
the genetic landscape of IBS and genetic overlap with 
other phenotypes can inform diagnostic nosology [27]. 
The bivariate causal mixture model (MiXeR) provides 
an estimate of the total number of unique and shared 
genetic variants for a pair of traits and quantifies the 
proportion of concordant variants within the shared 
component [21, 27].

Here, we applied advanced statistical methods to char-
acterize the shared polygenic architecture of IBS and 
comorbid psychiatric and gastrointestinal phenotypes 
and leveraged this overlap to boost the power to identify 
more IBS loci [15]. First, we performed MiXeR analyses 
to elucidate the polygenic architecture of IBS and quan-
tify the genetic overlap with clinically related psychiatric 
and gastrointestinal disorders. Second, we applied con-
ditional FDR (condFDR) to boost the discovery of spe-
cific genetic loci or variants associated with IBS [15, 17], 
and conjunctional FDR (conjFDR) to identify shared loci 
using GWAS summary data. We hypothesized that the 
known clinical comorbidity between IBS and psychiatric 
and gastrointestinal disorders is in part related to shared 
genetic architecture. Hence, the genetic overlap can be 
leveraged to identify novel IBS-associated loci and reveal 
molecular pathways involved in the pathophysiology of 
IBS.

Methods
Genome‑wide association studies (GWAS) data
Datasets for IBS
The GWAS summary statistics for IBS were obtained 
from participants of the UK Biobank and the Belly Genes 
Initiative (BGI) who are of European Ancestry. The UK 
Biobank cases of IBS 40,548 were individuals who ful-
filled the Rome III criteria of IBS on the Digestive Health 
Questionnaire (DHQ) (n = 24,845), reported to have 
received a diagnosis of IBS previously, or a diagnosis of 
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ICD-10 IBS in their electronic medical records. The con-
trols comprised 72,356 DHQ respondents and 220,864 
DHQ non-respondents [11]. The BGI is an international 
collaboration of multiple cohorts of IBS with 12,852 cases 
and 139,981 controls. The diagnosis of IBS in the BGI 
sample was based on electronic medical records, special-
ist diagnoses from tertiary clinics, and questionnaire data 
(including Rome III criteria). Individuals with chronic 
intestinal diseases such as coeliac disease, and Crohn’s 
disease have been excluded from both case and control 
samples.

The IBS subtype-specific summary statistics com-
prised the DHQ respondents of the UK Biobank sample 
described above. Accordingly, the controls were 72,356 
for all IBS subtypes, and the cases were: constipation-
predominant (IBSC; n = 5406), diarrhea-predominant 
(IBSD; n = 8756), and with mixed constipation and diar-
rhea (IBSM; n = 17,216) [11].

Dataset for generalized anxiety disorder (GAD)
The GWAS summary statistics for GAD were obtained 
from the Million Veteran Program (MVP) cohort. A 
detailed description of the MVP cohort characteristics is 
available elsewhere [28]. In the GWAS of GAD, the phe-
notype was assessed using a dimensional self-report sur-
vey using the GAD-2 scale in 175,163 adults of European 
Ancestry [29].

Dataset for MD
The GWAS summary statistics for MD was obtained 
from a meta-analysis of three large GWAS of depres-
sion among populations of European Ancestry [30]. 
The meta-analyses comprised the GWAS of depres-
sion diagnosed using structural clinical interviews or 
similar criteria from the Psychiatric Genomics Consor-
tium (PGC) (43,204 cases and 95,680 controls) [31], the 
GWAS of self-reported history of diagnosis of depres-
sion from 23andMe, Inc. (75,607 cases and 231,747 
controls) [32], and the GWAS of a broad depression 
phenotype from the UK Biobank (127,552 cases and 
233,763 controls) [33].

Dataset for BIP
The GWAS summary statistics for BIP was obtained 
from the third wave of the PGC comprising 57 cohorts 
collected in Europe, North America, and Australia [34]. 
The total sample was 41,917 cases and 371,549 controls 
of European Ancestry. Cases were defined as individu-
als meeting one of the international consensus crite-
ria (DSM-IV, ICD-9, or ICD-10) for a lifetime diagnosis 
of BIP using structured diagnostic instruments. Some 
cohorts obtained from biobanks had the BIP cases ascer-
tained using ICD codes or self-report.

Dataset for SCZ
The GWAS summary statistics for SCZ comprised the 
European subset of the PGC meta-analysis of cohorts of 
schizophrenia and schizoaffective disorder. The sample 
used for this GWAS includes 53,386 cases and 77,258 
controls [35].

Datasets for diverticular disease (DVD)
Two GWAS summary statistics of DVD in populations of 
European Ancestry were used. The dataset from the sixth 
version of the Finnish national biobank (FinnGen) had 
17,851 cases of diverticular disease of the intestine based 
on ICD-9 or ICD-10 of hospital records, and 14,357 con-
trols [36]. The second dataset was from the European 
sample of the UK biobank with 27,444 cases based on the 
ICD codes and 382,284 controls [37].

Datasets for inflammatory bowel disease (IBD)
The GWAS summary statistics of IBD were obtained 
from a meta-analysis reported by the international IBD 
genomics consortium on a population of European 
Ancestry. The meta-analysis comprised 25,042 clinically 
ascertained cases (12,194 Crohn’s disease and 12,366 
ulcerative colitis), and 34,915 controls [38].

In all GWAS datasets except that of IBS, we excluded 
samples from the UK Biobank from phenotypes other 
than IBS to avoid potential sample overlap as required 
by polygenic enrichment analyses (Table 1). Since MiXeR 
accounts for sample overlap, we used the whole samples 
without removal of overlapping samples [21].

Statistical analysis
We constructed quantile–quantile (Q-Q) plots by condi-
tioning IBS on each of the phenotypes and inspected the 
plots for polygenic enrichment. We applied casual mix-
ture models to investigate the genetic overlap between 
IBS, and each of GAD, MD, BIP, SCZ, DVD, and IBD 
using MiXeR [21]. We carried out univariate MiXeR 
analyses to estimate the number of trait-influencing vari-
ants (i.e., variants with genetic effects which are not due 
to linkage disequilibrium (LD)). Univariate MiXeR model 
assumes that common genetic variants can be causal or 
non-causal to the specific trait. Hence, the polygenicity, 
the number of “causal” variants that explain 90% of SNP 
heritability, is computed using maximum likelihood esti-
mation. Bivariate MiXeR builds on the univariate model 
for a pair of traits and thereby estimates of trait-specific 
and shared “causal” variants are estimated. Unlike genetic 
correlations, the estimates of shared ‘causal’ variants are 
independent of the effect directions on the pair of traits 
[21]. MiXeR also estimates dice coefficient scores (i.e., 
the proportion of shared variants between two traits out 
of the total number of variants estimated to influence 
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both traits) and computes the fraction of variants with 
concordant effects among the shared component (Addi-
tional file 1). We performed MiXeR analysis for IBS and 
height as a heritable somatic comparator. We computed 
the genetic correlations of IBS and the other phenotypes 
using LD score regression [40].

We utilized the condFDR method to identify loci asso-
ciated with IBS by conditioning genetic associations 
with IBS on each of the psychiatric and gastrointestinal 
phenotypes [15–17]. The condFDR method is an exten-
sion of the standard FDR and builds on an empirical 
Bayesian statistical framework to exploit the power of 
combining two GWASs for improving the discovery of 
genetic variants [17]. The method leverages the pres-
ence of SNP associations with the primary and condi-
tional phenotypes [41] to identify variants more likely 
to be true associations even though the p-values do not 
reach the genome-wide significance threshold [15, 17]. 
CondFDR procedure re-ranks the SNP p-values in a pri-
mary phenotype (IBS) based on their associations in a 
conditional phenotype (e.g., SCZ). Hence, IBS variants 
jointly associated with SCZ will obtain lower condFDR 
estimates [15–17]. Similarly, conjFDR enables the detec-
tion of SNPs associated with both the primary and con-
ditional phenotypes, based on inverse condFDR analyses 
in which the primary phenotype became conditional, 
and the conditional phenotype became the primary 

phenotype. The conjFDR statistic is defined as the maxi-
mum of two condFDR values (e.g., IBS conditional on 
SCZ and vice versa) [17]. For our analyses, we used an 
FDR threshold of 5% for condFDR and conjFDR. Due to 
complex LD which can potentially bias FDR estimation 
[42], we excluded SNPs within the extended major his-
tocompatibility complex region and chromosome 8p23.1 
(genome build 19 positions of chr6:25119106–33854733 
and chr8:7200000–12500000, respectively) before fitting 
the FDR models. We randomly pruned SNPs in 500 itera-
tions to minimize inflation in fold enrichment. Hence, 
one candidate SNP was randomly selected for an LD 
block (r2 > 0.1) and the respective p-values were used to 
compute the empirical cumulative distribution functions 
(Additional file 1).

Definition of genomic loci
We defined independent genomic loci based on the func-
tional mapping and gene annotation (FUMA) protocol 
[43]. We considered candidate SNPs with condFDR/con-
jFDR < 0.05 and LD r2 < 0.6 with each other as independ-
ent significant SNPs, and we designated those with LD 
r2 < 0.1 as lead SNPs. All the candidate SNPs in LD r2 ≥ 0.6 
with a lead SNP demarcated the boundaries of a genomic 
locus. We merged loci separated by less than 250  kb. 
Thus, we defined any candidate SNP located within 
the boundaries of a genomic locus to belong to a single 

Table 1  List of genome-wide association study data used

MiXeR bivariate causal mixture analyses, cFDR conditional false discovery rate analyses, PGC Psychiatric Genomics Consortium, SCZ schizophrenia, BIP bipolar disorder, 
MD major depression, GAD generalized anxiety disorder, IBS irritable bowel syndrome, IBS-C constipation-predominant IBS, IBS-D diarrhea-predominant IBS, IBS-M IBS 
with mixed constipation and diarrhea MVP Million Veterans Program, UKBB UK Biobank, BGI Belly Genes Initiative, IIBDGC International Inflammatory Bowel Disease 
Genetics Consortium, IBD inflammatory bowel disease, DVD diverticular disease, FinnGen Finnish biobank project, GIANT Genetic Investigation of Anthropometric 
Traits Consortium

Trait/phenotype Analysis Number of cases Number of controls Ancestry of 
participants

Source of data

Psychiatric
  SCZ MiXeR and cFDR 53,386 77,258 European PGC-SCZ [35]

  BIP MiXeR 41,917 371,549 European PGC-BIP + UKBB [34]

cFDR 40,463 313,436 European PGC-BIP [34]
PGC-MD + 23andMe + UKBB [30]  MD MiXeR 246,363 561,190 European

cFDR 121,198 329,421 European PGC-MD + 23andMe [31]

  GAD MiXeR and cFDR 175,163 Not applicable European MVP [29]

  IBS MiXeR and cFDR 53,400 433,201 European UKBB + BGI [11]

  IBS-C cFDR 5406 72,356 European UKBB [11]

  IBS-D cFDR 8756 72,356 European UKBB [11]

  IBS-M cFDR 17,216 72,356 European UKBB [11]

Somatic
  IBD MiXeR & cFDR 25,042 34,915 European IIBDGC-IBD [38]

  DVD cFDR 17,851 14,357 European FinnGen [36]

MiXeR 27,444 382,284 European UKBB [37]

  Height MiXeR 709,706 Not applicable European GIANT + UKBB [39]
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independent genomic locus. We computed LD infor-
mation from the 1000 Genomes Project reference panel 
[44]. For the shared loci, we inferred the effect directions 
by comparing the z-scores in the GWAS summary sta-
tistics corresponding to the phenotype. We considered 
loci not identified in the GWAS catalog (downloaded 
in April 2022) and in previous IBS studies as novel risk  
loci [11, 45].

Replication of condFDR significant loci in independent 
samples
Due to the small genetic effects of individual lead SNPs 
and the consequent low probability of replicating spe-
cific genome-wide significant loci in a smaller replication 
dataset, we tested for sign concordance of effect direc-
tion in the primary IBS GWAS dataset and a replication 
GWAS of IBS from FinnGen [36]. Previous studies have 
utilized a similar approach [35, 46, 47]. If lead SNPs were 
missing in the replication GWAS data set, we replaced 
them with the next most significant candidate SNP, if 
available. We then tested the significance of whether the 
sign concordance was randomly distributed using a one-
sided exact binomial test.

Functional annotations
We carried out positional annotation for all lead SNPs 
with a condFDR/conjFDR < 0.05 using FUMA [43]. SNPs 
were annotated for Combined Annotation Dependent 
Depletion (CADD) scores to estimate the deleteriousness 
of the SNP on protein function [48], and RegulomeDB 
scores provided predicted regulatory functionality of the 
SNP [49]. Functional gene mapping was performed for 
all lead SNPs from condFDR/conjFDR using the Open-
Targets platform [50]. For each SNP, we used the one 
gene with the highest score on the OpenTargets mapping 
procedure for gene ontology (GO) analyses. GO for IBS 
was analyzed including all genes mapped to each lead 
SNP identified on condFDR analyses. Also, GO was per-
formed for genes from the functional mapping of shared 
lead SNPs from conjFDR of IBS and psychiatric disor-
ders. Both the GO analyses were performed using FUMA 
[43]. The shared loci between IBS and somatic pheno-
types were too few for GO analyses.

Results
Cross‑phenotype polygenic enrichment
We examined the Q-Q plots for cross-trait polygenic 
enrichment which manifests as an upward and leftward 
deflection of the plots for subsets of SNPs increasingly 
associated with the secondary phenotype [17]. We found 
that the Q-Q plots of p-values from IBS conditioned on 
the p-value strata from MD, BIP, SCZ, and GAD GWAS 
data exhibited polygenic enrichment. However, there was 

less polygenic enrichment on Q-Q plots of SNP nominal 
p-values from IBS when stratified based on the p-values 
of DVD or IBD GWAS data compared to those condi-
tioned on psychiatric disorders (Fig. 1). The inverse Q-Q 
plots with IBS as secondary phenotype also showed simi-
lar patterns enrichment (Additional file 2: Fig. S1).

Polygenicity, genetic overlap, and correlation
In univariate MiXeR analysis, we estimate that IBS 
is a highly polygenic phenotype with approximately 
12.1  k ± 1.1  k “trait-influencing” variants which account 
for 90% of heritability. The corresponding values for the 
psychiatric phenotypes were GAD (8.4  k ± 0.8  k), MD 
(13.9 k ± 0.4 k), BIP (8.6 k ± 0.2 k) and SCZ (9.6 k ± 0.2 k). 
The somatic phenotypes were less polygenic with the 
number of trait-influencing variants for IBD (0.5  k ± 22) 
and DVD (1.7 k ± 86) (Fig. 2). The SNP heritability of IBS 
was approximately 0.06 (SD = 0.001), which is similar to 
that of MD (Additional file 3: Tables S1 – S8). The GWAS 
of IBS subtypes did not have adequate power for MiXeR 
analysis.

Bivariate MiXeR revealed extensive genetic over-
lap between IBS and psychiatric disorders (Fig.  3). The 
estimated number of shared trait-influencing variants 
between IBS and BIP was 8.5 k ± 0.3 k with 55% of them 
having concordant effects. The corresponding estimates 
for IBS and SCZ were 8.9 k ± 0.5 k variants with 56% hav-
ing concordant effects. IBS and GAD had an estimated 
6.8 k ± 1.4 k shared trait-influencing variants and 81% of 
these had concordant effects. Also, IBS and MD had an 
estimated 10.3 k ± 1.5 k shared trait-influencing variants 
of which 80% had concordant effects (Additional file  3: 
Tables S9 – S15). Notably, we found fewer shared trait-
influencing variants between IBS and the somatic pheno-
types; an estimated 0.4 k ± 0.1 k with IBD and 52% having 
the same effect directions, and approximately 1.7  k ± 86 
with DVD and almost all (99%) having concordant effects 
(Fig. 3).

The degree of genetic overlap as estimated by the dice 
coefficient between IBS and psychiatric phenotypes 
were GAD (66%), MD (79%), BIP (82%), and SCZ (83%). 
The genetic overlap (dice coefficient) between IBS and 
somatic phenotypes was DVD (25%) and IBD (6%), while 
the corresponding figure between IBS and the compara-
tor phenotype height was 24% (Fig. 3). To account for the 
large differences in the polygenicity of secondary pheno-
types, we computed the proportion of observed overlap 
in trait-influencing variants relative to the maximum 
possible overlap by dividing the number of variants in the 
shared component by the number of variants in the less 
polygenic of the two phenotypes in consideration. Conse-
quently, the proportion of overlap for IBS and psychiatric 
phenotypes was GAD (80%), MD (85%), BIP (98%), and 
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SCZ (93%). The proportions for IBS and the somatic phe-
notypes were DVD (100%), IBD (77%), and height (47%). 
The MiXeR results between IBS and MD, GAD and DVD 
are suboptimal model fit with negative Akaike informa-
tion criterion (AIC) scores when comparing the best 
fitting model to the least possible overlap (minimum), 
indicating that the shared component between IBS and 
these traits may be smaller than what is estimated.

In the LD-score regression analysis, IBS showed sig-
nificant (P < 0.0001) genetic correlations with GAD 
(rg = 0.49), MD (rg = 0.55), BIP (rg = 0.13), SCZ (rg = 0.17), 
and DVD (rg = 0.38), but not for IBD (rg = -0.01). All 
three subtypes of IBS showed positive genetic correla-
tion with SCZ, MD, and GAD (P < 0.05). None of the IBS 
subtypes exhibited a significant genetic correlation with 
IBD. BIP had a positive genetic correlation only with 
IBSD, and DVD showed a genetic correlation with both 
IBSD and IBSM. Interestingly, IBSD and IBSC showed 
a similar high genetic correlation with IBSM (rg = 0.88, 
P < 0.00001); however, the genetic correlation between 

IBSD and IBSC was only moderate (rg = 0.39, P < 0.01) 
(Fig. 4; Additional file 4: Table S16).

Identification of genetic loci for IBS
We exploited the cross-trait enrichment of SNPs associ-
ated with IBS and psychiatric disorders using condFDR. 
We identified a total of 127 genomic risk loci for IBS by 
conditioning on GAD, MD, BIP or SCZ (condFDR < 0.05), 
and 111 of these loci were novel for IBS. In these cond-
FDR analyses, we identified 36 loci with GAD, 69 loci 
with MD, 53 loci with BIP, and 41 loci with SCZ. In cond-
FDR analysis of IBS leveraging associations with DVD 
or IBD, we identified 24 genomic loci associated with 
IBS including 14 novel risk loci. Specifically, 17 loci were 
identified conditional on DVD, and 15 loci conditional on 
IBD. Five of the 14 novel loci were not identified in cond-
FDR analyses leveraging SNP associations with the psy-
chiatric disorders—resulting in a total of 116 novel loci 
identified for IBS (Additional file  2: Fig. S2; Additional 
file 5: Tables S17 – S22).

Fig. 1  Conditional Q-Q plots of nominal –log10 p-values vs empirical –log10 p-values in irritable bowel syndrome (IBS) below the standard 
genome-wide association study threshold of p < 5.0 × 10−8 as a function of significance of association with generalized anxiety disorder (GAD), major 
depression (MD), bipolar disorder (BIP), schizophrenia (SCZ), diverticular disease (DVD), or inflammatory bowel disease (IBD) below the level of –
log10 p-values of 1, 2, or 3, corresponding to p < 0.10, p < 0.01 and p < 0.001, respectively. The blue line includes all SNPs and dashed lines indicate 
the null hypothesis



Page 7 of 18Tesfaye et al. Genome Medicine           (2023) 15:60 	

Fig. 2  Polygenicity of irritable bowel syndrome (IBS), generalized anxiety disorder (GAD), major depression (MD) bipolar disorder (BIP), 
schizophrenia (SCZ), diverticular disease (DVD), inflammatory bowel disease (IBD), and height (HGT) with the number of trait-influencing (“causal”) 
variants explaining 90% of the heritability (estimated from univariate MiXeR analysis)

Fig. 3  Genome-wide genetic overlap and genetic correlation among irritable bowel syndrome (IBS), generalized anxiety disorder (GAD), 
major depression (MD) bipolar disorder (BIP), schizophrenia (SCZ), diverticular disease (DVD), inflammatory bowel disease (IBD), and Height 
(HGT). The numbers in colored Venn diagrams indicate the number of shared and phenotype-specific trait-influencing variants which account 
for 90% of heritability in thousands, and rg represents genome-wide genetic correlation. N.B. For GAD, MD, and DVD, the value of minimum AIC 
was negative — an indicator that the shared component may be smaller than shown in the figure model fit (MiXeR analysis)
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Identification of shared genetic loci for IBS and psychiatric 
disorders
Using conjFDR, we identified a total of 70 unique 
genomic loci shared between IBS and psychiatric dis-
orders—seven with GAD, 35 with MD, 27 with BIP, 
and 15 with SCZ. All shared loci between IBS and 
GAD, and IBS and MD had concordant effect direc-
tions. Also, the majority of shared loci between IBS 
and BIP (20/27, 74.1%), and between IBS and SCZ 
(10/15, 66.7%) had concordant effect directions 
(Table 2; Fig. 5; Additional file 5: Tables S23—S26).

Identification of shared genetic loci for IBS 
and gastrointestinal disorders
Three loci were shared between IBS and DVD, all with 
concordant effect directions (Table  2; Fig.  5; Additional 
file 5: Table S27). The only shared loci identified for IBS 
and IBD mapped to the MHC region. In conjFDR of the 
three IBS subtypes, the number of shared loci with psy-
chiatric disorders or gastrointestinal diseases was gen-
erally fewer than those shared with the combined IBS 
sample. BIP and SCZ had shared loci identified with all 
three subtypes of IBS. However, none of these shared loci 
were identical across the IBS subtypes. None of the loci 
shared between IBSD or IBSC and the secondary phe-
notypes were identified in the conjFDR analyses for the 
overall IBS sample and the secondary phenotypes. Five 
of the 11 loci shared between IBSM, and the secondary 
phenotypes were not identified in the conjFDR analyses 
of the overall IBS sample (Fig. 6; Additional file 5: Tables 
S28 – S38).

Consistency of genetic effects in an independent sample
A total of 175 unique lead SNPs were identified for IBS 
conditioned on psychiatric and gastrointestinal diseases 
(Additional file  5: Tables S17 – S22). A total of 30 lead 
SNPs were excluded (17 due to sample overlap and 13 
due to no statistic in the independent dataset) before 
applying the test of consistency of genetic effects. The 
remaining 145 SNPs were checked for consistency of 
their effect direction in the validation GWAS summary 
statistics from FinnGen. We found a significant en masse 
concordance of effect directions in the discovery and rep-
lication samples (100/145, p = 2.86E − 06).

Functional annotations and gene ontology
The majority of loci identified in conjFDR analyses har-
bored intergenic or intronic SNPs, while two loci, rs5174 
[LRP8] and rs20551 [EP300], were in exonic regions. 
Several loci shared between IBS and psychiatric dis-
orders rs2265576, rs17210284, rs1909650, rs5174, and 
rs1356292, had CADD > 12.37 suggesting potentially det-
rimental effect (Additional file 5: Tables S23 – S26). GO 
analyses of genes mapped to loci shared between IBS and 
psychiatric disorders were enriched for biological pro-
cesses and cellular components relevant to the immune 
(defense response) and nervous (neurogenesis) systems 
(Additional file  6: Tables S39 – S40). Genes mapped to 
loci identified for IBS through condFDR were enriched 
for biological processes and cellular components related 
to the immune system (e.g., immune response regulating 
signaling pathway, response to bacterium, regulation of B 
cell proliferation, inflammatory response), nervous sys-
tem (e.g., neurogenesis, chemical synaptic transmission 

Fig. 4  Genetic correlations from LD score regression analyses 
for subtypes of irritable bowel syndrome (IBS): IBS with constipation 
(IBSC), IBS with diarrhea (IBSD) and IBS with mixed constipation 
and diarrhea (IBSM), and psychiatric and gastrointestinal diseases. 
Generalized anxiety disorder (GAD), major depression (MD), bipolar 
disorder (BIP), schizophrenia (SCZ), diverticular disease (DVD), 
or inflammatory bowel disease (IBD)
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postsynaptic, regulation of neurotransmitter levels), the 
gastrointestinal tract (e.g., epithelium development, tube 
development, epithelial tube morphogenesis), and other 
organ systems (e.g., skeletal system development, bone 
development, sexual reproduction) (Additional file  6: 
Tables S41 – S42). Genes mapped to loci shared between 
IBS and psychiatric disorders were upregulated in various 
parts of the brain including the anterior cingulate and 
frontal cortex, basal ganglia, nucleus accumbens, hypo-
thalamus, and amygdala, and downregulated in gastro-
intestinal organs including the stomach, liver, pancreas, 
terminal ileum and colon (Additional file 2: Fig. S3).

Discussion
Our comprehensive characterization of the genetic 
architecture of IBS demonstrates a high degree of poly-
genicity, with an estimated 12 k common variants. There 
was a large degree of polygenic overlap with psychiat-
ric disorders, despite the low genetic correlations of IBS 
with BIP (0.13) and SCZ (0.17). Our finding that 98% of 
trait-influencing variants for BIP and 93% for SCZ are 
overlapping with IBS is not evident from the genetic 
correlation analyses. Since close to half of the overlap-
ping variants between IBS and BIP (55%) and SCZ (56%) 

have concordant effect directions and are canceled out 
by discordant effects at the genome-wide level. Similarly, 
despite an estimated genetic correlation of zero between 
IBS and IBD, 77% of the variants influencing IBD are 
overlapping with IBS, but with nearly half of the variants 
(52%) having concordant effect directions. However, the 
difference in the polygenicity of IBS and IBD may have 
also contributed to the low genetic correlation [21]. In 
support of this, 100% of the trait influencing variants for 
DVD are a subset of those for IBS, while the genetic cor-
relations were only moderate despite 99% having con-
cordant effect directions [20]. The relatively high genetic 
correlations of IBS with MD and GAD may be accounted 
for by similarity in the polygenic landscape, large genetic 
overlap, and the concordant effect directions of the large 
majority (80%) of the variants associated with the pairs 
of phenotypes. The polygenic architecture of IBS, recog-
nized as a psychosomatic condition, as well as its genetic 
overlap patterns, are consistent with its inclusion in the 
psychiatric nosology [42].

Despite increasing GWAS sample sizes, the well-recog-
nized challenge of identifying trait-influencing variants 
for highly polygenic, complex phenotypes has persisted 
[51]. The condFDR of IBS on psychiatric disorders 

Fig. 5  A–F Conjunctional FDR Manhattan plot of –log10 (conjFDR) values for loci shared between irritable bowel syndrome (IBS) and other 
phenotypes: generalized anxiety disorder (GAD), major depression (MD), bipolar disorder (BIP), schizophrenia (SCZ), diverticular disease (DVD) 
and inflammatory bowel disease (IBD) SNPs with conjunctional –log10(conjFDR) > 1.3 (i.e., conjFDR < 0.05) are shown with large points
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brought about a 20-times boost in loci discovery when 
compared to the primary GWAS of IBS which identi-
fied only six genomic loci [11]. CondFDR of IBS on gas-
trointestinal disorders improved discovery in genomic 
loci by fourfold. These are consistent with the findings 
in the conditional QQ plots which demonstrated a more 

conspicuous SNP enrichment when the secondary phe-
notypes were psychiatric disorders rather than gastro-
intestinal diseases [17]. A recent study has identified 
several shared genomic risk loci between IBS and depres-
sive disorders using whole exome sequencing on a rela-
tively small sample [52]. While such approaches may be 

Fig. 6  Conjunctional FDR Manhattan plot of –log10 (conjFDR) values for loci shared between different subtypes of irritable bowel syndrome (IBS), 
and psychiatric disorders and gastrointestinal diseases. Top — IBS with constipation (IBSC), middle — IBS with diarrhea (IBSD), and bottom — IBS 
with mixed constipation and diarrhea (IBSM). Generalized anxiety disorder (GAD), major depression (MD), bipolar disorder (BIP), schizophrenia (SCZ), 
diverticular disease (DVD), or inflammatory bowel disease (IBD)
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interesting, our findings indicate that the majority of the 
genomic risk loci for IBS are intergenic or intronic, which 
means that these loci would not be identified with exome 
sequencing. The condFDR method has been widely used 
to improve genomic discoveries in other somatic and psy-
chiatric phenotypes [15, 16, 18, 20, 53]. Functional analy-
ses of genes mapped to the much larger number of loci 
associated with IBS point not only to molecular pathways 
of the gut-brain axis and epithelium development but 
also pathways involved in bone and reproductive physiol-
ogy (Additional file 6: Table 41). Studies have previously 
reported an increased risk of osteoporosis in individu-
als affected with IBS [54, 55] and from medications used 
for IBS [56]. Similarly, changes in gastrointestinal motil-
ity and IBS have been linked to sex hormones as well as 
hormone replacement treatments [57–60]. Functional 
pathways identified including neurogenesis and neuronal 
differentiation as well as neuronal and synaptic structures 
point to the gut-brain axis in IBS and are consistent with 
the neuroplastic changes reported in the intestine of IBS 
patients [61]. While changes in mucosal mediators may 
initiate such neuroplastic changes in the intestine [61], 
our findings suggest that genetic factors may predispose 
individuals to these mediators. In regards to synaptic 
function, dysregulated serotonergic neurotransmission 
has been suggested to be partly responsible for IBS symp-
tomatology [62]. The identification of novel loci for IBS 
has shed light on functional pathways other than those 
relevant to the nervous system. Notably, the functional 
pathways involving the immune system and gastrointes-
tinal tract development suggest that genetic factors may 
contribute to IBS through multiple mechanisms. The role 
of the immune system in IBS is supported by evidence for 
the development of IBS following gastrointestinal infec-
tions at least in some individuals [63]. Taken together, the 
discovery of a larger number of genomic loci for IBS shed 
light on the broad range of biological pathways involved 
in the pathophysiology and hence, the potential for the 
development of novel treatments.

The significant comorbidity between IBS and psychi-
atric disorders seen in both clinical [23, 64] and epide-
miological data suggest common genetic risk [65, 66]. A 
total of 70 unique loci were shared between IBS and MD 
(n = 35), BIP (n = 27), SCZ (n = 15), and GAD (n = 7), and 
three loci with DVD, the majority having a concordant 
direction of effect. Although there is significant comor-
bidity between IBS and DVD [26] and IBD [25], fewer 
loci were identified for IBS by leveraging on these gastro-
intestinal phenotypes due to the relatively low polygenic-
ity of these phenotypes [17]. The identification of specific 
shared genomic loci enabled further investigation of the 
underlying biological mechanisms common to IBS and 
psychiatric disorders [17]. Genes mapped to shared loci 

between IBS and both psychiatric and gastrointestinal 
diseases were enriched for pathways relevant to the nerv-
ous and immune systems. Pathways relevant for the gas-
trointestinal tract were only found for genes mapped to 
genomic loci identified for IBS. The shared genomic loci 
identified for IBS subtypes indicate that our main find-
ings for the total IBS sample may reflect the large pro-
portion of IBSM in the overall sample. Interestingly, the 
shared loci influencing IBSC or IBSD subtypes were not 
identified in the IBSM subtype or the overall IBS sample 
highlighting the genetic heterogeneity of the different 
IBS subtypes. The moderate genetic correlation results 
between IBSC and IBSD also support genetic differ-
ences underlying the variation in the clinical manifesta-
tions. These findings may have implications for treatment 
development and precision medicine in IBS.

The two exonic loci identified for IBS may be relevant 
for further understanding of shared biological mecha-
nisms between IBS and psychiatric disorders. The SNP 
rs20551 is a missense variant in EP300 — a gene involved 
in regulation of molecular processes of neuronal plas-
ticity [67] as well as in the differentiation of intestinal 
epithelial cells [68], and in regulating the expression of 
intestinal antimicrobial peptides [69]. LRP8 encodes 
a receptor protein (ApoER2) for ligands contain-
ing Reelin (RELN) and apolipoprotein E (Apo-E) [70]. 
RELN-ApoER2 pathway regulates neurodevelopmen-
tal processes in the central [71], and peripheral nervous 
system [72], and may have a role in the maintenance of 
the intestinal epithelial barrier [73, 74]. Recent research 
has demonstrated the critical role of nociceptor neu-
ronal signaling in the protection of intestinal mucosa at 
homeostasis and during inflammatory pathologies [75]. 
Furthermore, the deranged intestinal barrier and translo-
cation of bacterial products have been linked to changes 
in the blood–brain barrier with consequent behavioral 
and cognitive changes [76]. Similar gut-brain-axis mech-
anisms may also play a role in IBS and partly explain 
the high comorbidity with psychiatric disorders. On the 
other hand, pleiotropic genes such as EP300 and LRP8 
influencing both the intestinal and brain functions may 
underly the high comorbidity between common psychi-
atric and gastrointestinal phenotypes. Further research is 
needed to fully understand the extent these mechanisms 
contribute and whether they vary in the different clinical 
subtypes of IBS.

One limitation of this undertaking is that GWAS data 
used for our analyses are from individuals of European 
ancestry thereby limiting the generalization of our find-
ings to other ancestries. Although we used BIP GWAS 
data removing the UK biobank, there are still other 
cohorts included in the meta-analysis that could have 
overlap, particularly of controls. It is unlikely that there 



Page 15 of 18Tesfaye et al. Genome Medicine           (2023) 15:60 	

is any overlap between samples included in IBS and the 
other phenotypes as indicated by the genetic covari-
ance parameters (Additional file  4: Table  S43). Another 
potential limitation arising from the IBS GWAS could 
be that comorbid psychiatric disorders may not have 
been adequately excluded, which may explain some of 
the genetic overlap, especially with MD or GAD. How-
ever, it is unlikely that comorbidities with BIP and SCZ 
explain the genetic overlap with IBS as both are relatively 
rare conditions [77]. Similarly, comorbidity is unlikely to 
explain the genetic overlap between IBS and gastroin-
testinal diseases since they were excluded from the IBS 
sample [11]. Sex-stratified analyses were not performed 
because sex-specific GWAS summary statistics of IBS 
are not yet available. Despite these limitations, our ana-
lytical methods have substantially improved the discov-
ery of genetic loci for IBS and revealed much broader 
biological pathways involving not only the gut-brain axis 
and immune system but also intestinal development, and 
bone and reproductive physiology. These findings suggest 
a wide range of biological pathways involved in IBS which 
can potentially be leveraged to develop biological treat-
ments targeting these pathways. Our findings of genetic 
heterogeneity of the clinical subtypes of IBS call for fur-
ther research into subtype-specific biological pathways to 
help advance precision medicine.

Conclusions
Our findings of the polygenic architecture of IBS and 
the extensive genetic overlap between IBS and both psy-
chiatric disorders and gastrointestinal diseases provide 
novel insight into the shared genetic architecture beyond 
genetic correlations. This genetic overlap enabled the 
identification of 132 genomic risk loci for IBS, of which 
116 are novel. Functional pathway analyses suggest that 
genetic factors may influence a wide range of biological 
pathways including the gut-brain axis and local gastroin-
testinal mechanisms in the etiopathology of IBS. Shared 
genomic loci associated with IBS and psychiatric disor-
ders show enrichment of genes for neurogenesis and 
defense response suggesting dysregulation of molecular 
pathways of the gut-brain axis and the immune system. 
Furthermore, the pattern of genetic correlations and 
shared genomic loci with psychiatric disorders support 
the underlying genetic heterogeneity of IBS subtypes. 
These genetic discoveries provide a better understand-
ing of the pathophysiology of IBS potentially forming the 
basis for the development of more effective interventions.
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