
Sanjaya et al. Genome Medicine           (2023) 15:47  
https://doi.org/10.1186/s13073-023-01204-4

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genome Medicine

Mutation‑Attention (MuAt): deep 
representation learning of somatic mutations 
for tumour typing and subtyping
Prima Sanjaya1,2,3, Katri Maljanen1,2,3, Riku Katainen1,2,3,4, Sebastian M. Waszak5,6,7, Genomics England Research 
Consortium, Lauri A. Aaltonen2,4, Oliver Stegle8,9, Jan O. Korbel8,9,10 and Esa Pitkänen1,2,3,9*    

Abstract 

Background  Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, 
prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation 
burden such as many paediatric tumours. Moreover, the ability to leverage deep representation learning in discovery 
of tumour entities remains unknown.

Methods  We introduce here Mutation-Attention (MuAt), a deep neural network to learn representations of simple 
and complex somatic alterations for prediction of tumour types and subtypes. In contrast to many previous methods, 
MuAt utilizes the attention mechanism on individual mutations instead of aggregated mutation counts.

Results  We trained MuAt models on 2587 whole cancer genomes (24 tumour types) from the Pan-Cancer Analy-
sis of Whole Genomes (PCAWG) and 7352 cancer exomes (20 types) from the Cancer Genome Atlas (TCGA). MuAt 
achieved prediction accuracy of 89% for whole genomes and 64% for whole exomes, and a top-5 accuracy of 97% 
and 90%, respectively. MuAt models were found to be well-calibrated and perform well in three independent whole 
cancer genome cohorts with 10,361 tumours in total. We show MuAt to be able to learn clinically and biologically 
relevant tumour entities including acral melanoma, SHH-activated medulloblastoma, SPOP-associated prostate 
cancer, microsatellite instability, POLE proofreading deficiency, and MUTYH-associated pancreatic endocrine tumours 
without these tumour subtypes and subgroups being provided as training labels. Finally, scrunity of MuAt attention 
matrices revealed both ubiquitous and tumour-type specific patterns of simple and complex somatic mutations.

Conclusions  Integrated representations of somatic alterations learnt by MuAt were able to accurately identify histo-
logical tumour types and identify tumour entities, with potential to impact precision cancer medicine.
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Background
Accurate identification of tumour histological type and 
molecular subtype is crucial to determining cancer diag-
nosis, prognosis and treatment choice [1, 2]. In paediatric 
brain tumours, long-term survival can range from 90% 
for WNT-medulloblastomas to 40% for Group 3-medul-
loblastomas  [3]. Solid tumours exhibiting microsatellite 
instability (MSI) resulting from defective mismatch repair 
(MMR) are susceptible to treatment with PD-1 immune 
checkpoint inhibitors leading to improved response and 
survival rates  [4, 5]. Moreover, approximately 3–5% of 
metastatic cancers do not have a clear primary site of ori-
gin despite comprehensive clinical workup [6, 7]. These 
cases, termed cancers of unknown primary (CUPs), pre-
sent a challenge as targeted treatment options depend 
on the tissue of origin. CUPs are thus often treated with 
broad spectrum antineoplastic drugs with limited suc-
cess, instead of site-specific treatments. Liquid biopsies 
can be used to detect circulating tumour DNA (ctDNA) 
originating from cancer cells before metastatic spread 
and to predict disease outcome  [8–10]. Similarly to 
CUPs, determining the tissue of origin of ctDNA is a key 
obstacle in enabling clinical action.

Somatic mutations in a cancer cell are the consequence 
of the mutational processes which acted on its ancestors 
in the somatic cell tree  [11]. Many such processes have 
been identified, including exogenous processes such as 
ultraviolet radiation and polycyclic aromatic hydrocar-
bons in tobacco smoke, and endogenous processes such 
as spontaneous deamination of methylated cytosines, 
defective DNA repair, and DNA replication infidelity 
[12]. These processes can have distinct characteristics in 
terms of DNA substrate preference (e.g. CpG, mononu-
cleotide microsatellite), mutation type (e.g. single-base 
substitution, insertion or deletion, or structural altera-
tion) and genomic position (e.g. intronic or late replicat-
ing region preference), among others [13]. Typically only 
a handful of mutational processes are active in a cell of 
specific type and location within the body and tissue [14, 
15]. For instance, skin cells exposed to the sun are sus-
ceptible to DNA damage due to ultraviolet radiation, 
whereas B cells undergo somatic hypermutation affect-
ing predominantly the immunoglobulin heavy chain vari-
able region of the genome. Somatic mutations can thus 
be informative of the tissues and conditions where the 
mutations occurred, and consequently, cancer genome 
sequencing can be used to scrutinize the somatic muta-
tions of a cancer with the prospect of revealing its tissue 
of origin and molecular subtype.

Recently, several computational methods have been 
developed to predict tumour types by analysing somatic 
driver and passenger mutation patterns in next-genera-
tion sequencing data [16, 17]. TumorTracer is a random 

forest classifier combining copy number profiles and 
nucleotide substitution spectra attaining 85% and 69% 
accuracy across 6 and 10 primary sites, respectively [18]. 
Soh et  al.  predicted tumour types with a support vec-
tor machine using information on somatically mutated 
genes resulting in 49% accuracy in 28 tumour types, with 
addition of copy number profiles increasing accuracy to 
78% [19]. Especially in whole cancer genomes, the muta-
tional landscape is dominated by passenger mutations 
which are highly informative of the tissue-of-origin. As 
part of the Pan-Cancer Analysis of Whole Genomes pro-
ject (PCAWG), Jiao et  al.  explored tumour type predic-
tion in 2606 tumours representing 24 tumour types and 
achieved 88% accuracy in an independent set of tumour 
whole genomes with a deep neural network model which 
takes as input counts of mutation types and their binned 
genomic positions in each tumour [20]. Tumours exhibit-
ing MSI were removed from data prior to model training. 
Both Jiao et al. and Salvadores et al.  [21] found the util-
ity of driver mutations in accurately predicting tumour 
types to be limited due to the relatively small number 
of driver alterations per tumour, few recurrent driver 
alterations, and lack of strong tumour type specificity for 
cancer driver genes. Recently, Danyi et  al.  showed data 
augmentation to be an effective strategy for tumour typ-
ing with sparse sequencing data such as sequencing of 
ctDNA [22].

While supervised approaches have been developed to 
predict tumour subtypes  [23–25], unsupervised meth-
ods are more common due to lack of labelled subtype 
data. In unsupervised tumour subtyping, one typically 
aims to find a compact set of latent factors explaining 
the observed data, often compassing multiple modali-
ties  [26], and then identifying subtypes using latent fac-
tors. Recent subtyping methods have employed matrix 
factorization  [27], clustering  [28], deep autoencod-
ers  [24], and adversarial learning  [29] of multiomics 
data. Discovery of prognostic subtypes has been done by 
weighting or selecting features based on survival [24, 30]. 
Sequence context of somatic mutations has been shown 
to be informative in subtyping of breast cancers [31].

Here, we developed a novel deep neural network 
(DNN) model, termed Mutation-Attention (MuAt), 
which allows us to predict tumour types from cancer 
whole-genome and whole-exome sequencing data. It 
leverages the ability of DNNs to learn in a supervised 
setting representations that can be used to explore and 
explain the structure of input data beyond class labels. 
MuAt utilizes the attention mechanism  [32, 33], which 
allows the model to focus on data elements which are 
important to solving the learning task at hand, and can 
lead to improved model performance and explainabil-
ity  [34]. MuAt is able to integrate single-nucleotide and  
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multi-nucleotide substitutions (SNVs/MNVs), short inser-
tions and deletions (indels), structural variant (SV) break 
points, and combinations of these primary genetic alter-
ations by learning multimodal data embeddings [35–37]. 
These embeddings integrate mutation type and genomic 
position information at a per-mutation level, instead of 
the more common approach of representing types and 
positions as aggregated counts [20, 21, 35, 36]. A recent 
method utilized multiple instance learning of mutation 
embeddings to predict tumour-level attributes including  
the presence of driver mutations, tumour purity and  
clonality, and MSI status from a set of genomic variants 
given their types and positions [37].

In this work, we demonstrate the utility of a supervised 
approach to compute tumour-level representations from 
mutation-level representations with the attention mecha-
nism for precision cancer medicine tasks. These tasks 
include tumour type identification and distinguishing 
diverse set of tumour characteristics such as molecular 
subtypes and DNA repair deficiencies without specifi-
cally training for each individual characteristic.

Our models achieve high accuracy in predicting 
tumour types, with top-1 and top-3 accuracies of 88.8% 
and 96.1% in the 24 tumour types that were studied 
within the PCAWG consortium. MuAt further outper-
forms the previous state-of-the-art approaches for can-
cer types that have been challenging to predict such as 
tumours with MSI. We investigate the utility of our mod-
els in tumour exome sequencing data from the TCGA 
consortium, achieving 64.1% accuracy across 20 tumour 
types. Exploring the representations learnt by MuAt, we 
show that the model learns to differentiate tumour sub-
types which were not given as input information. These 
subtypes include tumours driven by somatic and ger-
mline mutations such prostate cancers with somatic 
SPOP mutations and pancreatic endocrine tumours with 
germline MUTYH mutations, hypermutable subtypes 
such as microsatellite-unstable cancers and polymerase 
ǫ proofreading deficient tumours, as well as CCND1-
amplified acral melanomas, and Sonic Hedgehog (SHH)-
activated medulloblastomas.

The use of attention mechanism together with the abil-
ity to learn representations for different data modalities 
such as mutation types and positions allows MuAt to rep-
resent each mutation as a combination of these modali-
ties. To gain insight into model results, we show that  
the trained model learns to focus its attention to muta-
tions that are characteristic for each tumour type. MuAt 
models trained with cancer genomes from PCAWG and 
TCGA consortiums, an interactive browser, and the source 
code are available under a permissible licence at GitHub 
(https://​github.​com/​prima​sanja​ya/​mutat​ion-​atten​tion).

Methods
Data
To train MuAt models, we utilized WGS data from the 
Pan-Cancer Analysis of Whole Genome (PCAWG) pro-
ject and WES data from the Pan-Cancer Atlas project 
of TCGA. PCAWG analysed whole genomes of 2658 
human tumours and matched normal samples across 
38 tumour types obtained from International Cancer 
Genome Consortium (ICGC) and The Cancer Genome 
Atlas (TCGA) donors [38]. The project released a dataset 
of somatic mutations called uniformly in these tumours 
containing somatic SNVs, MNVs, indels (<50 bp), SVs 
and mobile element insertions (MEIs). To train MuAt 
models, we utilized only tumour types with more than 20 
tumours in PCAWG resulting in 2587 tumours across 24 
tumour types and 18 primary sites. These tumours har-
boured a total of 47,646,239 somatic mutations, divided 
into 41,969,899 SNVs, 826,093 MNVs, 3,720,396 indels, 
1,106,598 SVs and 16,735 MEIs, constituting the PCAWG 
training dataset. We also trained a random forest model 
to predict tumour types on mutational signatures iden-
tified in PCAWG tumours [15]. We used the single-base 
substitution (SBS), doublet-base substitution (DBS) and 
small insertion-and-deletion (ID) signatures and limited 
the data to the same 24 cancer types that were used to 
train MuAt.

The Pan-Cancer Atlas project of TCGA [39] released 
the MC3 somatic mutation dataset consisting of a total of 
5,717,732 somatic mutations from 8942 tumours across 
32 tumour types  [40]. We selected the 20 tumour types 
with more than 100 tumours into our TCGA training 
dataset, resulting in 7352 tumours and 2,682,344 somatic 
mutations (2,498,826 SNVs, 46,589 MNVs, and 136,929 
indels). No SVs in the data were included in the training 
dataset due to these events often occurring in the inter-
genic regions and thus not adequately captured by exome 
sequencing.

To validate our results with data which was not used in 
training, we used the whole genomes available in ICGC 
that were not included in the PCAWG dataset above.  
Out of 16 tumour types, 5 tumour types were matched to 
PCAWG tumour types. There were 309 tumours, with a 
total of 2,806,722 mutations (2,679,477 SNVs, 66,231 MNVs 
and 43,014 indels). SVs were not available in this dataset.

Furthermore, we evaluated our models on cancer whole 
genome sequences available through Genomics England 
(GEL) (release v16, October 13, 2022) [41]. This dataset 
consists of 17,234 whole-genome sequences of cancers 
across 23 cancer types. We selected the seven tumour 
types which matched the types available in PCAWG, 
resulting in 9796 tumours, with the total of 334,592,186 
SNVs available for benchmarking. Somatic variant 
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positions in the GEL dataset were given in GRCh38 refer-
ence genome.

Finally, we carried out validation in a cohort of colorec-
tal cancer (CRC) whole genomes, which not used to train 
the models. This cohort consisted of 256 cancers with 
somatic variants called with MuTect v1.1.4 (GRCh37) 
[42]. Somatic variant calls are available in EGA (accession 
number EGAS00001003010). Further details on the data-
sets can be found in Additional file 1: Table S1.

Model
MuAt is a DNN model, which predicts tumour types 
based on a catalogue of somatic alterations that are 
observed in a single cancer genome (Fig. 1). We describe 
here briefly the key aspects of MuAt and provide details 
in Additional file 2: Fig. S1. The model consists of three 
consecutive modules. In the first module, mutations 
are encoded and embedded into a feature space. Three 
sources of information are used to encode each muta-
tion: (1) mutation type embedded in a three-nucleotide 
sequence context (e.g. Ap[C>T]pG, Tp[delC]pC), (2) 
genomic position in 1-Mbp bins and (3) annotations 
describing whether a mutation occurs in a gene or in an 
exon, and the coding strand orientation. The supported 
somatic mutation types are SNVs, indels and SV break-
points. The MuAt encoding allows for combinations of 
up to three of these simple mutations to be represented in 
the sequence context, for instance MNVs (e.g. Cp[C>T]
p[C>T]) or >1 bp indels (e.g. [insT]p[insT]p[insT]). 
Sequence contexts, genomic positions and annotations 
are represented as one-hot encoded vectors. MuAt learns 
feature embeddings of these three modalities, which 

are then concatenated and used as input to the second 
module.

In the second module, an attention mechanism is used 
to assign more weight (“soft-select”) to pairs of mutations 
which are informative in predicting the tumour type, and 
compute input features for the third module. Attention is 
defined as

where Q, K, V are called the query, key and value matri-
ces, respectively, and σ denotes the softmax  [32, 33]. Q, 
K and V are all l × d matrices, where l is the number of 
mutations and d is the feature dimension; these matri-
ces are obtained as linear transformations of the input. 
Product QK ′ can be seen as a similarity matrix, with the 
softmax being used to soft-select the most relevant muta-
tions (“keys”) for each mutation (“query”). The atten-
tion thus maps each input mutation to a d-dimensional 
feature space defined in terms of similarity to other 
mutations in the same tumour. Unlike in many natural 
language processing applications which employ attention 
[33], no order is imposed on the mutations: MuAt treats 
somatic mutations analogously to a bag-of-words.

The third module combines the mutation features 
with fully connected layers yielding tumour-level fea-
tures. These features are used to compute the final 
output of the model, which are probabilities over the 
tumour type labels. The three modules constitute a single 
model, where all parameters are trained end-to-end with 
backpropagation and stochastic gradient descent. The 
trained MuAt model can be interrogated by extracting 
mutation-level features from the attention module and 

(1)Attention(Q,K ,V ) = σ
QK ′
√
d

V

Fig. 1  Illustration of the MuAt deep neural network to predict the type of a tumour from its catalogue of somatic mutations. First, mutation data 
is one-hot encoded. MuAt integrates three data modalities: 3-bp sequence motif, genomic position and genomic annotations. Then, embedded 
mutation vectors are fed to the attention mechanism. Finally, mutation-level features are combined into tumour-level features, and tumour type 
is predicted. MuAt models can be interrogated by analysing (1) the attention matrix to recover informative mutations for tumours and tumour 
types, (2) tumour-level features for tumour subtype discovery and (3) prediction performance
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tumour-level features from the last module. We can pro-
ject the latter onto a two-dimensional space with UMAP 
[43] for discovery of tumour subtypes.

Experimental design and reporting
We were interested in (1) evaluating the contribution of 
different mutation types in prediction performance, (2) 
finding hyperparameters which result in best prediction 
performance, (3) comparing MuAt with existing models, 
(4) how to best interpret the trained MuAt models, and 
whether the features learnt by MuAt are compatible with 
previous findings. This section provides details how the 
experiments to answer these questions were prepared.

Data preprocessing
Preparing MuAt inputs from somatic variant callsets
For each somatic variant call in the datasets, mutational 
sequences s ∈ �3 are drawn from alphabet � = {A, C, 
G, T} ∪M . Mutation symbols M consist of six substitu-
tions described with respect to the pyrimidine base (i.e. 
C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G and 
T:A>G:C); deletions of A, C, G and T; insertions of A, C, 
G, T; breakpoints for four types of structural variants (i.e. 
deletions, duplications, inversions and translocations); 
and retrotransposon insertions (i.e. L1, Alu and SINE-
VNTR-Alus (SVA)). This encoding allows represent-
ing both simple and complex mutations. For instance, 
the substitution ApCpG>ApTpG would be encoded as 
A[C>T]G, a diadenine deletion preceded by a cytosine 
as C[del A][del A], and a deletion breakpoint with a C>G 
substitution followed by a thymine as [SV_del][C>G]T, 
where {[C>T], [del A], [SV_del]} ⊂ M.

In experiments, we also considered non-mutation 
events as negative examples. These are constructed by 
randomly selecting positions where there is a mutation 
in one tumour (e.g. A[C>T]G at chr1:11,235,813), encod-
ing this position without mutational symbols (e.g. ACG 
at chr1:11,235,813) and placing it into another tumour’s 
mutational catalogue. When injecting negative exam-
ples into a tumour, we add the median number of vari-
ants per type in the dataset as negatives. Specifically, if 
the dataset has a median of 1000 SNVs and 100 indels, 
then each tumour will receive a total of 1100 negative 
examples, where 1000 were picked from random SNVs 
in other tumours, and the remainder from random 
indels. Genomic positions are represented in 1-Mbp 
bins. For instance, the position (chr1, 11,235,813) would 
be encoded as the token “chr1_11”. This token is used 
to encode all mutations occurring in chr:11,000,000–
11,999,999. Since all models were trained on somatic var-
iants with genomic positions in GRCh37 coordinates, we 
converted positions to GRCh37 coordinates with Python 
package “liftover” for any data in GRCh38.

We experimented with mutational annotations consist-
ing of indicators whether the mutation occurs in a gene 
(“genic”) or in an exon (“exonic”). In addition, we catego-
rize each mutation into one of four mutually exclusive 
classes (“strand”): mutation’s pyrimidine reference base is 
on the (1) same or (2) opposite strand as a gene, or (3) 
mutation overlaps two genes on opposite strands, or (4) 
mutation is intergenic. This annotation attempted to cap-
ture transcriptional strand biases associated with some 
mutational mechanisms [44].

Each of the three input modalities (mutation motif, 
position, annotations) was one-hot encoded separately 
using token dictionaries. The dictionary of positions con-
sisted 2915 tokens for all 1-Mb genomic bins. Mutational 
motif dictionary consisted of 3692 tokens including 96 
SNVs, 2170 MNVs, 1160 indels, 233 SVs and 33 MEIs. 
Finally, the annotation dictionary contained 2 ×2×4=16 
values for the possible combinations of genic, exonic and 
strand attributes.

MuAt hyperparameter search, model training and validation
We performed search for MuAt hyperparameters over 
embedding dimensions {128, 256, 512}, number of 
encoder layers {1, 2, 4}, number of attention heads {1, 
2}, number of fully connected layers {1, 2} and mutation 
types to be included in the input. Additional file 2: Fig. S2 
shows the mutation type combinations for PCAWG (15 
combinations) and TCGA datasets (9 combinations). We 
set the learning rate to 6× 10−4 , momentum to 0.9, and 
minibatch size to one, training for 150 epochs. Maxi-
mum number of mutations MuAt was able to process 
per tumour in our experiments was 5000, limited by the 
memory on GPUs available to us (see Programming envi-
ronment). MuAt parameters were optimized with sto-
chastic gradient descent minimizing cross-entropy loss

where ŷi is predicted probability for tumour type i, and 
yi ∈ {0, 1} denotes whether i is the correct tumour type.

To perform cross-validation, we split the data equally 
into ten folds in each cancer type and combined the i’th 
folds from each cancer type. The exact same splits were 
used to train all models (MuAt, DNN, RF). In each com-
bined fold, we trained a model for each combination of 
the hyperparameter choices listed above, and the model 
achieving the best accuracy in the validation set was 
selected from each fold. The hyperparameters and pre-
diction performance for each fold are given in Additional 
file 1: Table S2.

To create the MuAt and DNN models used to evalu-
ate prediction performance, and to investigate the 
tumour-level features learnt by MuAt, we created 

(2)L = H(y, ŷ) = −
∑

i

yi log(ŷi)
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ensemble models from models obtained in cross-vali-
dation. We first chose the best models from each fold 
as the components of the ensemble. Then, ensemble 
prediction score was computed by summing the class 
prediction scores (logits) of these component models, 
with ensemble prediction corresponding to the tumour 
type receiving the highest ensemble prediction score.

The model selected for analysis of tumour typ-
ing performance in sparse data was trained on SNVs, 
MNVs, indels and SVs/MEIs, genomic positions and 
mutation annotations using the PCAWG dataset. 
This model contained one attention head and two 
encoder layers, embedding dimension 512, resulting in 
28,458,520 trainable parameters.

Comparing MuAt with other models
We compared MuAt to deep neural network and ran-
dom forest (RF) models proposed by Jiao et al. [20]. We 
further evaluated the contribution of attention mecha-
nism to MuAt performance. In [20], a total of 150 SNV 
features were used (SNV150) containing the six pos-
sible single-nucleotide substitutions (C>A, C>G, C>T, 
T>A, T>C, T>G), SNVs together with either the flank-
ing 5′ or 3′ base (4× 6 + 6 × 4 = 48 features), and SNVs 
together with both the 5′ and 3′ flanking bases (4×
6× 4 = 96 features). To evaluate the contribution of the 
attention encoder layer, we compared a MuAt model 
with only one encoder layer to a model without any 
encoder layers.

To investigate whether mutational signatures could 
be used to predict tumour types in PCAWG, we cre-
ated a random forest model on single-base substitu-
tion (SBS), doublet-base substitution (DBS) and small 
insertion-and-deletion signatures (ID) extracted in 
PCAWG tumours  [15]. We used each signature type 
separately and combined with other signature types. 
We performed 10-fold cross-validation to train all 
models, using the same fold splits as for other mod-
els. DNN model hyperparameters were optimized in 
each fold as described in [20]. To train RF models, we 
used the random forest implementation in scikit-learn 
package with default parameters.

We report the performance in terms of accu-
racy TP + TN/(TP + TN + FP + FN ) , precision 
TP/(TP + FP) , recall TP/(TP + FN ) and F1 score 
2TP/(2TP + FP + FN ) , where TP,  TN,  FP,  FN are 
the number of true positives and negatives, and false 
positives and negatives, respectively. Top-k accuracies 
were calculated such that the prediction was deemed 
correct when the correct class is among the k highest 
scoring predictions.

Evaluating MuAt in sparse data
To test the performance of MuAt in sparse data, and fur-
ther to test transfer learning from WGS to WES data, 
we selected 13 common tumour types existing in both 
PCAWG and TCGA dataset (Additional file 1: Table S3). 
With the same hyperparameters setup as mentioned pre-
viously, we retrained the model, as well downsampled 
validation set with fixed number of mutations n ∈ {10, 50, 
100, 300, 1000, 2500, 4000, 5000}, where 5000 is the max-
imum capacity of MuAt. Results for transfer learning are 
shown in Additional file 2: Fig. S3. This setup also used 
for testing the contribution of the attention mechanism 
to prediction performance (Fig.  3 and Additional file  2: 
Fig. S4.

Analysis of MuAt tumour‑level features
To visualize the tumour-level features learnt by the MuAt 
ensemble model, we extracted the outputs of the layers 
(n=240 values) before the final prediction from all ten 
ensemble component models (Additional file 2: Fig. S1). 
This yielded a feature vector of length 240 for each 
tumour, which we projected onto a two-dimensional 
space with UMAP [43]. Interactive UMAP visualizations 
are available at https://​github.​com/​prima​sanja​ya/​mutat​
ion-​atten​tion.

To reduce complexity of the 240-dimensional feature 
space for further analysis, we utilized principal com-
ponent analysis and non-negative matrix factoriza-
tion (NMF). NMF analysis was carried out with Python 
sklearn library, minimizing the Frobenius norm. A hyper-
parameter search was carried out over the number of 
components to extract in PCAWG data, revealing a knee 
point at approximately 14 components, with 50 compo-
nents showing reconstruction error convergence. These 
50 components, called MuAt factors M1,. . .,M50, were 
then extracted from the MuAt PCAWG ensemble model.

Association of MuAt factors with mutational signatures 
was examined by fitting a least-squares linear model 
for each PCAWG single-base signature exposure s as 
log(s + 1) ∼ M1, . . . ,M50 . Associations with FDR<10% 
and, for each signature, the variance explained by the lin-
ear model are shown in Fig. 5b.

Inspecting attention matrices
We analysed the attention matrices QK ′ of each tumour 
in a single MuAt model trained on PCAWG somatic 
SNVs, MNVs, indels and SVs, choosing the best model 
from (arbitrarily) the first cross-validation fold for 
this purpose. We extracted the 5000×5000 matrices 
A = (aij)  and selected the values aij>0.9×max(A) to 
reduce the size of data. Rows and columns of A corre-
spond to mutations of a tumour. We can thus visualize 

https://github.com/primasanjaya/mutation-attention
https://github.com/primasanjaya/mutation-attention
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the matrices with respect to different mutational data 
modalities; in our experiments, we visualized mutational 
motifs and genomic positions (Fig. 6). Genomic annota-
tions (i.e. genic, exonic and strand attributes) were not 
visualized.

Results
Evaluation of histological tumour typing performance
We first evaluated the contribution of different somatic 
mutation types and mutation annotations to cross-vali-
dated prediction performance. In tumour whole genomes 
from the PCAWG consortium, the best MuAt perfor-
mance was obtained with the combination of SNVs, 
MNVs, indels and genomic position (accuracy 88.8%, 
97.4% top-5) (Fig.  2a), although the differences in per-
formance between these scenarios tested were relatively 
small. In tumour exomes from the TCGA consortium, 
addition of indels and mutation annotations improved 
the performance substantially over the other WES mod-
els (accuracy 64.1%) (Fig.  2a and Additional file  2: Figs. 
S2, S5). While predicting the exact tumour type cor-
rectly with somatic mutations from exomes compared to 
whole genomes was more challenging and MuAt did not 
achieve a high accuracy in predicting the exact tumour 
type (i.e. top-1 accuracy), the correct tumour type was 
in the top-5 of MuAt predictions in 90.6% of cases. Fur-
thermore, MuAt predictions were found to be reliable, 
indicating that the model was well-calibrated (Additional 
file 2: Fig. S6).

We then benchmarked our method against a recent 
deep neural network model (DNN,  [20]). Here, MuAt 
outperformed the DNN model, which achieved 85.5% 
accuracy with PCAWG cancer genomes and 62.8% 
accuracy in TCGA cancer exomes (Fig.  2b). In [20], 
the method was evaluated in PCAWG data where MSI 
tumours had been removed. As the exact type of an MSI 
tumour can be difficult to predict, and since they rep-
resent a clinically important subgroup  [45], we kept the 
MSI tumours in the data. This may explain the difference 
between our experiment and their reported accuracy of 
91% [20] (noted as DNN* in Additional file 1: Table S3a). 
In top-5 prediction of WGS data, both methods per-
formed similarly (PCAWG MuAt 97.6%, DNN 97.2%), 
whereas in WES data, DNN was more accurate (TCGA 
MuAt 90.6%, DNN 91.8%).

We compared the deep neural network-based meth-
ods to random forest (RF) models trained on somatic 
mutations and mutation signatures. The accuracies of 
RF models on somatic mutations were substantially 
worse than either MuAt or DNN (75.2% PCAWG, 54.7% 
TCGA). RF models trained on PCAWG mutational sig-
natures yielded better performance than on mutation 
counts, but failed to reach accuracies of either MuAt or 

DNN. RF model trained on combined SBS, DBS and ID 
signature features achieved accuracy of 81.4%. Individual 
signature type models had substantially worse accuracies 
(68.3% SBS, 42.1% DBS, 66.0% ID). Full results are avail-
able in Additional file 1: Table S3a.

To gauge the abilities of MuAt models trained with 
PCAWG data to generalize to unseen data, we evalu-
ated MuAt with whole-genome data not used in train-
ing. Here, we evaluated both the performance of models 
obtained from a cross-validation procedure (“fold mod-
els”) and models formed by combining the fold mod-
els (“ensemble models,” see the “Methods” section). We 
first predicted tumour types in the subset of ICGC whole 
genomes which were not part of PCAWG and where 
tumour types matched those in the PCAWG (six cohorts, 
five tumour types). Only models trained with somatic 
SNVs, or SNVs and MNVs were used, since these were 
the only mutation types which were available for all six 
cohorts. In these cohorts, MuAt fold models achieved 
85.1% mean accuracy across all tumours, outperforming 
DNN (82.4%), with the individual cohorts predicted at 
74–100% accuracy (Additional file 2: Fig. S7). Ensembling 
improved accuracies to 90.6% and 86.7% for MuAt and 
DNN, respectively. We then examined the transferabil-
ity of MuAt to scenarios where somatic mutation calling 
workflows differ from those used to generate the PCAWG 
training data. We tested MuAt, DNN and RF fold and 
ensemble models on whole genome data of 9796 cancers 
available in Genomics England, selecting the cancer types 
matching those in the PCAWG training data (see Addi-
tional file  1: Table  S1) [41]. MuAt fold models achieved 
75.6% mean accuracy compared to 73.0% of DNN and 
69.7% of RF (Additional file 1: Table S3c). Again, ensem-
bling improved performance to 81.8% for MuAt, 78.4% 
for DNN and 72.2% for RF, although tumour type-spe-
cific accuracies in GEL remained slightly lower than for 
the corresponding PCAWG types (e.g. breast cancer 85% 
in GEL vs 92% in PCAWG, CRC 79% vs 88% and prostate 
cancer 91% vs 93%) (Figs. S8, S9).

Since raw somatic mutation calls prior to quality filter-
ing were available in GEL, we took the opportunity to 
evaluate predictive performance also in unfiltered data. 
We observed the performance of all models trained on 
PCAWG WGS data to substantially degrade when applied 
to unfiltered GEL WGS data (Additional file 1: Table S3c). 
A major cause of this degradation was found to be the pres-
ence of false-positive GpTpG>GpGpG somatic mutations 
in guanine repeats. These variant calls had been identi-
fied in GEL as sequencing noise and filtered from the GEL 
high-quality callset. Removal of these artefacts from the 
callset partially restored model performance. For instance, 
MuAt accuracy improved from 47.6% in unfiltered data to 
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70.6% after artefact removal, compared to the 75.9% accu-
racy in high-quality data (Additional file 1: Table S3c).

Lastly, to further investigate the potential fragility of deep 
neural network models to data distribution shifts, we eval-
uated MuAt and DNN models on a cohort of 256 CRCs not 
used in training with somatic variants called with MuTect 
v1.1.4  [42]. MuAt and DNN models reached 76.7% and 
75.4% accuracy, respectively (Additional file  1: Table  S3b, 
Fig. S10), similar to performance observed in GEL CRCs 
(MuAt 78.6%; DNN 68.1%). Model ensembling was found 
to improve accuracy over single models, resulting in 80.5% 
for MuAt and 81.6% for DNN (Additional file 1: Table S3b).

For the remainder of experiments, we proceeded with 
the MuAt ensemble model trained on SNVs, MNVs, 
indels and SVs/MEIs, and genomic positions in PCAWG 
data. We first investigated how mutational burden in each 
tumour influences prediction performance. As expected, 
tumours with smallest mutational burden (n=259 tumours, 
<1109 mutations) showed the poorest prediction accuracy 
with 81% of tumours correctly predicted (Fig.  3a). Many 
prostate and thyroid cancers and medulloblastomas with 
low burden were found hard to predict, whereas pilocytic 
astrocytomas were predicted more accurately.

Similarly, the tumours with the highest burden (n=256 
tumours, >29,626 mutations) were more difficult to predict 
(accuracy 85.5%) than the tumours with intermediate bur-
dens (1109–29,626; accuracy 90.4%). This group included 
many colorectal, stomach and uterine cancers with DNA 
repair defects leading to hypermutability. Since MuAt 
capacity is being limited to 5000 mutations that are ran-
domly sampled from the mutation catalogue of the tumour, 
and this might explain the difficulty in predicting tumours 
with high mutational burden, we tested the consistency of 
MuAt predictions by predicting each PCAWG tumour 100 
times. Figure 3b shows that although the accuracy varied in 
tumours with higher mutation burden, MuAt consistently 
outperformed DNN. In general, the model misclassified 
similar tumour types, or tumour types exhibiting similar 
mutational mechanisms, such as lung cancers (lung adeno-
carcinomas vs squamous cell carcinomas) and gastrointes-
tinal cancers (Fig. 3c).

We investigated the performance of the MuAt PCAWG 
model in sparse data by subsampling mutations.  
Figure  3d shows the knee in accuracy (71.1%) to occur 
already at around maximum number of 500 mutations 

per sample, and steadily increasing up to 5000 muta-
tions. Notably, top-5 accuracy with 500 mutations was 
relatively high (95.6%). MuAt performed slightly better 
than the DNN model in subsampled data. To understand 
the contribution of the attention mechanism, we evalu-
ated MuAt models with the attention module removed. 
Such models were found to train and perform poorly 
compared to full MuAt model (Fig. 3e, Additional file 2: 
Fig. S4).

MuAt distinguishes molecular tumour subtypes
We explored the tumour-level MuAt ensemble features 
(n=240) learnt in PCAWG data by projecting the features 
to a two-dimensional space with UMAP [43]. PCAWG 
tumours clustered by tumour type as expected due to 
the high performance of the model in predicting tumour 
types (Fig.  4). We then investigated whether MuAt fea-
tures learnt by classifying tumour types could be inform-
ative of histological or molecular subtypes even though 
information on subtypes was not provided during model 
training. By correlating principal components of MuAt 
features with known or predicted driver events reported 
in PCAWG tumours [38] and correcting for tumour his-
tology, we identified a striking association with somatic 
driver events in SPOP (q=1.05×10−12 ; Additional file  2: 
Fig.  S11, Additional file  1: Table  S4), a candidate driver 
gene in prostate cancer  [46]. All twelve prostate can-
cers with SPOP mutations clustered in the MuAt fea-
ture UMAP  (Fig.  4a, Additional file  2: Fig.  S12). These 
tumours harboured 2.3 times (95% CI, 1.2–4.3x) more 
somatic SVs than wildtype tumours (Additional file  1: 
Table S5).

In contrast to tumours with BRCA1 or BRCA2 driver 
events, which harboured 1.6x (95% CI, 1.0–2.4x) and 1.4x 
(95% CI, 0.9–1.9x) more SVs as well as excess of 10–100 
bp deletions (BRCA1, 2.2x; BRCA2, 7.3x), SPOP tumours 
did not display excess of other somatic mutation types. 
Instead, SPOP tumours constituted a molecular subgroup 
of prostate cancer characterized by increased somatic 
structural alteration burden, compatible with previous 
reports  [47]. Prostate cancers with ERG driver muta-
tions (n=85), mutually exclusive to SPOP (OR=0.102, 
95% CI, 0.002–0.725, p=0.013; [48]), were evenly dis-
tributed among the remaining prostate cancers in MuAt 
clustering.

Fig. 2  Benchmarking MuAt prediction performance. a Top-1, top-3 and top-5 accuracies of MuAt models trained with different mutation types 
and annotations in PCAWG cancer genomes (top) and TCGA cancer exomes (bottom). Cross-validation accuracies are shown, with the standard 
deviation of accuracy in cross-validation folds indicated by error bars. b Prediction performance of MuAt in PCAWG genomes and TCGA exomes 
against a recent DNN model [20] and a random forest model (RF). SNV150 indicates the feature set used in [20], “ges” stands for genic, exonic 
and strand attributes

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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In medulloblastomas, four subgroups were visible in 
the feature UMAP (Fig.  4b). One of these was found to 
correspond to the Sonic Hedgehog (SHH)-activated 
medulloblastomas of adult patients with mutation land-
scapes dominated by the age-associated CpG>TpG sub-
stitutions  [49]. Furthermore, PTCH1, DDX3X  and SMO 
driver mutations characteristic to SHH medulloblasto-
mas, and PRDM6 enhancer hijacking driver events found 
in Group 4-medulloblastomas associated with MuAt 
features (FDR<1%; Additional file  2: Fig.  S11). Interest-
ingly, medulloblastomas with PRDM6 driver alterations 
(n=7) were confined to one of MuAt feature clusters 
(Additional file 2: Fig. S13). These tumours displayed an 
increased genome-wide burden of SV duplications (3.7x, 
95% CI, 1.6–8.3x), inversions (2.4x, 1.0–5.4x) and trans-
locations (2.4x, 1.0–5.6x), but no excess of other muta-
tion types compared to wildtype medulloblastomas.

MuAt identified tumours with mismatch repair defi-
ciency (MMR) resulting in microsatellite instability as 
well as tumours exhibiting very high burden of muta-
tions, especially TpCpT>TpApT substitutions charac-
teristic of polymerase ǫ and δ proofreading deficient 
tumours (Fig.  4c). MuAt feature principal components 
associated with driver mutations in the MMR gene  
PMS2 (q=1.28×10−6 , Additional file 1: Table S4), as well 
as with the fraction of microsatellites with somatic muta-
tions (Additional file 1: Table S6), a measure for the level 
of MSI in a tumour. TpCpT>TpApT substitutions posi-
tively associated with MuAt feature principal compo-
nents at 1% FDR (Additional file 1: Table S7).

In skin melanomas, we observed acral melanomas to 
cluster by MuAt features (Fig. 4d). Tumours in this sub-
group displayed many somatic SVs and amplifications of 
CCND1, a common alteration in acral melanomas asso-
ciating with ulceration and localized metastasis [50]. The 
only mucosal melanoma in the data harboured a CCND1 
amplification and clustered with the acral melanomas. 
The remaining melanomas, mostly of the cutaneous sub-
type, had a high number of CpC>TpT dinucleotide sub-
stitutions compatible with signature DBS1 due to UV 
light exposure. Finally, in chronic lymphocytic leukemias, 
MuAt differentiated tumours with patterns of somatic 
mutations that had occurred in B cells during IGH gene 
rearrangements (Fig. 4e) [51].

In pancreatic neuroendocrine tumours (PanNETs), 
we discovered four patients with tumours clustering 
in MuAt feature space to harbour germline mutations 
in MUTYH (p.Tyr176Cys, two patients; p.Pro292Leu; 
c.924+3A>C) (Fig.  4f, Additional file  2: Fig. S14) 
(Additional file 1: Table S8). All four tumours showed 
loss-of-heterozygosity of MUTYH. MUTYH encodes a 
DNA glycosylase involved in base excision repair, and 
germline MUTYH mutations have been implicated in 
a specific G:C>T:A somatic mutation signature found 
in PanNETs and colorectal cancers [52, 53]. Consist-
ently with these earlier results, we saw an excess of 
C>A substitutions in NpCpA and NpCpT contexts 
in MUTYH tumours compared to other PanNETs in 
PCAWG (t=9.63, p=6.57×10−15).

Lastly, we projected both PCAWG and GEL tumour-
level features onto the same UMAP to examine how 
well the two cohorts aligned in the MuAt feature space. 
Most GEL tumours were found to cluster together 
with PCAWG tumours in tumour type specific clus-
ters, with a small number of tumours with low predic-
tion confidence placed in-between. GEL squamous cell 
lung cancers (SCC) clustered together with PCAWG 
SCCs (87% subtyping accuracy, Additional file  2: Fig. 
S15). In breast cancers, we observed a partial cluster-
ing into lobular and ductal carcinomas.

MuAt features are informative of mutational patterns 
and correlate with mutational signatures
MuAt ensemble models are composed of ten MuAt com-
ponent models and thus output a total of 10×24=240 
MuAt tumour-level ensemble features for each input  
tumour. To understand how these features correlate 
with mutational patterns and mutational signatures, 
we first performed non-negative matrix factorization 
(NMF) on ensemble features extracted from PCAWG 
tumours. This yielded 50 factors we denote MuAt  
factors M1,. . .,M50. Many histologies in PCAWG were 
characterized by high values of specific factors (Fig. 5a, 
Additional file  2: Fig.  S16) such as skin melanomas by 
factor M3 and M34, lung cancers by M48, pilocytic 
astrocytomas by M8, gastrointestinal tract cancers by 
M4, uterine cancers by M30 and liver cancers by M1, 
M14 and M23.

(See figure on next page.)
Fig. 3  MuAt prediction performance in PCAWG cancer genomes. a MuAt predictions stratified by the number of somatic mutations 
and whether the tumour type was correctly (solid colours) or incorrectly (cross-hatched colours) predicted (top-1). b Prediction accuracy (Y-axis) 
of MuAt and DNN by mutational burden (X-axis). MuAt results (blue points) show accuracies in repeated independent predictions (n=100; 
diamonds indicate mean accuracies). c Confusion matrix of the best-performing MuAt model. d Comparison of MuAt and DNN [20] accuracy 
(Y-axis) on sparse data with respect to the number of mutations in downsampled tumours (X-axis). Top-1/3/5 accuracies are shown. e Accuracy 
of MuAt with attention (w/ Att) and without (w/o Att), and with respect to the embedding dimensionality
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Fig. 3  (See legend on previous page.)
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MuAt factors also associated with specific mutational 
patterns (Additional file  2: Fig.  S17, Additional file  1: 
Table S9). These included increased burden of structural 
variants in general (M10, M21, M38), large structural 
deletions and duplications (M21, M23, M34, M50), and 
small structural and 10–100 bp deletions (M25). Sev-
eral factors such as M3 and M42 correlated with higher 
overall indel burden, whereas factors M8, M13 and M26 
correlated with lower indel burden. Specific SNV tri-
plet patterns associating with MuAt factors included 
TpCpA>TpApA and TpCpT>TpApT (e.g. M44), and 
TpCpN>TpGpN and TpCpN>TpApN patterns match-
ing the mutational footprint of APOBEC activity (e.g. 
M11). Many factors represented patterns across differ-
ent classes of mutations. For instance, factors M3 and 
M42 strongly associated with increase of both SNVs and 
indels, whereas M23 positively correlated with SNV and 
SV burden.

As MuAt factors recapitulated mutational patterns 
reported in literature, we quantified the independent 
association of each factor with mutational signatures in 
PCAWG  [14, 15]. Linear models were constructed to 
explain the number of mutations attributed to each sig-
nature in PCAWG tumours (v3; [15]) with MuAt factors. 
We found many factors to share similarity with single-
base (SBS) and doublet-base substitution (DBS), and 
indel (ID) signatures (Fig.  5; Additional file  2: Fig.  S18, 
Additional file  1: Table  S10), with factors explaining over 
half of variance in 21 signatures (Additional file 2: Fig. S19).

MuAt factor M3 was found to strongly associate 
with a number of signatures observed in skin melano-
mas  (Fig. 5b). These included single-base (SBS7a-d) and 
doublet-base substitution (DBS1), and indel (ID3) signa-
tures, all with proposed aetiology of UV light exposure, 
demonstrating the ability of MuAt to capture differ-
ent facets of a mutational mechanism in a single factor. 
Similarly, factors M1, M47 and M48 associated with 
signatures SBS4, DBS2 and ID3 found in cancers related 
to tobacco smoking, and factor M12 with homologous 
recombination DNA repair deficiency related signa-
tures SBS3 and ID6. Other strong associations included 
APOBEC activity related signatures SBS2 and SBS13 
(M11, M10, M31), SBS17a/b possibly related to DNA 
damage due to reactive oxygen species or 5FU (M22, 
M4), and SBS12 with currently unknown aetiology pre-
sent in many liver cancers (M23).

Attention mechanism captures tumour type specific 
mutational patterns
To shed light on the mutational patterns learnt by MuAt, 
we analysed the similarity matrices QK ′ extracted from 
the attention module for the tumours in the PCAWG 
dataset. Figure  6 shows mutation sequence contexts 
(“motifs”) for mutation pairs which have received most 
attention stratified by tumour type. The mutation pair 
motifs most attended to by MuAt contained a SNV 
paired either with a SNV (52%), MNV (16%), indel (8%), 
SV (23%) or MEI (0.4%) (Additional file 1: Table S11). All 
these highly attended MEI events were L1 retrotrans-
positions occurring in esophageal, pancreatic and pros-
tate adenocarcinomas. Two groups of motifs occurred 
in most tumour types (Fig. 6 groups A and B). Group A 
consisted of pairs of SNVs (e.g. (Tp[C>A]pA, Tp[T>G]
A)), and group B consisted of SNVs paired with any 
mutation type (e.g. (Tp[C>A]pA, Ap[BND]pG), where 
BND denotes a translocation breakend). In addition to 
these ubiquitous motifs, many tumour types including 
PanNETs, brain tumours and breast, kidney, prostate and 
thyroid cancers displayed motifs which were character-
istic to each tumour type. Well-known mutational pat-
terns appeared among these motifs, such as the doublet 
C>T substitutions in skin melanomas (Fig. 6 C). We also 
investigated occurrence of genomic positions in attention 
matrices. In chronic lymphocytic leukemias and non-
Hodgkin lymphomas, attention focused on mutations 
occurring in the IGH region (Additional file 2: Fig. S20). 
These two tumour types displayed both shared and dis-
tinct sets of motifs (Fig. 6 D & E). Similarly to motif pair 
patterns, many tumour types displayed characteristic 
positional patterns (Additional file 2: Fig. S20).

Discussion
We developed Mutation-Attention (MuAt), a deep neural 
network designed to predict tumour types from somatic 
mutation catalogues while learning informative represen-
tations of tumour subtypes. Unlike other recent models, 
MuAt integrates a variety of heterogeneous information 
such as mutation type, genomic position and individual 
mutation annotations rather than representing mutations 
as aggregated counts. Trained with cancer genomes from 
the PCAWG consortium, MuAt achieved 89% accuracy in 
predicting the tumour type in a held-out set of PCAWG 
tumours (24 types). To evaluate MuAt’s performance 

Fig. 4  UMAP projection of MuAt tumour-level features in PCAWG data. MuAt recognized tumour subtypes in a prostate cancers with a subgroup 
defined by SPOP driver mutations and increased somatic structural variant burden, b medulloblastomas, c microsatellite-stable colorectal cancers, 
microsatellite-unstable cancers (MSI) and polymerase ǫ deficient cancers (POLE), d skin melanomas subtypes with CCND1 amplifications, e chronic 
lymphocytic leukemias associated with somatic hypermutability and f pancreatic neuroendocrine tumours with germline MUTYH mutations. 
Specific example tumours are indicated by numbers, with SNV, indel and SV types, and SNV/indel/SV proportions shown. Tumours coloured 
by a specific single-base or doublet-base signature exposure indicated with SBS or DBS, respectively

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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with exome sequencing, which is often used in clinical 
settings  [54, 55], we trained and evaluated MuAt with 
cancer exomes from the TCGA consortium and achieved 
a top-1 accuracy of 64%. However, top-5 performance in 
WES data was substantially better, reaching 91% accu-
racy. The top predictions often included similar tumour 
types such as lung adenocarcinomas and squamous cell 
carcinoma, or gastrointestinal tumours. This suggests 
MuAt results may be informative about tumour origins 
even if the prediction is not exactly correct.

We benchmarked MuAt against other machine learn-
ing (ML) methods utilizing somatic mutations and muta-
tion signatures to predict tumour types. Here, MuAt 
improved over the previous state-of-the-art in PCAWG, 
GEL and ICGC tumour genomes, and TCGA tumour 
exomes. We also observed relatively good performance 
with downsampled WGS data, which suggests MuAt 
may be useful for low-coverage WGS data, paediatric 
tumours, and in cell-free DNA applications where only a 

fraction of the somatic mutation catalogue of a tumour is 
captured [22].

Deep learning models have been reported to be frag-
ile, or sensitive to small changes in input data, leading to 
incorrect or misleading conclusions drawn from model 
outputs  [56, 57]. As model fragility can be a significant 
challenge when deploying machine learning models for 
clinical use  [58], we investigated whether MuAt models 
would be able to maintain robustness when faced with 
shifts in input data distribution. We found that MuAt 
models trained on WGS data performed well on more 
than 10,000 independent cancer genomes of Genomics 
England and ICGC, albeit at a slightly lower level com-
pared to the held-out portion of the training cohort. 
These differences may be attributed to technical reasons 
such as the choice of sequencing technology, somatic 
variant calling methodology and quality control steps, 
and variability in biological characteristics of the tumour 
cohorts tested. However, when we tested the methods on 

Fig. 5  Association of MuAt tumour-level factors with tumour types and mutational signatures. a MuAt factor value means (Y-axis) by tumour type 
(X-axis) in PCAWG cancer genomes. b Coefficients of linear association between MuAt factors and COSMIC SBS mutational signatures (version 
2). Top row indicates explained variance in each signature by MuAt factors. Figure shows only signatures with at least one significant association 
at FDR<10%
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somatic variant calls before quality filtering, we discov-
ered that all the tested machine learning models, includ-
ing MuAt, were sensitive to variant calling artefacts. This 
finding builds upon previous reports of fragility in ML 
models and emphasizes the importance of using high-
quality data and creating ML models that are robust to 
input data variability resulting from differences in data 
generating processes [57].

We showed MuAt tumour-level features to distinguish 
between tumour subtypes, even if these labels were not 
available during training. By associating MuAt features 
with driver events identified in PCAWG, MuAt highlighted 
prostate cancers driven by SPOP mutations [59], character-
ized by a 2.3-fold increase in somatic SV burden, exceeding 
the relative burden in tumours with BRCA1 and BRCA2 
mutations. SPOP has a role in DNA damage response [60], 
and SPOP mutated prostate cancers have elevated levels of 
genomic instability [47, 59].  SPOP mutations have been 
associated with better response to therapies [47, 60], poten-
tially mediated by the increased SV burden.

MuAt stratified medulloblastomas into four clus-
ters, one of which contained seven tumours driven by 
enhancer hijacking events involving PRDM6 with a 
3.7-fold increase in SV burden. PRDM6 is activated by 
enhancer hijacking events in Group 4 medulloblastomas 

[49]. Whether the frequent structural aberrations in 
these tumours are due to the PRDM6 activation, or vice 
versa, remains to be explored in detail. MuAt also clus-
tered together a group of four pancreatic neuroendocrine 
tumours harbouring germline mutations of MUTYH 
with loss-of-heterozygosity in the tumours, demonstrat-
ing the ability of MuAt to identify tumours with similar 
germline DNA repair defects [52].

Since MuAt was able to accurately perform tumour 
typing with somatic mutation catalogues, we hypoth-
esized that the learnt tumour-level features would share 
a degree of similarity with mutational signatures  [14, 
15]. We indeed found many MuAt features to associate 
with COSMIC signatures such as SBS2 and SBS13 (cor-
responding to APOBEC activity), SBS4 (tobacco smoke) 
and SBS9 (somatic hypermutation in B cells), although 
the signatures could not be mapped one-to-one with the 
features. This is likely due to MuAt not designed to find 
features which would correspond to independent latent 
determinants of mutational catalogues similarly to non-
negative matrix factorization used in mutational sig-
nature methods  [14, 15], but instead to predict tumour 
types as accurately as possible. In contrast to signature 
analyses requiring a non-trivial refitting step  [61, 62], 
MuAt features for a new sample can be obtained directly 

Fig. 6  Association between MuAt-derived mutation motifs and tumour types. Attention values for mutation motif pairs (X-axis) extracted 
from the MuAt model trained on PCAWG data. Values have been averaged first over tumours and then over tumour types (Y-axis). Types of the key 
and query mutations (SNV, MNV, indel or SV) are indicated on the two top rows. Every fourth motif pair is labelled as “X_Y” where X and Y are 
the motifs corresponding to attention query and key, respectively. Label colours indicate mutation types. Motif groups: A SNV/SNV and B SNV/
non-SNV pairs appearing in many tumour types. C Motifs with doublet C>T substitutions specific to skin melanomas. D and E Motifs characteristic 
to chronic lymphocytic leukemias and Non-Hodgkin lymphomas



Page 16 of 18Sanjaya et al. Genome Medicine           (2023) 15:47 

given a trained MuAt model. Approaches to learn dis-
entangled representations in deep neural networks may 
prove fruitful future direction in creating more broadly 
applicable representations of multiomics data [63, 64].

MuAt’s attention mechanism allowed us to discover 
aspects of mutation data such as the type and position—
or combinations of these—which were informative in 
predicting each tumour type. We found various types of 
mutations occurring in the IGH locus to be driving pre-
dictions of B cell malignancies. Here, MuAt was able to 
capture the interaction between specific mutation types 
and the genomic region characteristic to somatic hyper-
mutation in B cells. MuAt was also able to leverage the 
rarer mutation types such as L1 retrotranspositions to 
help identify cancers such as esophageal and other epi-
thelial cancers where these events are relatively com-
mon  [65–67]. While we were restricted to maximum of 
5000 mutations per tumour due to the complexity O(n2) 
of the attention mechanism used, recent improvements 
such as Reformer [68] or Linformer [69] may be used to 
lift this restriction and to increase MuAt capacity, poten-
tially leading to better performance.

Conclusion
In conclusion, we have demonstrated how deep repre-
sentation learning can in large cancer datasets yield fea-
tures which are useful beyond labelled data, for instance 
in tumour subtyping. Our method, MuAt, is already 
able to contribute to multiomics data integration to 
drive biological discovery and clinical applications by 
providing informative representations of somatic muta-
tion catalogues of tumours. This can be extended to 
incorporate additional data on somatic mutations, such 
as epigenetics, potentially enabling scrutiny of the role 
of epigenetic interactions in somatic mutagenesis  [13, 
42, 70–72]. Beyond tumour typing and subtyping, we 
envision machine learning models such as MuAt to 
be instrumental in determining cancer prognosis and 
appropriate treatment choice [73]. As high-throughput 
patient data accumulates in clinics and cancer projects 
worldwide, machine learning models able to leverage 
the massive-scale data will become irreplaceable tools 
driving digital precision cancer medicine.
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