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Abstract 

Background  Long-read sequencing (LRS) techniques have been very successful in identifying structural variants 
(SVs). However, the high error rate of LRS made the detection of small variants (substitutions and short indels < 20 bp) 
more challenging. The introduction of PacBio HiFi sequencing makes LRS also suited for detecting small variation. 
Here we evaluate the ability of HiFi reads to detect de novo mutations (DNMs) of all types, which are technically chal-
lenging variant types and a major cause of sporadic, severe, early-onset disease.

Methods  We sequenced the genomes of eight parent–child trios using high coverage PacBio HiFi LRS (~ 30-fold 
coverage) and Illumina short-read sequencing (SRS) (~ 50-fold coverage). De novo substitutions, small indels, short 
tandem repeats (STRs) and SVs were called in both datasets and compared to each other to assess the accuracy of 
HiFi LRS. In addition, we determined the parent-of-origin of the small DNMs using phasing.

Results  We identified a total of 672 and 859 de novo substitutions/indels, 28 and 126 de novo STRs, and 24 and 1 
de novo SVs in LRS and SRS respectively. For the small variants, there was a 92 and 85% concordance between the 
platforms. For the STRs and SVs, the concordance was 3.6 and 0.8%, and 4 and 100% respectively. We successfully vali-
dated 27/54 LRS-unique small variants, of which 11 (41%) were confirmed as true de novo events. For the SRS-unique 
small variants, we validated 42/133 DNMs and 8 (19%) were confirmed as true de novo event. Validation of 18 LRS-
unique de novo STR calls confirmed none of the repeat expansions as true DNM. Confirmation of the 23 LRS-unique 
SVs was possible for 19 candidate SVs of which 10 (52.6%) were true de novo events. Furthermore, we were able to 
assign 96% of DNMs to their parental allele with LRS data, as opposed to just 20% with SRS data.

Conclusions  HiFi LRS can now produce the most comprehensive variant dataset obtainable by a single technology 
in a single laboratory, allowing accurate calling of substitutions, indels, STRs and SVs. The accuracy even allows sensi-
tive calling of DNMs on all variant levels, and also allows for phasing, which helps to distinguish true positive from 
false positive DNMs.
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Background
A comprehensive characterization of variation of individ-
ual human genomes is of great importance to gain insight 
into genetic traits and diseases [1]. For rare disease stud-
ies, it is especially important to identify the full spectrum 
of all variant types, including substitutions, indels, short 
tandem repeats (STRs) and structural variants (SVs). A 
particular challenge for the accuracy of genomic tech-
nologies are de novo mutations (DNMs) [2, 3], which 
have been shown to be a major cause of sporadic, severe, 
early-onset disease [3, 4]. DNMs are mutations that 
arise in the germline of one of the parents during gam-
ete formation and are transmitted to the offspring. Every 
human genome contains roughly between 40 and 90 
DNMs on average [3]. They are however also among the 
most challenging variants to identify, as DNM call sets 
typically contain large number of false positive calls due 
to sequencing artifacts, mapping artifacts, differences in 
sequence coverage and mosaicism [4–8]. Therefore, com-
prehensive detection of DNMs of all types demands the 
highest-quality sequencing data.

Whereas short-read sequencing (SRS) can be used 
to accurately call small variants, such as substitutions 
and small indels (< 20 bp), the sensitivity to detect large 
STRs, copy number variants (CNVs), and SVs is limited 
as this can only be done by inference from systematic 
deviations in read coverage or read alignments [9]. Long-
read sequencing (LRS) technologies typically gener-
ate sequencing reads of 10 to 100 kilo bases (kb) in size 
which offers many advantages compared to short-read 
sequencing [10]. Long reads can interrogate regions of 
the human genome that are inaccessible by SRS and can 
encompass complete SV events thereby improving their 
detection [11, 12]. LRS has therefore been used exten-
sively for de novo assembly of human genomes and for 
the characterization of structural genome variation that 
remains undetected by SRS [4, 10, 13, 14]. However, LRS 
technologies have traditionally suffered from low accu-
racy at single base pair (bp) resolution, with a raw error 
rate of 8 to 15%, which did not allow them to reliably 
detect variants smaller than 50 bp. This reduced accuracy 
conserves the need to combine LRS with SRS to accu-
rately detect the entire spectrum of de novo variation, 
which is accompanied by additional costs and time [11].

With improvements in LRS technology and specifi-
cally the recent introduction of PacBio HiFi reads, it is 
now possible to obtain high base call accuracy. With HiFi 
sequence reads, DNA templates of 10–30 kb in length are 
subjected to circular consensus sequencing (CCS) allow-
ing to derive a consensus sequence of both strands of the 
insert region from multiple passes of the polymerase over 
a single template molecule [11, 15, 16]. The number of 
passes determines the accuracy of the consensus reads, 

since each pass allows for better error correction in the 
consensus sequence. HiFi reads are defined as reads 
with an accuracy of at least 99% (Phred quality score 
20), theoretically resulting in the detection of substitu-
tions and small indels being on par with SRS technology 
[17]. HiFi technology has already been used to identify 
SVs in patients suffering from different genetic disor-
ders, including synpolydactyly, syndromic intellectual 
disability, choroideremia, and teratoid rhabdoid tumors 
[18–21]. The increased base accuracy of HiFi sequenc-
ing should be especially advantageous for the detection 
of small DNMs and could even allow for improved sen-
sitivity compared to SRS. Here, we investigated whether 
HiFi sequencing is sufficiently accurate to allow for the 
comprehensive detection of all types of de novo variation 
in parent–child trio genomes, which would remove the 
necessity to complement LRS by SRS and result in most 
comprehensive genomes.

Methods
Patient selection
The department of Human Genetics of the Radboudumc 
is a tertiary referral center for patients with neurodevel-
opmental disorder (NDD) in the Netherlands. For this 
study, we selected 8 index patients with an NDD of sus-
pected genetic origin and their unaffected parents (Addi-
tional file 1: Table S1) from a previous study in which a 
total of 150 NDD patient-parent trios were prospectively 
included between October 1st 2018 and July 1st 2019 
[22]. The only two inclusion criteria for the current study 
were that the clinical geneticist requested a genetic diag-
nostic test to identify the molecular defect underlying 
the patient’s phenotype and that no disease-causing vari-
ant was identified by both whole exome sequencing and 
short-read whole genome sequencing [23]. Board-certi-
fied clinical geneticists counseled all 8 patients and their 
parents for the SRS procedures. All participants or their 
legal representatives gave written informed consent. This 
study was approved by the Medical Review Ethics Com-
mittee Oost-Nederland and Radboudumc Institutional 
Review Board under 2020–6853, as part of 2018–4985 
and 2014–1254.

Long‑read sequencing and variant calling
For the LRS, we targeted 30 × HiFi coverage by using 
at least 3 SMRT Cells per sample (Additional file  1: 
Table  S1). All samples were processed in the same 
fashion, according to the manufacturer’s instructions 
(PacBio, Menlo Park, CA, USA). In brief, 5 µg DNA was 
sheared on Megaruptor 3 (Diagenode, Liège, Belgium) to 
a target size of 18 kb, libraries were prepared with SMRT-
bell express template prep kit 2.0 (PacBio, Menlo Park, 
CA, USA), size-selected > 10  kb on the PippinHT (Sage 
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Science, Beverly, MA, USA), and sequenced for 30 h on 
the Sequel II system using Chemistry 2.0. HiFi reads were 
generated with CCS 4.2.0 and then processed using our 
in-house script which is available on Github [24].

Sequencing reads were aligned to the GRCh38/Hg38 
genome with pbmm2 (version 1.4.0) [17, 25], using 
default parameters. Small variant (substitution and indel) 
calling was performed using DeepVariant (version 1.1.0) 
with default settings [26]. No threshold for maximum size 
of the indels was applied, and all indel calls were used for 
further analyses. STR calling was performed using Tan-
dem Repeat Genotyper (TRGT; version 0.3.3) at 171,146 
highly polymorphic repeat loci that are described in a 
tandem repeat catalog that is available together with the 
TRGT tool [27]. SV calling was performed using PBSV 
(version 2.4.0) [17] default settings with a minimum SV 
size of 20 bp.

From the total variant call set, we filtered de novo 
mutations (i.e., substitutions, indels, and structural vari-
ants; DNMs) using slivar [28] (0.2.7) with two different 
sets of filter criteria. For the SVs, we only applied the 
strict filtering criteria.

For the LRS strict and lenient lists we applied the fol-
lowing filters.

Parameter Strict filtering Lenient filtering

Proband genotype 0/1 0/1

Parental genotype 0/0 0/0

Parental alternative allele depth 0  < 2 total

Proband allele depth  > 5 NA

Reference allele depth  > 10 NA

Total depth  < 50 NA

Quality score  > 30 NA

Genotype quality  > 20  > 10

Allele count in gnomAD and HPRC  < 5  < 5

For the STRs, the output files were first filtered for loci 
for which all family members had both alleles genotyped. 
Subsequently, de novo STR expansions and contractions 
were selected using the number of repeat units of the 
two genotyped alleles. When the number of repeat units 
in one or both alleles of the patient was ≥ 2 repeat units 
longer or shorter than both parents, the repeat locus was 
considered de novo. Subsequently, we excluded de novo 
STR calls that were present in more than one patient of 
this cohort. Additionally, the repeat length had to be an 
outlier when compared to the alleles of all 23 other sam-
ples using the 1.5*interquartile range (IQR) rule. Finally, 
we excluded the de novo STR calls where one or both 
alleles had a TRGT quality score ≤ 0.8 (LRS).

Short‑read sequencing and variant calling
Short-read WGS was performed as described by the 
manufacturer (Illumina, San Diego, CA, USA), and in 
detail reported in van der Sanden et al. [22]. In brief, 1 µg 
DNA, isolated from whole blood, was used for library 
preparation using the Illumina TruSeq DNA PCR-free 
protocol, with an average insert size of 450 bp. To allow 
pooling of samples, barcoded indexing was included in 
the library preparation. Samples were pooled equimo-
larly on an S2 or S4 flowcell, prior to sequencing on an 
Illumina NovaSeq instrument to an anticipated genome-
wide coverage of 50-fold, with a minimum of 45-fold.

After sequencing, FASTQ files were processed through 
our in-house pipeline for short-read genomes. Reads 
were mapped to the human reference genome (GRCh38/
Hg38) using BWA (v.0.78) [29] and the quality of the 
resulting BAM file was assessed using Qualimap [30] 
(v.2.2.1). Variant calling was performed using various 
tools to optimize sensitivity per variant type. For calling 
small variants (substitutions and indels), GATK [31] was 
used and no threshold for maximum size of the indels 
was applied. SVs were called using Manta Structural Var-
iant Caller (v.1.1.0; Illumina) [32], following a paired-end 
and split-read approach for SVs identification. No mini-
mal size threshold was applied. CNVs were called using 
Canvas Copy Number Variant Caller (v.1.40.0; Illumina) 
[33] using default parameters. STRs were called using 
ExpansionHunter [34] using the same tandem repeat 
catalog containing 171,146 loci as for LRS. De novo STRs 
were selected the same way as with LRS, except for the 
last step where low-quality calls were excluded. For SRS, 
this step was replaced by excluding STR calls where the 
repeat length of one or both alleles was outside the confi-
dence intervals of ExpansionHunter.

For SRS, we used two independent de novo callers, 
namely an in-house developed method based on Sam-
tools mpileups and DeNovoCNN [35]. For the in-house 
method, we first discarded all inherited variants and 
variants with a gnomAD allele frequency > 0.1% or GATK 
score < 50. Remaining variants were run through the de 
novo caller which annotated the variants as inherited or 
possible de novo based on the Samtools mpileups. Sub-
sequently, we only selected variants with ≥ 20% alterna-
tive allele depth, ≥ 5 alternative reads, and ≤ 1% in-house 
allele frequency. For DeNovoCNN, inherited variants 
were also discarded, and the tool was run on the remain-
der of the variant list using default parameters, resulting 
in variants with a DeNovoCNN probability score > 0.5. 
Variants called by both de novo callers were considered 
a true SRS DNM (SRS list). Variants only called by one 
de novo caller were listed separately (i.e., in-house unique 
list and DeNovoCNN unique list).
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Variant annotation
Small variants from both LRS and SRS were annotated 
by an in-house pipeline. This variant annotation was 
performed using the Variant Effect Predictor (VEP V.91) 
[36] and Gencode V.34 basic [37] gene annotations. Fre-
quency information was added from GnomAD V.2.1.1 
[38] and from an in-house database. In-house gene panel 
information was added for those genetic variants within a 
known disease gene.

SVs and CNVs were annotated using an in-house devel-
oped pipeline. This pipeline was based on ANNOVAR 
[39] and Gencode V.34 basic gene annotations. Addi-
tional frequency information was added from GnomAD 
V.2.1 [38], 1000G V.8 [40], and GoNL [41] SV database.

Comparison of inherited variants in LRS and SRS
For comparing substitutions and indels between LRS and 
SRS, we used bcftools isec (version 1.8) [42] to gener-
ate the intersection of two call sets. For the detection of 
Mendelian inheritance errors, we used vcftools (version 
0.13) with –mendel option [43]. For comparing structural 
variant call sets between two platforms, we used the Tru-
vari (version 3.5) “bench” command using default param-
eters [44].

Comparison of small de novo mutations in LRS and SRS
For the comparison of the small DNMs, we performed 
two analyses. First, we compared LRS small DNMs with 
SRS small DNMs. DNMs on the LRS strict list were over-
lapped with small DNMs on the SRS list. These muta-
tions were marked as “overlap.” Then, mutations were 
overlapped with the in-house unique and DeNovoCNN 
unique lists. Resulting variants were marked as “LRS + ,” 
while remaining mutations were marked as “LRS-unique.”

Subsequently, we compared the SRS variants with the 
LRS variants. DNMs on the SRS list were overlapped 
with the small DNMs on the strict LRS list. These vari-
ants were marked as “overlap.” Then, variants were over-
lapped with the lenient LRS list and resulting variants 
were marked “SRS + .” Finally, remaining variants were 
marked as “SRS-unique.”

Clustered small de novo mutations
During LRS small DNM analysis, we identified clusters of 
non-overlapping variants that fall in the same gene with 
approximately the same coverage and variant allele fre-
quency. Since these variants were all unique to LRS and 
appeared inherited when checking the read alignment in 
IGV, we decided to systematically remove these clustered 
DNMs. In order to do this, we first selected LRS-unique 
variants separated per trio and ordered by the chromo-
some and genomic position. Then, variants in resulting 
lists were marked if the gene name was the same as the 

gene name of the previous and/or next variant on the list. 
The same was done for intergenic variants. Subsequently, 
clusters of DNMs were defined when two or more vari-
ants fell within one average read length from each other 
(Additional file  1: Table  S2A). Clustered DNMs were 
excluded from further analyses.

Substitution and indel validation
All 54 LRS-unique, and 42 of the 133 SRS-unique variants 
were attempted to be validated using Sanger sequencing 
of proband, mother, and father. Primers were designed 
using Primer3Input. For 27 of the LRS-unique DNMs, 
we were not able to design a primer set, and these were 
not further validated. PCRs for the remaining 27 LRS-
unique and 42 SRS-unique small DNMs were performed 
using Amplitaq Gold 360 Master Mix (Thermo Fisher 
Scientific) according to the manufacturer’s protocol. PCR 
products were enzymatically cleaned using Exonuclease I 
and FastAP, after which samples were Sanger sequenced. 
Finally, Sanger sequencing traces were analyzed using the 
SnapGene software package (version 5.2.2; GSL Biotech).

STR validation
For 18 LRS-unique and 18 SRS-unique STR calls, 
we attempted validation using Sanger sequencing by 
the same approach as for the substitution and indel 
validations.

Structural variant validation
All 23 LRS-unique SVs were validated using long-range 
PCR followed by sequencing on a PacBio Sequel IIe sys-
tem. Primers were designed using Primer3Input, and 
PCR was performed using NEB LongAmp Hot Start Taq 
2 × Master Mix. For each PCR product, 500 ng was used 
as input for the library preparation and the normalized 
library was prepared according to the manufacturer’s 
instructions using the SMRTbell barcoded adapter com-
plete prep kit. Finally, the library, with a loading concen-
tration of 80 pm, was sequenced on a PacBio Sequel IIe 
system using a Sequel II SMRT Cell 8 M (PacBio, Menlo 
Park, CA, USA) with a movie time of 30 h and 0.7 h pre-
extension time.

Titration analysis
For the comparison of our data to LRS data with lower 
coverage, downsampling was performed using SAM-
Tools v1.10 [45]. Downsampling reduced the coverage of 
the samples from around 30 × to 20 × and 10 × . On these 
samples with reduced coverage, de novo calling was then 
repeated as described above. We then compared these de 
novo calls to a truth set consisting of variants validated 
by either SRS or Sanger sequencing.
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Phasing of small de novo mutations
For LRS, phasing was performed using WhatsHap [46], 
using the default options with the ‘–indels’ flag. Phased 
variants were considered informative for a de novo muta-
tion if they are in the same phase block and were present 
in only one of the parents, while the other parent has 
homozygous reference call. Based on these informative 
variants, DNMs were classified as either paternal, mater-
nal, or unknown, according to the following rules:

- If fewer than 3 informative variants were present 
on a haplotype of the candidate DNM, the DNM was 
considered unknown.
- If 3 or more informative variants were inherited 
from the same parent, then the DNM was assigned 
that respective parental origin. If more than 90% of 
the informative loci supported the same parental ori-
gin, the call was additionally classified as high quality.

For SRS sequencing data, we used GATK Haplotype-
caller [47] to produce gVCFs. These were then combined 
with GATK CombineGVCFs tools and then genotyped 
with GATK GenotypeGVCFs. WhatsHap was run on 
the combined VCFs with default settings. DNMs were 
then classified according to the same rules as for LRS 
(described above).

Results
In order to demonstrate the utility of LRS for de novo 
mutation detection, we sequenced eight parent–child 
trios using high coverage PacBio HiFi sequencing. We 
previously performed Illumina short-read whole genome 
sequencing (SRS) for all eight trios [22], which allowed 

us to compare the performance of LRS and SRS on the 
detection of all types of variation in these trios, with a 
particular focus on de novo mutations (Fig. 1).

Sequencing characteristics
For the PacBio HiFi LRS, we obtained average read 
lengths of 17 kb. Over 99.0% of the 5.7 million reads per 
sample aligned to the reference genome with an average 
mapping quality of 46.5 (Additional file  1: Table  S2A). 
The base error rate, computed as the edit distance over 
total number of mapped bases, was 1.4% per sample 
(ranging from 1.2 to 1.5%), which is in agreement with 
what has been published before [48]. This resulted in an 
average coverage depth of 31 × for all 24 genomes, which 
was as expected based on targeted coverage of 30 × . 
92.6% of the genome had at least 10 × coverage depth. 
The average read mapping rate for the SRS was 99.6% 
with an error rate of 0.9% (ranging from 0.8 to 1.0%; 
Additional file 1: Table S2B). The average coverage depth 
was 73 × (ranging from 51 × to 103 ×), and across all sam-
ples 83.4% of all bases were covered ≥ 50 × , while 92.0% 
were covered ≥ 10 × .

Variants overview
Variant calling from LRS with DeepVariant and from 
SRS with GATK both yielded on average 4.1 million sub-
stitutions per sample (Additional file  1: Table  S3A). On 
average, 3.8 million substitutions per sample were shared 
between two platforms, which corresponds to 94.0% con-
cordance for both the LRS and SRS call sets (Additional 
file  1: Table  S3A). Of the substitutions that are unique 
to LRS, about half of all LRS-unique variants (average 
110,000), was detected in regions for which SRS had no 

Fig. 1  Study overview. We performed PacBio HiFi long-read sequencing and Illumina short-read sequencing for eight parent–child trios A De novo 
substitutions, indels, STRs, and SVs were called using dedicated bioinformatic tools. B For the small DNMs (substitutions and indels), the different 
call sets are depicted including the workflow of comparing the LRS call set to the SRS call set and the other way around. C The workflow for the 
comparison of STRs between LRS and SRS. D The workflow for the comparison of SVs between LRS and SRS. The circles in this figure are not drawn 
to scale
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read coverage (Additional file  1: Table  S3A). We found 
that LRS provides sequence coverage in about 240 Mb of 
the genome where SRS does not. We found that in these 
regions the rate of Mendelian inheritance errors for LRS 
is only 2.1% suggesting that the majority of variant calls 
are real (Additional file 1: Table S3A).

For indels, the same callers yielded on average 1.0 
million variants for LRS compared to an average of 0.9 
million indels per sample with SRS (Additional file  1: 
Table  S3B). The concordance was only 63.1% for SRS 
and 58.0% for the LRS indel call set (Additional file  1: 
Table S3B). For indels unique to LRS, around 25% were 
detected in regions that SRS had no read coverage (Addi-
tional file  1: Table  S3B). The MIE ratio of LRS-unique 
indels (8.9%) was lower than that of SRS-unique indels 
(13.0%), indicating a slightly better ability of LRS for 
detecting indels (Additional file 1: Table S3B).

De novo small variant detection
Performing both LRS and SRS on the same samples 
allowed us to identify all variant types including substitu-
tions. In this study, we focused on assessing the accuracy 
of LRS HiFi for comprehensively calling small variants 
and SVs. A sensitive way of doing this is to detect and 
assess de novo mutations, since this type of variation has 
proven to be an important factor in the disease etiology 
of severe, early-onset, rare disease.

During LRS small DNM analysis, we identified clus-
ters of LRS-unique variants that fall in the same gene 
with approximately the same coverage and variant allele 
frequency. These variants all appeared not de novo 
upon visual inspection and were removed from further 
analyses as described in more detail in the “Methods.” 
In total, 672 small DNMs were identified using strict fil-
tering criteria, with on average 84 (range 73–92) small 
de novo mutations per child using PacBio HiFi LRS 
(Fig. 1B; Additional file 1: Table S4A and Additional file 2: 
Table S5), being in line with previously reported number 
of de novo substitutions per genome [2, 3]. On average, 
75 of these 84 variants were single base substitutions, 
while there were 4 insertions and 5 deletions between 2 
and 50 bp. Only two insertions > 50 bp were called using 
DeepVariant and these were also retained. Comparison 
of small DNMs called from LRS data versus substitutions 
called from SRS data showed 92.0% concordance (Fig. 2; 
Additional file 1: Table S6A). Of the overlapping substi-
tutions, 94.3% were called by both SRS DNM callers in 
the overlap set and the other 5.7% by only one of the SRS 
DNM callers in the LRS + set (see “Methods”). Among 
all LRS DNM call sets, eleven were located in the coding 
regions of the genome and were all detected by both LRS 
and SRS (Additional file 3: Table S7). For SRS, we found 
859 small DNMs, with on average 107 (range 91–141) 

small DNMs per patient (Fig.  1B; Additional file  1: 
Table  S4B and Additional file  4: Table  S8), including 95 
substitutions, 4 insertions, and 8 deletions. The concord-
ance for SRS small de novo mutations versus those called 
from LRS data was 84.5% (Additional file 1: Table S6B). 
Of the overlapping small DNMs, 80.3% were called using 
the stringent LRS de novo filtering in the direct overlap 
set and the other 19.7% using the lenient LRS de novo 
filtering in the SRS + set (see “Methods”). The concord-
ance for coding small DNMs was 100% (13/13 variants; 
Additional file 3: Table S7), albeit that 2 of the 13 coding 
variants were only identified in LRS after lenient filtering.

Small de novo mutation validation
In order to assess the sensitivity of LRS for the detection 
of small DNMs, we first attempted to validate all 54 LRS-
unique small de novo mutation (Additional file  2: Table 
S5 and Additional file 1: S9A; Additional file 1: Fig. S1). 
For these 54, we aimed to design standard primer pairs 
suitable for Sanger sequencing. Due to the complex 
genomic regions of these variants, we only succeeded 
to design primers for 27 (50%) of the 54 variants. Of the 
27 variants with successful primer design, 11 (40.7%) 
were confirmed as a true DNM, 11 were true variants 
but inherited from one of the parents, and five were not 
confirmed in the child and therefore considered false 
positives (Fig. 2; Additional file 2: Table S5). Small DNM 
quality scores were on average significantly higher for 
the confirmed DNM calls than for the inherited and false 
positive calls with quality scores of 55.5 and 54.4 for con-
firmed vs. 36.6 and 36.5 for inherited variants vs. 31.2 and 
30.6 for false positive variants (P = 2.8e − 7, P = 8.3e − 6, 
P = 8.3e − 6, and P = 3.0e − 4; t-test) (Additional file  1: 
Fig. S2). When looking at the specific locations of the 
11 confirmed LRS-unique small DNMs in the SRS data, 
we found that all DNMs showed coverage at the specific 
genomic position and that the mutations were called. 
However, ten of these mutations were assessed by the 
SRS de novo mutation callers as being potentially inher-
ited due to a small number of alternative base calls in one 
of the parents, and one was assessed as low-quality DNM 
because of a small number of alternative base calls in one 
of the parents (Additional file 1: Table S10).

For the 133 SRS-unique DNMs, visual inspection of the 
reads at the specific genomic position identified seven of 
them as high-confidence candidate small DNMs. Oth-
ers were identified as low-confidence candidate small 
DNMs, either due to low read support or repetitive refer-
ence context. For validation, we selected a set of 42 SRS-
unique small DNMs including all seven high-confidence 
candidate small DNMs as well as 35 randomly selected 
low-confidence candidate small DNMs (Additional file 1: 
Table S9B). For the total of 42 small DNMs, we designed 
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primers to determine whether these are true de novo 
calls. Of the 42 variants, eight (19%) were confirmed 
as true de novo events and eight other variants (19%) 
appeared to be inherited from one of the parents (Addi-
tional file 1: Fig. S3; Additional file 4: Table S8). For the 
remaining 26 variants (62%), Sanger sequencing failed to 
confirm the event called by Illumina SRS and these were 
therefore considered false positive calls. Five of the seven 
high-quality DNM candidates we initially selected were 
confirmed as true positive, while one had primer design 
sequencing failed and other one was false positive. Four 
of the eight SRS-unique true positive small DNMs also 
appeared de novo when inspecting the LRS alignment 
files (Additional file 1: Table S11). Of the four remaining 

SRS-unique small DNMs, two had low alternate allele 
depth and two had insufficient coverage for both alleles.

Differences between substitutions and indels
The predominant error mode in long-read sequencing is 
short insertions and deletions [10]. We therefore inves-
tigated whether there was a difference for the detec-
tion of substitutions and indels for both platforms. The 
27 LRS-unique small DNMs for which we were able to 
perform validations consisted of 13 substitutions, 10 
insertions, and 4 deletions. None of the insertions and 
deletions were confirmed as true DNMs, while 11 substi-
tutions were confirmed true de novo. For the insertions 
and deletions, 70 and 75% were inherited from one of the 

Fig. 2  Detailed overview of all small DNMs. Upset plot of small DNMs detected by SRS and LRS. The X-axis shows the concordance across different 
call sets. The Y-axis shows, from bottom to top, number of DNMs in each group, the DeepVariant Genotype Quality (GQ) scores of these small DNMs 
from the LRS data and the log-scaled GATK quality scores of these DNMs from the SRS data. Colors indicate the validation status and pie charts 
show the validation status of DNMs in each group
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parents while 30 and 25% were false positive variant calls 
respectively. In addition, the average quality scores for 
the substitutions, insertions, and deletions were diver-
gent (53.5 and 52.5 vs. 32.9 and 32.5 vs. 36.3 and 36.5) 
(Additional file 1: Fig. S1). For the SRS-unique variants, 
the 42 validated variants consisted of 34 substitutions, 2 
insertions, and 6 deletions. Only one deletion and seven 
substitutions were confirmed as true DNMs. Both inser-
tions were false positive calls. In general, the SRS-unique 
variants were enriched for false positive calls, since 68% 
of the substitutions, 100% of the insertions, and 17% of 
the deletions were false positive variant calls (Additional 
file  1: Fig. S3). Furthermore, 9.5% of the substitutions 
were inherited while this was 0% for the insertions and 
83% for the deletions.

De novo STRs
For STRs, we used a tandem repeat catalog, containing 
171,146 highly polymorphic repeat loci, as input for both 
TRGT and ExpansionHunter for LRS and SRS, respec-
tively. On average, we genotyped both alleles of all three 
family members for 171,038 (99.93%) loci for LRS and 
171,113 (99.98%) for SRS (Additional file  1: Table  S12). 
In total, we identified 28 (mean 4; range 1–6; Fig. 1C and 
Additional file  5: Table  S13) and 126 (mean 16; range 
5–31; Fig. 1C and Additional file 6: Table S14) repeat loci 
in LRS and SRS where one or both alleles in the child 
were ≥ 2 repeat units longer or shorter than the number 
of repeat units in both parents and met our quality met-
rics (“Methods”). Therefore, these repeat calls were con-
sidered high-quality candidate de novo STRs. Of these 
de novo repeats, only one call (3.6% for LRS and 0.8% for 
SRS) was concordant between the two platforms (Addi-
tional file 1: Table S15). We attempted to validate 18 LRS-
unique and 18 SRS-unique high-quality de novo STR 
calls. For the LRS-unique calls, none were confirmed as 
true de novo repeat expansion. Of the 18 STR calls, 14 
were false positive calls and four were true but not de 
novo because the repeat length was the same in one or 
both parents (Additional file 1: Table S16). For the SRS-
unique STRs also, none of the 18 high-quality de novo 
STR calls were confirmed as true de novo as 13 calls were 
false positive and five were true but inherited from one or 
both of the parents (Additional file 1: Table S16).

De novo SVs
In addition to substitutions, indels, and STRs, we also 
identified de novo structural variants for our patients 
using PBSV for LRS and Manta for SRS. In total, we iden-
tified 24 de novo candidate SVs with LRS and one de 
novo candidate SV with SRS (Fig.  1D; Additional file  7: 
Table S17). The one SV in SRS that overlapped with LRS 
and was considered a true de novo event. The remaining 

23 LRS-unique variants consisted of 13 insertions, 8 dele-
tions, and 2 duplications (size range 21–991  bp). We 
aimed to systematically validate the de novo SVs using 
(long-range) PCR and subsequent targeted sequencing 
on a PacBio Sequel IIe system. For four of 23 variants, 
validation experiments repeatedly failed due to difficul-
ties with designing suitable PCR primers. However, two 
out of the 23 variants were confirmed as genuine de novo 
SV events (Fig. 3). In addition, eight SVs (five insertions 
and three deletions) in the size range of 21 to 991 bp were 
located within repeat regions and could be considered as 
de novo repeat expansions and contractions (Additional 
file 1: Fig. S4). Therefore, in total 10 SVs were confirmed 
as a de novo event. Out of the 9 events that were not de 
novo, two SVs were inherited from one or both parents, 
while seven events were not detected at all (Additional 
file 7: Table S17). When analyzing the alignment files of 
both LRS and SRS at the genomic positions of all 24 SVs, 
it turned out that, besides the one overlapping SV, seven 
different LRS-unique SVs could be visually detected in 
hindsight (Additional file  7: Table  S17; Additional file: 
Fig. S5). Of these, five were validated as de novo event 
and one was inherited, while for one multiple validation 
attempts failed. For the remaining 16 SVs, we did not 
observe any patterns reminiscent of an SV in the SRS 
data (Additional file  7: Table  S17; Additional file  1: Fig. 
S5).

Titration
Our LRS samples were sequenced to relatively high cov-
erage depth of 30 × . When downsampling to an average 
20 × and 10 × coverage depth for the child and parents, we 
observed on average 8 and 37 out of 75 validated DNMs 
could no longer be detected in the proband respectively 
(Additional file 1: Table S18; Additional file 1: Fig. S6). In 
addition, the number of potential small DNMs increased 
considerably to on average 234 and 1120 calls at 20 × and 
10 × coverage depth respectively. This suggests that with 
the current LRS technology obtaining 30 × average cover-
age depth is required for optimal detection of DNMs.

Phasing of small de novo mutations
One potential advantage for the detection of small DNMs 
using long reads is the possibility to phase the DNMs 
and determine the parent-of-origin based on inher-
ited variants (i.e., markers; Fig.  4). Using the LRS reads 
for phasing resulted in haplotype blocks with a mean 
length of 570  kb, with an average of 800 small variants 
per block. When we used the SRS reads, mean length of 
haplotype blocks was 1.2 kB, with 14 small variants per 
block. With LRS, we were able to assign 96% of DNMs 
to a haplotype block and subsequently all DNMs with 
a haplotype block were assigned to a parental allele 
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(Additional file  1: Table  S19A). For more than 80% of 
the phased DNMs from LRS, there was > 90% agreement 
between markers. With SRS, we were able to assign 46% 
of the DNMs to a haplotype block. Because of the rela-
tively small size of the phase blocks, we could only assign 
20% of the total DNMs to a parental allele (Additional 
file  1: Table  S19B). Comparing the successfully phased 
DNMs, we found > 90% concordance between SRS and 
LRS (Additional file  8: Table  S20). We found that all 

three discordant DNMs (100%) were found in repeated 
and low complexity regions of the genome. We found 
that 72.3% of the phased small LRS-detected DNMs and 
78.4% of small SRS-detected DNMs were paternal, which 
was expected based on other studies of DNMs [5, 49, 50] 
(Additional file 1: Table S19A).

One of the advantages of performing phasing is that we 
expect that true DNMs to be phased with high quality, 
while false positives caused by sequencing artifacts would 

Fig. 3  Two confirmed true de novo SVs only detect by LRS. For two variants, the gel image and Integrative Genomics Viewer (IGV) screenshot for 
LRS and SRS is presented. A SV6 is a 123 bp duplication in an intron of the gene NXPE3. The position of the duplication call in the child’s LRS reads 
is indicated with a black arrow. In the SRS data, there are clipped reads, indicated with the two red boxes, hinting towards an SV event. However, 
the SV was not called in SRS. B SV17 is a 303-bp insertion in an intron of the gene TAOK3. The position of the insertion call in the child’s LRS reads is 
indicated with a black arrow. In the SRS data, some blue reads are visible, which represent reads with a smaller insert size than expected indicating a 
possible insertion. However, the SV was not called from the SRS data
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not fit into a haplotype. Therefore, we checked the phas-
ing of true positive and false positive DNMs from the 
LRS call set. All 11 validated LRS-unique small DNMs 
were phased. For the false positive and inherited DNM 
calls, 13 of 16 were not successfully assigned to a hap-
lotype block by Whatshap (Additional file 1: Table S21). 
These results show that phasing can help to distinguish 
true positive from false positive DNMs (Fisher’s exact 
test, P = 3.39e − 5).

Discussion
Here we investigated whether HiFi PacBio sequencing 
offers sufficient base call quality to allow for comprehen-
sive de novo mutation detection. This is important for 
several reasons: LRS is currently considered for samples 
that were unresolved by exome or genome sequencing 
with the intention to identify so far “hidden,” undetected, 
SVs. However, several studies have shown that short-
read exomes or genomes may have missed genetic vari-
ants due to limitations of the technology or experimental 
design at that time [10, 13, 14, 51]. The potential ability 
to comprehensively detect all types of variation, now 
enabling the technically challenging de novo mutations, 

paves the way for LRS to replace SRS as the standard 
technology for genetic analyses as soon as costs become 
comparable. This possibly enables testing of “all” rare dis-
ease patients with a suspected genetic cause with a sin-
gle comprehensive test. However, depending on platform 
and local infrastructure, LRS is currently 3–sixfold more 
expensive than SRS.

When comparing all substitutions between the plat-
forms, we find that there is a 94% concordance and that 
the MIE rate for variants unique to LRS is very low at 
2.1%. If we assume that all substitutions with correct 
Mendelian inheritance are real, the average sensitivity 
of HiFi LRS is 99.84% compared to 99.96% for SRS, and 
for indels 95.03 and 93.44% respectively. When compar-
ing DNMs from LRS with SRS, we find that the overlap 
for LRS was 92.0% and for SRS 84.5%. LRS detected 
54 unique variants while SRS detected 133 unique 
variants. With SRS, we found that these specific vari-
ants are mostly false positive calls in the proband (i.e., 
sequencing and mapping artifacts). Our false positive 
rate is higher than what should be expected for routine 
genetic testing applications where typically additional 
quality filtering will be applied. For LRS, most variants 

Fig. 4  Phasing of DNMs. Number of DNMs per trio in a stacked bar graph, with colors for phasing results. With SRS and LRS next to each other 
grouped per trio (on average 89 phased small DNMs in LRS versus 21 phased small DNMs in SRS). Status of parentally phased DNMs for each trio. 
X-axis shows the sequencing platform, while Y-axis shows the number of DNMs. Colors indicate the assigned parental origin
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(68.8%) were true but were inherited from one of the 
parents. The same observation was made by Noyes 
et al. in their study that used multiple long- and short-
read technologies to establish a most comprehensive 
set of DNMs in a parent–child quad [5]. They observed 
that 71% of false DNM calls were due to a missed call in 
one of the parents. This is promising for LRS technol-
ogy since improved coverage, or improved evenness of 
coverage, will likely reduce this type of false positives. If 
we would disregard this type of false positives from our 
study, LRS performs very favorably to SRS. In this case, 
our de novo validation rate for LRS, considering only 
successful PCRs, would increase from 40.7% (11/27) to 
68.8% (11/16), while the validation rate for SRS DNMs 
would only increase from 19.0% (8/42) to 23.5% (8/34).

We experimentally validated 11 LRS-unique and 
8 SRS-unique DNMs. For the LRS-unique variants, 
we found that all 11 were called by SRS as well. One 
DNM was assessed as low-quality DNM in SRS due 
to mapping quality issues at the position of this event. 
The other ten were considered as potentially inherited 
mutations since they had fractional support (3–6 reads 
with alternative allele) in the parents. This might be 
due to sequencing artifacts or might be due to paren-
tal mosaicism. For two of these ten variants, Sanger 
sequencing traces only showed a small variant peak 
in one of the parents. Therefore, we still considered 
these as true DNMs, but the deeper sequence cover-
age of SRS had a slightly higher chance to identify low 
parental mosaicism in these two. For the SRS-unique 
small DNMs, four out of the eight were not called de 
novo in LRS due to poor genotyping in one of the par-
ents. Two small DNMs were not called de novo in LRS 
due to the presence of alternative allele reads in one of 
the parents. The remaining two small DNMs were not 
called in LRS due to insufficient coverage and a low 
variant allele frequency at the position of the event in 
the proband.

Compared to the study by Noyes et al., our per-sam-
ple de novo mutation numbers and concordance ratio 
(between SRS and LRS) are very similar [5]. Noyes et al. 
called an average of 81 de novo substitutions and 6 
indels in their probands. Our per-sample averages for 
these types of variants were 75 and 9 respectively. On 
the other hand, their SRS call set consists of on aver-
age 82 de novo mutations in the probands, which is 
somewhat smaller than our per-sample average of 107. 
This is mostly because de novo mutations in repetitive 
regions were removed from their call set. Since their 
SRS call set is more restrictive, the concordance of their 
LRS call set compared to their SRS call set drops under 
80%, compared to our finding of 92.0%.

In a previous study, we applied LRS to 5 trios, using 
a PacBio Sequel system and without the use of circu-
lar consensus calling to improve base pair accuracy [4]. 
When considering the single trio from this study that was 
sequenced at similar coverage (30 ×), we previously iden-
tified 655 small DNM candidates compared to 84 small 
DNMs per trio in our current study. Even though, due to 
the higher error rate in the sequencing data of our previ-
ous study [4], the selection criteria for small DNMs were 
much more stringent, the number of small DNM can-
didates was still considerably higher. In our comparison 
with SRS, we identified an overlap of only 58.3% whereas 
in our current study this is 92.0%. Fifty percent of false 
positive small DNMs in our previous study were due to 
false positive insertion calls in the proband, whereas this 
is a substantially smaller proportion (30%) in the current 
study. The differences between these studies illustrate the 
improvements that have been made with the introduc-
tion of HiFi sequencing.

Besides showing that small DNM calling using HiFi 
LRS is on par with SRS, we have also analyzed four tradi-
tional benefits of LRS over SRS. First, we show the more 
accurate detection of de novo SVs. We confirmed ten out 
of 23 de novo SVs in total, of which eight in Repbase [52] 
annotated repetitive DNA elements. The validation rate 
of only 43.5% may be explained in part due to the prox-
imity of all 23 de novo SVs to repetitive reference con-
texts which made these challenging to confirm. Out of 
the 13 SVs that were not confirmed, for four the valida-
tion did not refute the de novo event itself but was mostly 
inconclusive. Combining the ten confirmed de novo SVs 
with the one SV detected by both sequencing platforms 
this comes down to an average of 1.375 de novo SV per 
genome. This number is markedly higher than current 
estimates based on short-read WGS data of 0.02 to 0.286 
de novo CNVs and SVs (> 50  bp) per genome [53–55]. 
This is likely due to detection of the eight SVs that could 
be considered repeat expansions/contractions. When 
only considering the other three SVs, our study also sug-
gests that de novo SVs are rare with a de novo SV rate of 
0.375. The rare nature and the possibility to identify those 
reliably with LRS, without enriching for false positive SV 
calls, confirms the accuracy of LRS for this variant class. 
It also confirms that a de novo SV hypothesis for rare and 
severe disease works and strongly reduces the number of 
candidate variants per offspring.

Secondly, we performed STR detection from both 
LRS and SRS. In total, we detected 28 high-quality de 
novo STR expansions and contractions for LRS and 126 
for SRS. Of these, only one overlapped between the two 
technologies. Moreover, none of the LRS-unique and 
SRS-unique repeat expansion, for which we attempted 
validations, was confirmed to be true de novo. This shows 
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that although LRS seems to outperform SRS in this area 
with a slightly higher specificity, there is still a lot of 
room for improvement in the detection of STRs. For a 
fair comparison, we restricted our analysis to 171,146 
known highly polymorphic repeat regions. However, 
to show the full potential of the detection of STRs with 
LRS, a genome-wide analysis would be more appropri-
ate. This is illustrated by the fact that the SV calling on 
LRS data identified another eight de novo structural vari-
ants that upon closer examination turned out to be STR 
expansions/contractions.

Thirdly, LRS allows improved phasing of the DNMs and 
determine the parent-of-origin based on surrounding 
inherited variants. Comparing only phased small DNMs, 
we find a more than 90% concordance of the assigned 
parental allele between LRS and SRS. However, almost 
all DNMs (> 96%) could be phased with LRS compared to 
only 20% with SRS. Phasing also supports the quality of 
our DNM results in LRS. The fact that the DNMs are not 
artifacts is supported by the consistency of the phasing by 
multiple single-nucleotide polymorphisms, all support-
ing the same parental allele. In LRS, additional validation 
of a DNM with an orthogonal technology could be omit-
ted when additional support from phasing results based 
on a reasonable number of SNPs is available. Benefits of 
phasing in future studies not only entail this increase in 
DNM specificity, but could also increase the specificity 
for post-zygotic and somatic DNMs [7, 56] and allow bet-
ter studies of DNM biology [49, 57].

Finally, with LRS more of the human genome is acces-
sible and, for the first time, variants can be called in these 
regions that remained inaccessible with other sequencing 
technologies. With LRS we found on average 240  Mb of 
uniquely covered regions per sample, compared to 133 Mb 
per sample for SRS. This is also in agreement with previous 
literature about the dark regions of the genome [58].

Despite these advantages of LRS over SRS, the cost of 
sequencing is an important disadvantage of HiFi LRS. 
The current price of a HiFi genome at 30-fold coverage is 
3–6 times higher than a genome achievable with SRS at 
30-fold coverage. With future iterations of the HiFi LRS 
platform the costs for a 30-fold coverage genome will 
drop up to threefold, but also SRS will be available at half 
its current price. To address whether the benefits of LRS 
are worth the additional costs, more extensive clinical 
utility studies are required, which is beyond the scope of 
this current study.

Conclusions
HiFi LRS can now produce a very comprehensive WGS 
dataset obtainable by a single technology in a single 
laboratory, allowing accurate calling of substitutions, 

indels, STRs and SVs. This possibly enables for truly 
generic testing of “all” rare disease patients with a sus-
pected genetic cause with a single comprehensive test. 
The accuracy of HiFi LRS even allows sensitive call-
ing and phasing of DNMs, which are a major cause of 
severe early-onset disease, on all variant levels.
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