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Abstract 

Background Next‑generation sequencing (NGS) based population screening holds great promise for disease pre‑
vention and earlier diagnosis, but the costs associated with screening millions of humans remain prohibitive. New 
methods for population genetic testing that lower the costs of NGS without compromising diagnostic power are 
needed.

Methods We developed double batched sequencing where DNA samples are batch‑sequenced twice — directly 
pinpointing individuals with rare variants. We sequenced batches of at‑birth blood spot DNA using a commercial 113‑
gene panel in an explorative (n = 100) and a validation (n = 100) cohort of children who went on to develop pediat‑
ric cancers. All results were benchmarked against individual whole genome sequencing data.

Results We demonstrated fully replicable detection of cancer‑causing germline variants, with positive and negative 
predictive values of 100% (95% CI, 0.91–1.00 and 95% CI, 0.98–1.00, respectively). Pathogenic and clinically actionable 
variants were detected in RB1, TP53, BRCA2, APC, and 19 other genes. Analyses of larger batches indicated that our 
approach is highly scalable, yielding more than 95% cost reduction or less than 3 cents per gene screened for rare 
disease‑causing mutations. We also show that double batched sequencing could cost‑effectively prevent childhood 
cancer deaths through broad genomic testing.

Conclusions Our ultracheap genetic diagnostic method, which uses existing sequencing hardware and standard 
newborn blood spots, should readily open up opportunities for population‑wide risk stratification using genetic 
screening across many fields of clinical genetics and genomics.
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Background
In high-income nations, rare disease (RD) is arguably the 
leading cause of childhood mortality, responsible for one 
in three deaths [1]. More than 6000 different types of RD 
have been identified, and it is estimated that as many as 
one in 16 individuals under the age of 25 years suffers 
from some form of RD [2]. This corresponds to a quarter 
of a billion people globally.

Genetic etiologies have been established for more than 
70% of RDs [2], rendering them obvious candidates for 
genetic screening. In most cases, next-generation DNA 
sequencing (NGS) technologies can readily detect the 
pathogenic germline variants that cause RDs, but cur-
rently, RD screening is generally limited to the small sub-
set of conditions with established biochemical signatures 
that can be implied by mass spectroscopy or other tech-
niques [3, 4]. Direct diagnostic genetic testing is reserved 
for the second tier, but moving the genetic sequencing 
to the first tier, so-called genotype-first screening, would 
open up opportunities to simultaneously screen for hun-
dreds of rare genetic conditions [5].

However, various technical challenges notwithstanding 
[6, 7] the mere costs of NGS have effectively prevented 
its implementation into large-scale screening [8]. Indi-
vidual sequencing, whether undertaken as single gene, 
gene-panel, or whole exome/genome sequencing (WES/
WGS), would be costly for any population-based initia-
tive. Batching of DNA samples has been suggested as a 
means to reduce NGS costs; however, low reliability has 
led to this approach being mostly abandoned [9].

We therefore tested a novel approach to mass genetic 
screening aimed at overcoming these challenges. We 
hypothesized that by double batching DNA from all 
individuals in a population, we could dramatically lower 
sequencing costs while maintaining high reliability and, 
most importantly, be able to immediately pinpoint identi-
fied rare variants to specific individuals. Approaches sim-
ilar to double batched sequencing (DoBSeq) have been 
described and investigated previously [9, 10], but these 
have been without benchmarking and parameter valida-
tion; hence its performance for real-world applications 
remains wholly unexplored.

We selected participants from a prospective, nation-
wide genomic study of childhood cancer [11]. This dis-
ease area is but one of many that stands to benefit from 
NGS-based neonatal screening, yet here we focus only 
on the screening of cancer predisposition genetics, which 
may be considered a prototype disease for our method’s 
broader potential. Highly penetrant cancer predisposi-
tion syndromes (CPS) caused by pathogenic germline 
variants are common in childhood cancer patients [11–
13] and are often clinically silent or discrete before can-
cer symptoms arise, likely contributing to widespread 

underdiagnosis [14, 15]. Furthermore, pediatric CPS var-
iants are frequently de novo, and consequently, the only 
option for pre-symptomatic diagnosis is screening.

Methods
Below the methodological details of this study are 
described briefly. For the purposes of full replicability, 
please see the extended methods in the supplemental 
materials.

Primary endpoint
The primary endpoint of this work was to establish a 
bioinformatic methodology, which could reliably call 
cohort-unique, clinically relevant single nucleotide vari-
ants (SNVs) and insertions/deletions of fewer than 50 
base pairs (indels) in individuals based solely on DobSeq 
data. This performance was benchmarked against indi-
vidual whole genome sequencing (WGS).

Secondary endpoints
Evaluating DoBSeq’s scalability by testing detection rates 
of cohort-unique, clinically relevant variants in stand-
alone batches with an increased number of patients and 
correspondingly lowered per-allele coverage. Evaluat-
ing DoBSeq’s ability to detect any cohort-unique variant 
regardless of ontology and pathogenicity.

Cohorts
Both cohorts investigated in this work were a subset of 
participants from a Danish childhood cancer genom-
ics study called STAGING (Sequencing Tumor and 
Germline DNA - Implication and National Guidelines) 
[11]. STAGING offered inclusion to any Danish person 
younger than 18 years of age at time of cancer diagno-
sis (all types) since Jan  1st 2017 (on-going study; 439 and 
549 participants included at the times of construction 
of the explorative and validation cohorts, respectively). 
Recruiting happened at all four pediatric cancer centers 
in Denmark, where the treating physician, assisted by a 
project nurse, informed and consented patients, follow-
ing genetic counseling. As part of the STAGING study, 
WGS was performed on leukocytic germline DNA as 
described below. STAGING excluded patients that did 
not speak Danish or English sufficiently to give informed 
consent in these languages. Based on this national pedi-
atric cancer cohort, we constructed an explorative cohort 
of 100 patients, selected, firstly, for the availability of neo-
natal Guthrie cards (born in Denmark), and, secondly, 
for the presence of pathogenic germline variants in genes 
covered by the gene panel described below. Subsequently, 
we constructed a validation cohort of 100 new patients 
based on the same national cohort, which were selected 
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for non-inclusion in the explorative cohort, but other-
wise identically.

Gold standard: germline whole‑genome sequencing (WGS)
All 200 participants in the explorative and validation 
cohorts had WGS data from germline DNA available at 
the outset of the study. Sequencing protocols have been 
published in detail elsewhere [11]. The WGS variant 
call files were subsetted to genomic areas correspond-
ing to the gene panel (Additional file  1: Table  S1) using 
bcftools/1.10. This subset constituted the raw gold stand-
ard reference for SNV and indel germline variants pre-
sent in the cohorts (Additional file 1: Fig. S1).

Double batched sequencing (DobSeq) of neonatal 
bloodspots
From each of the 200 participants’ at-birth Guthrie 
cards, two 3.2-mm discs were stamped out and DNA was 
extracted on a per-individual basis. For each individual 
sample, DNA concentrations were measured and then 
normalized to ensure equimolar contributions of DNA 
from each individual. Next, the 100 samples from the 
explorative cohort were randomly allocated with a num-
ber from #00 to #99. Volumes equal to 10ng of genomic 
DNA were taken from each of the 100 samples in the 
cohort and 10 batches were created, each containing 
DNA from 10 samples. This ensured that each batch con-
tained DNA from samples with numbers starting with 0 
[#0*], 1 [#1*], 2 [#2*], etc. These batches were termed row 
batches due to their orientation in the matrix (Fig.  1B, 
Additional file  1: Fig. S1) and were named using num-
bers; 0 to 9. The same process was repeated batching the 
same 100 samples again with 10 batches of 10 samples 
each. Only now, batches contained DNA from samples 
with numbers ending in 0 [#*0], 1 [#*1], 2 [#*2], etc. These 
batches were termed column batches and named using 
letters; A to J (Fig. 1A, Additional file 1: Fig. S1).

In this way, each sample was uniquely represented by 
exactly one row-batch and one column-batch and this 
yielded a matrix of 10 × 10 batches. In a matrix, each 
intersection represents a sample, e.g., the intersection of 
column batch H and row batch 4 corresponds to sample/
individual #H4 (Fig. 1C, Additional file 1: Fig. S2). Finally, 
each of the 20 batches was sequenced to a target cover-
age of 2000X using Illumina’s TruSight Hereditary Can-
cer Panel covering (113-gene panel, Additional file  1: 
Table S1).

Identical methods were used to batch and sequence the 
validation cohort, yet, in order to also test scalability, four 
additional stand-alone batches, separate from the explor-
ative and validation DoBSeq matrices, were constructed. 
Here, genomic DNA from Guthrie cards was batched 
using samples #00–#23, #00–#47, #00–#71, and #00–#95 

from the explorative cohort (Additional file  1: Fig. S3). 
Target average coverage was 2000X per batch, which 
yielded proportionally lower per sample/allele coverage 
in the larger batches (Table 1).

Variant calling and benchmarking
In the explorative cohort, unfiltered variants called in the 
20 batches were immediately annotated using individual 
variant call data from the WGS truth-set. Hence, the 
analysis of variants found on DobSeq data in the explora-
tive cohort was unblinded. Variants were called as unique 
in the explorative matrix by using an iterative method 
which accounted for sequencing noise levels (Additional 
file 1: Fig. S4). For each variant a uniqueness score (pin-
ning the variant to an individual) was calculated with an 
aim of having perfect predictive values, while also leav-
ing a margin for error/data variation (Additional file  1: 
Fig. S5). Lastly, variants pinnable to a specific patient 
were assessed for call quality or confidence. A confidence 
score of up to 100% was calculated using a weighted 
combination of 1) the observed mean VAF’s proximity 
to the theoretical allele contribution and 2) uniqueness 
score (excess uniqueness score above the call threshold). 
Variants were grouped as no, low, medium or high confi-
dence, when the confidence score was <24.99%, 25.00% to 
49.99%, 50.00% to 74.99%, or above 75.00%, respectively. 
The parameter thresholds were a product of empirical 
testing in the explorative cohort. Details are available in 
the supplemental materials.

Following the results of the explorative cohort, we ran 
a second blinded, but otherwise identical, experiment 
in the validation cohort (100 new patients). The analysis 
was blinded to the WGS data, and investigators were thus 
unaware of which patients carried genotypes of interest. 
Variant calling of the DoBSeq data was done precisely as 
dictated by the parameters determined by the explorative 
cohort. Then, after DoBSeq data analysis was completed 
using the specified cut-offs and the results were shared 
with an internal unblinded researcher, data was finally 
annotated with WGS data, and benchmarking analysis 
was conducted by comparing DoBSeq and WGS output 
(Additional file 1: Fig. S5).

Cost estimates
Cost estimates were calculated using freely available list 
prices of sequencing flow cells and reagents. The com-
mercial gene panel (Additional file 1: Table S1) was set at 
the price actually paid as part of this study. All cost esti-
mates were based on yields listed by the manufacturers 
and were not corrected for data loss. Details are available 
in the supplementary materials.
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Statistics
R package EpiR (version 2.0.40) was used for comput-
ing true and apparent prevalence, sensitivity, specificity, 

positive and negative predictive values, and positive and 
negative likelihood ratios as well as exact binomial confi-
dence limits based on count data in a 2 by 2 table format.

Fig. 1 The main findings and performance of double‑batched sequencing (DoBSeq) in the explorative and validation cohorts. Upper panel: At the 
top; a timeline showing how all patients in the explorative cohort had neonatal blood spots taken at birth, followed by a presymptomatic phase 
prior to a cancer diagnosis (equivalent to neonatal blood sample age), after which they underwent whole genome sequencing which identified 
several loss‑of‑function or reported pathogenic variants (LoF/P). A Jitter plot showing LoF/P variants detected in the 10‑column batches, plotted 
with variant allele frequency (VAF) on the y‑axis. Blue and labeled dots represent true positive variants while red and unlabeled dots represent false 
positives. The gray dotted line represents the theoretically expected VAF of 5% for non‑mosaic heterozygous variants (1 of 20 alleles). B Jitter plot 
shows the same as A only for row batches. C Doubly detected LoF/P variants are pinned to a specific patient in a matrix where each intersection 
represents one sample/patient. Dots represent variants identified by DoBSeq. Teal gene names indicate true positives (also found on WGS) and 
red gene names show false positives (not found on WGS). Higher transparency of dots/gene names indicates lower confidence. Lower panel: 
D–F are identical to A–C, only showing data and results from the validation cohort (VC). * The number of LoF/P variants found on whole genome 
sequencing refers to SNVs and indels within the exonic regions covered by the panel used in the DoBSeq matrices. See the “Methods” section for 
further details
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Results
Explorative cohort
We selected an explorative cohort (EC) of 100 partici-
pants, enriched for germline loss-of-function/known 
pathogenic (LoF/P) variants, among childhood cancer 
patients with WGS data available. WGS identified 31 
high-confidence LoF/P variants [52% frameshift, 29% 
nonsense, 13% missense, and 6% splice] that were both 
unique to the cohort and covered by a commercial 113-
gene panel (Fig. 1, Additional file 2: Table S4).

From each of the 100 EC participants, DNA was 
extracted from neonatal blood spots and split in two ali-
quots (Additional file  2: Table  S6). Each of the two ali-
quots was then batched with DNA aliquots from nine 
other participants, according to a 10 by 10 matrix of all 
EC participants (Additional file 1: Fig. S1, Fig. S2). In this 
way, DNA aliquots from two participants were never 
batched together more than once, and each participant 
was therefore represented in a unique batch combination 
of one column and one row in the matrix (Fig. 1A–C).

The 113-gene panel was employed for sequencing of all 
20 batches. Using WGS data to determine true variants, 
we optimized a bioinformatic approach for pinpointing 
variants from the gene panel to specific individuals in the 
matrix by cross-referencing unique variants in row and 
column batches. Final filtering parameters were deter-
mined empirically (Additional file 1: Fig. S4, Fig. S5) and 
identified 575 cohort-unique variants in the EC of which 
35 were LoF/P (Additional file 1: Fig. S6, Additional file 2: 
Table  S4). Of these, 89% were classified as being either 
high (27) or medium (4) confidence, and were considered 
positive, while the remaining 11% were classified as low 
(2) or no (2) confidence and were considered negative 
(Fig. 1C).

The 31 LoF/P variants called by DoBSeq had com-
plete (100%) patient-specific overlap with the 31 LoF/P 
variants identified by the gold standard WGS data. 
Thus, using the filtering and confidence-scoring param-
eters determined in the EC analysis, DoBSeq showed 
100% (95% CI 0.89–1.00) sensitivity and 100% (95% CI 

0.95–1.00) specificity for the identification of cohort-
unique LoF/P variants found by individual WGS (Fig. 1).

Validation cohort
Next, we tested replicability in a validation cohort (VC) 
of 100 patients again selected from the childhood can-
cer cohort, but with no patients overlapping with the 
EC. Employing identical methods, we undertook vari-
ant calling using only the exact parameters determined 
in the EC analysis (Additional file  1: Fig. S5, Additional 
file 2: Table S6). All investigators remained blind to both 
patient identity and individual WGS data until the VC 
analysis was complete and LoF/P variants were reported 
(Fig. 1D–F).

Using only the predetermined parameters, DoBSeq 
called 537 cohort-unique variants in the VC of which 9 
were LoF/P (Additional file  1: Fig. S7, Additional file  2: 
Table S4). Seven variants were of high (6) or medium (1) 
confidence and were considered positive, while two were 
of no confidence and were considered negative (Fig. 1F). 
The seven LoF/P variants that were positive on DoBSeq 
were reported to unblinded investigators and compared 
to LoF/P variants found by individual WGS data. Again, 
all 7 LoF/P variants found using DoBSeq had complete 
(100%), patient-specific overlap with the 7 LoF/P vari-
ants identified in the WGS data [43% frameshift, 29% 
nonsense, 14% missense, and 14% splice]. Thus, DoB-
Seq maintained 100% (95% CI 0.59–1.00) sensitivity and 
100% (95% CI 0.96–1.00) specificity for the identification 
of cohort-unique LoF/P variants found with individual 
WGS (Fig. 1).

Combining results from both the explorative and the 
validation cohorts yielded a positive predictive value of 
having a cohort-unique LoF/P variant found on DoBSeq 
of 100% (95% CI 0.91–1.00) and negative predictive value 
of 100% (95% CI 0.98–1.00).

Focusing on TP53, a single gene of particular inter-
est, we reidentified all 9 cohort-unique variants of any 
classification across both cohorts, including two vari-
ants [p.Ile254Thr and p.Leu257Gln] not reported as 

Table 1 Results from the four stand‑alone batches represented by one row each. Shows the mean target coverage per n (X), the 
expected variant allele frequency (VAF) for true heterozygous variants, unfiltered (raw) variant calls, loss‑of‑function or reported 
pathogenic (LoF/P) calls, as well as the number and VAF of true calls and known false calls

n in batch Mean X Expected VAF Raw var. calls [mean VAF] Raw LoF/P var. 
calls [mean 
VAF]

Matched LoF/P var. calls 
[mean VAF] (sensitivity)

False matches [mean VAF] to 
unique known var. of patients 
not in batch

24 83 2.08% 353,182 [0.21%] 29,415 [0.18%] 9 [1.80%] out of 9 (100%) 92 [0.26%] out of 453 (20%)

48 42 1.04% 295,492 [0.24%] 24,772 [0.20%] 17 [0.94%] out of 17 (100%) 61 [0.27%] out of 311 (20%)

72 28 0.69% 299,307 [0.19%] 25,210 [0.15%] 25 [0.63%] out of 26 (96%) 38 [0.22%] out of 168 (23%)

96 21 0.52% 287,905 [0.22%] 24,118 [0.18%] 31 [0.51%] out of 31 (100%) 2 [0.15%] out of 16 (13%)
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pathogenic in ClinVar, but immediately classified as such 
due to the location in the DNA binding domain and other 
phenotype or functional data. The validation cohort only 
revealed the anticipated non-pathogenic variants (Fig. 2).

Scalability
Our first secondary endpoint was to test the sensitiv-
ity for detection of LoF/P variants when sequencing 
stand-alone batches of neonatal blood spot DNA includ-
ing 24, 48, 72, and 96 individuals from the EC (Fig.  3B, 

Additional file 1: Fig. S3). The total coverage (X) per batch 
was kept constant, resulting in coverages per sample that 
were proportionally lower than the 200X achieved in the 
EC and VC. Across the scaled batches, expected LoF/P 
variants were detected at sensitivities ranging from 
96 to 100%. Even at an average of 10X per allele (in the 
96-sample stand-alone batch), 31 of 31 LoF/P variants 
were detected, resulting in a sensitivity that remained 
100% (Fig. 3A, Table 1). Because the scaled batches were 
run as stand-alones, variants could not be pinpointed 

Fig. 2 Reidentifying TP53 variants with double batched sequencing (DoBSeq). Upper plot: Illustrates all non‑synonymous coding variants in the 
TP53 gene called without any filtering, i.e., includes all low‑coverage and low‑confidence calls, showing DoBSeq variants found in batches from 
the explorative cohort (EC) in red and whole genome sequencing (WGS) variants found in the EC in teal. The x‑axis shows the canonical TP53 
protein product, with numbers indicating codon number and dotted lines indicating exonic borders. The y‑axis shows variant allele frequency 
(VAF) for DoBSeq on the left and WGS on the right. The dotted line indicates the theoretical VAF for true heterozygous variants. On the x‑axis, the 
variants found on WGS and reidentified with DoBSeq are indicated by lollipop markers with colors corresponding to ClinVar classifications of likely 
pathogenic (orange), variant of unknown significance (yellow), likely benign (blue), and benign (green). A marker (¨) was added to the protein 
change when the variant did not have a ClinVar classification; here color indicates in‑house classification. A common polymorphism (p.Pro72Arg) 
found in 86 alleles was filtered out for the sake of clarity. Interpretation: A steady level of sequencing noise runs along the low end of the y‑axis 
with individual sets of batches rising up towards or slightly above the expected VAF. This signal allows for pinpointing to individuals. Lower plot: As 
above; for the validation cohort. A common polymorphism (p.Pro72Arg) found in 92 alleles was filtered out for the sake of clarity
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to individuals, which meant that specificity could not 
be meaningfully calculated. As remarked above, several 
false positive variants were called in individual batches, 
and these were only recognized as false when they were 
not doubly detected in DoBSeq. Yet, reassuringly, true 
positive variants showed higher VAFs than false posi-
tive variants, and the VAFs were very near the expected 
per-allele contribution (Table 1, Additional file 1: Fig. S9). 

Importantly, due to a combination of lower sequencing 
yield and lower contribution of each allele, false variants 
became increasingly difficult to distinguish from those 
known to be true (Additional file 1:Fig. S10).

At scale, the number of library preparations needed, 
and consequently cost, drops exponentially. This results 
in DoBSeq becoming increasingly cost-effective the more 
samples are sequenced in a matrix at once. We estimated 

Fig. 3 Illustrates scalability and estimated economic impact of lowered price per sample (PPS). A The PPS stratified by the size of the matrix, 
with line colors corresponding to those of the text and matrices in panel B. The x‑axis represents sequencing yield in the targeted area, under a 
conservative assumption of 50% quality control data loss. The logarithmic y‑axis shows the raw estimated price of sequencing the samples from 
a single individual. The dots represent empirical data from single batched sequencing at the specified batch sizes, including the sensitivity for 
loss‑of‑function and/or known pathogenic (LoF/P) variant detection. B Population size and number of tests needed to screen every individual 
using the double batched sequencing (DoBSeq) method. C The price per diagnosis (PPD, i.e., LoF/P variant detection) as influenced by PPS for 
11 selected childhood cancer predisposition syndrome (CPS) genes corresponding to those investigated by Yeh et. al .[16], as well as all 11 genes 
combined. Legend is ordered by CPS prevalence. Prevalence is based on the best available evidence. D Based on the economic model by Yeh et al 
.[16] this graph illustrates the cost per quality‑adjusted life‑year (QALY) gained by tumor surveillance (within the 11 CPSs in panel C) at decreasing 
PPS. The dotted lines delineate screening costs that are cost‑prohibitive, cost‑effective at a liberal cut‑off of $100k per QALY, and cost‑effective at a 
conservative cut‑off of $50k per QALY, respectively. Colored dots correspond to PPS at selected matrix sizes (see panel B)



Page 8 of 12Stoltze et al. Genome Medicine           (2023) 15:17 

costs per sample using various flow cells (Table 2) at dif-
ferent matrix sizes and target coverages (Table 3). Using 
the same 113-gene panel throughout, this yielded an esti-
mated cost per sample as low as 2 USD, when a matrix of 
96 times 96 (9216 individuals) was considered. Our calcu-
lations also reveal that even using a relatively small panel 
(covering 403 kilobases), large flow cells are required due 
to the high number of samples, further increasing the 
sequencing cost-effectiveness.

All unique variants
Another secondary endpoint of this study was to test 
DoBSeq’s ability to find any variant unique to the cohort, 
regardless of mutation ontology or pathogenicity. As 
further detailed in the supplementary materials, DoB-
Seq correctly identified and pinpointed carriers of high 
confidence unique variants as determined by WGS data 
at a rate of 94% (1034/1097) without adjustments, yield-
ing a positive predictive value of 98.95% (95% CI 98.93–
98.96%) (Additional file  1: Table  S2). This rose to 97% 
(1034/1065) when discounting non-coding and pseu-
dogenic false negative variant calls (Additional file  2: 
Table S5). True negatives are not meaningful to consider 
as any one loci identified by both WGS and DoBSeq as 
wildtype or reference may be considered true nega-
tives and these count in the hundreds of thousands. As 
a whole, our findings suggest that DoBSeq’s performance 
is non-inferior to variant-calling concordance of conven-
tional individual sequencing cross-platform comparisons 
[17].

Discussion
We demonstrate that the DoBSeq approach to mass 
genetic screening for rare disease-causing variants is 
a reliable and cost-effective method, which is likely to 
be highly scalable and hence applicable to population 
screening. The high performance and ability to directly 
pinpoint carriers of genetic variants are a product of 
the repeated sequencing of the same individual in two 
separate batches. Essentially, our results fully support 

that DoBSeq applied on large cohorts can directly iden-
tify single individuals with rare variants. The identi-
fied carriers may then be confirmed using conventional 
sequencing, after which clinical reporting could take 
place in adherence to existing best practices [18, 19]. To 
eliminate interpretation biases in the present analysis, 
we purposefully excluded variants that were internally 
classified as pathogenic (Fig. 2).

Surprisingly, our data showed that false positive 
LoF/P variants with passable quality parameters were 
widespread when the sequencing results from stand-
alone batches were assessed in isolation (Fig.  1A–B, 
D–E). However, by filtering variants to those seen in 
a combination of one column and one row batch, i.e., 
appearing twice in two different batches, we could 
clearly distinguish between true and false positive 
variants. This suggests that, using our method, single 
batched sequencing (in which carriers cannot be pin-
pointed) would require copious individual resequenc-
ing. Considering the high number of RDs in the general 
population, the pursuit of just the true positive vari-
ants could become costly if dozens or even hundreds of 
genes were screened simultaneously, with each finding 
requiring resequencing of all individuals in the stand-
alone batch. Based on our data, false positives in stand-
alone batches were common, however, our design was 
not specifically optimized with highly accurate variant 
calling in stand-alone batches in mind, hence the rese-
quencing needed in pursuit of variant which would 
ultimately turn out to be false, could not be reliably 
assessed based on our data.

Currently, well over 400 gene-disease pairs are con-
sidered highly actionable in childhood with respect to 
age-of-onset and/or timing of intervention, and at least 
an additional 25 are highly actionable in adulthood [5]. 
Each of these conditions may be considered viable candi-
dates for population screening, yet, primarily due to cost 
restrictions, few are routinely screened for in any health-
care system and no screening currently uses genomics 
up-front [8, 20].

Table 2 Sequencing cost estimates at increasing matrix sizes using four commercial systems. Four commercial sequencers/flow cells 
used for sequencing cost estimates in Table 3 

Gbp gigabasepair, M million, B billion

System and flow cell Read size 
(paired‑end)

# of reads Output (Gbp) Price (USD) Cost/Gbp (USD) Cost/1X panel 
coverage 
(USD)

NextSeq 500 Mid Output Kit v2 (300 cycles) 150 × 2 400M 120 5785 USD 48.21 USD 0.019 USD

NovaSeq 6000 SP Reagent Kit v1.5 (300 cycles) 150 × 2 800M 240 5100 USD 21.25 USD 0.009 USD

NovaSeq 6000 S2 Reagent Kit v1.5 (300 cycles) 150 × 2 4B 1200 12,150 USD 10.13 USD 0.004 USD

NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) 150 × 2 10B 3000 17,700 USD 5.90 USD 0.002 USD
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A recent simulation model evaluated the cost-effec-
tiveness of universal screening for a panel including 11 
pediatric CPS genes [16], which fully overlapped with the 
113-gene panel used in our study. Because RDs, such as 
pediatric CPSs, by definition have a very low prevalence, 
the number-needed-to-diagnose (NND) in an unselected 
cohort is high. For individual rare conditions, such as 
WT1-related disorders, the price per diagnosis (PPD) 
at the estimated cost of doing a single genetic test likely 
exceeds $10 million (Fig.  3C). Of course, by using pan-
els, several conditions can be screened for simultane-
ously, lowering the NND for any one condition, yet, for 
the 11 pediatric CPS genes, Yeh et al. [16] conclude that 
at the current best price per sample (PPS) of $55, tumor 
surveillance strategies are cost-prohibitive ($244,860 
per life-year gained). However, at a PPS of $20, surveil-
lance approaches liberal cost-effectiveness (<$100,000 
per life-year gained) (Fig. 3D). Practically, the PPD must 
be added to the isolated cost of the tumor surveillance 
strategy, making it increasingly likely that any given treat-
ment, which is cost-effective in isolation, will remain 
cost-effective as PPD is reduced. According to the models 
developed by Yeh et al., the tumor surveillance strategies 
and treatments available for the 11 conditions they stud-
ied will be even conservatively cost-effective (<$50,000 
per life-year gained) if PPS drops below $8, which we 
demonstrate to be highly possible when DoBSeq is run at 
scale (Fig. 3D).

DoBSeq has the potential to advance genetically based 
risk stratification, and the cost-effectiveness of doing so, 
for hundreds of actionable RDs caused by rare genetic 
variants. This is by no means limited to DNA samples 
from neonatal blood spots. Several studies have inves-
tigated the cost-effectiveness of population screening 
for adult CPSs [21–25], and one such study [25], inves-
tigating the impact of PPS on universal adult screening 
for BRCA1/2 and MMR genes, found it to be conserva-
tively cost-effective even at PPS exceeding $1000. Lower-
ing PPS to those estimated for DoBSeq running at scale 
could lead to prices per life-year gained that approach 
cost-saving (Additional file  1: Fig. S11, Fig. S12). Most 
adult CPSs are believed to be undiagnosed, and therefore 
population-based cancer screening stands to improve 
with genetically informed precision prevention [24].

The promising aspects of DoBSeq must be viewed 
in light of some limitations of the method and of this 
study. If multiple individuals in the same DoBSeq matrix 
carry exactly the same variant, it may not be possi-
ble to pinpoint the carriers directly. In this event, how-
ever, the number of possible carriers will be limited to 
a small group amenable for individual (re)sequencing. 
For instance, if two individuals carried the same variant, 
(re)sequencing of four individuals would be required to 

identify the two true carriers. Still, genetic heterogene-
ity, meaning that a specific disease may be caused by a 
myriad of distinct genetic defects, generally makes mul-
tiple carriers of molecularly identical variants in the 
same matrix astronomically unlikely. This was also found 
in our study, e.g., for TP53 where four distinct variants 
all caused the same condition (Li-Fraumeni Syndrome) 
associated with a high risk of childhood cancers [26] 
(Fig. 2).

In some populations, pathogenic founder variants 
causing genetic diseases that are rare globally may be 
common enough to make person-specific variant detec-
tion using DoBSeq challenging. Nevertheless, founder 
variants are virtually always known and well-studied in 
the populations that carry them at high frequencies, and 
therefore such variants may be better suited for bespoke 
detection methods, such as was done for the Brazil-
ian TP53 founder variant, which was neonatally, and 
highly cost-effectively, screened for using a direct restric-
tion fragment length polymorphism assay in the Paraná 
region of Brazil [27]. Conversely, DoBSeq’s use lies in 
identifying the highly heterogeneous mutational spec-
trum of non-founder, i.e., personal, variants, which cause 
the vast majority of serious genetic diseases in humans. 
Theoretically, the presented method should provide con-
clusive results for virtually all loci where variants have 
an allele frequency of 0.001% or lower (Additional file 1: 
Table S3).

Another possible limitation was that prior to batching, 
our method harmonized DNA concentration across all 
samples, which added a minor cost for each sample. At 
scale, this may impact overall cost-effectiveness estimates 
and we did not test whether removing this step impacted 
the performance of DoBSeq. Lastly, structural variants, 
known to cause around 10% of RD [28], were not investi-
gated as part of the present study.

Lately, combinatorial pooling strategies, like DoBSeq, 
have received increased attention as a theoretical alterna-
tive to the extensive and costly population screening for 
the SARS-CoV-2 virus [29]. While the methods appear 
similar, a crucial difference is that a heritable  disease 
may be caused by a myriad of distinct genetic variants, 
whereas SARS-CoV-2 tests, by and large, are positive in 
the same way.

Finally, we would be remiss not to mention that the 
implementation of mass genetic screening of healthy 
neonates, children, and/or adults, precipitates criti-
cal ethical considerations [30]. Ethics is not a focus of 
our current study, however, it is important to note that 
our method detects rare variants only, thus limiting the 
amount of personal genetic data obtained per individual. 
Moreover, if our method is developed further, the low 
price per sample may extend accessibility in low- and 
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middle-income countries, making it more equitable than 
current individual NGS-based methods.

Conclusions
Our DoBSeq method reliably detects rare pathogenic ger-
mline variants in populations at single nucleotide resolu-
tion — while reducing costs up to 20-fold. Our findings 
indicate that the approach is highly scalable and may eas-
ily be incorporated into existing screening infrastructures 
based on the collection of standard blood spot samples 
sequenced with standard NGS hardware. Consequently, 
DoBSeq could pave the way for cost-effective, at-scale, 
NGS-based population screening, and open up possibili-
ties for efficient studies of large, unselected cohorts.
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