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Abstract 

Background: Genetic penetrance is the probability of a phenotype when harbouring a particular pathogenic vari‑
ant. Accurate penetrance estimates are important across biomedical fields including genetic counselling, disease 
research, and gene therapy. However, existing approaches for penetrance estimation require, for instance, large family 
pedigrees or availability of large databases of people affected and not affected by a disease.

Methods: We present a method for penetrance estimation in autosomal dominant phenotypes. It examines the 
distribution of a variant among people affected (cases) and unaffected (controls) by a phenotype within population‑
scale data and can be operated using cases only by considering family disease history. It is validated through simula‑
tion studies and candidate variant‑disease case studies.

Results: Our method yields penetrance estimates which align with those obtained via existing approaches in the 
Parkinson’s disease LRRK2 gene and pulmonary arterial hypertension BMPR2 gene case studies. In the amyotrophic 
lateral sclerosis case studies, examining penetrance for variants in the SOD1 and C9orf72 genes, we make novel pen‑
etrance estimates which correspond closely to understanding of the disease.

Conclusions: The present approach broadens the spectrum of traits for which reliable penetrance estimates can be 
obtained. It has substantial utility for facilitating the characterisation of disease risks associated with rare variants with 
an autosomal dominant inheritance pattern. The yielded estimates avoid any kinship‑specific effects and can circum‑
vent ascertainment biases common when sampling rare variants among control populations.
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Background
Penetrance is the probability of developing a specific trait 
given a genetic variant or set of variants. Some patho-
genic variants are fully penetrant, and people harbour-
ing them always develop the associated phenotype. For 

instance, a trinucleotide CAG repeat expansion within 
the HTT gene [MIM: 613004] is fully penetrant for 
Huntington’s Disease [MIM: 143100] by 80  years of age 
among people harbouring an expansion variant larger 
than 41 repeats [1]. For many variants, however, pen-
etrance is incomplete, and those with risk variants can 
remain unaffected throughout their life. For example, the 
p.Gly2019Ser (c.6055G > A) variant of the LRRK2 gene 
[MIM: 609007] exhibits incomplete penetrance for Par-
kinson’s disease (PD [MIM: 168600]), meaning that it 
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elevates risk for PD but does not necessarily result in its 
manifestation [2].

In medical genetics, estimating the penetrance of 
pathogenic variants is vital for the correct interpretation 
of genetic test results. This importance will increase as 
genome sequencing becomes routine, both within and 
outside clinical practice, alongside advancements in pre-
cision medicine and gene therapy [3–6].

Several methods exist for penetrance estimation. The 
first and most widely used is based on statistical exami-
nation of how the variant segregates with the phenotype 
within pedigrees [7]. However, the generalisability of 
estimates derived from specific families may be limited. 
Other approaches examine the incidence of disease in 
a sample of unrelated people who harbour a variant [8, 
9]. Without systematic sampling, these estimates can be 
affected by ascertainment bias. Where large pedigrees 
are not available, or if the disease is rare or late onset, 
these techniques may not be possible [10].

Estimating penetrance for a variant of unknown signifi-
cance identified, for example, during genome sequenc-
ing-based screening can be particularly challenging. The 
problem is exemplified by the large number of reported 
SOD1 gene [MIM: 147450] variants implicated in amyo-
trophic lateral sclerosis (ALS [MIM: 105400]). ALS is a 
fatal neurodegenerative disease characterised predomi-
nantly by progressive degeneration of motor neurons [11, 
12]. SOD1 variants are an important cause of ALS and 
over 180 ALS-associated variants in this gene have been 
reported to date [11, 13–15], however, family pedigrees 
suitable for establishing penetrance are available for only 
a minority of these.

We have developed a new method to estimate penetrance 
for variants with an autosomal dominant inheritance pat-
tern using population-level data from unrelated people 
who are and are not affected by the associated phenotype. 
It can be operated using variant information drawn only 
from affected populations, stratified according to the family 
history between ‘familial’ and ‘sporadic’ disease presenta-
tions. This approach is based on our previously published 
model of disease which explains how variant penetrance 
and sibship size determine the presence or absence of a dis-
ease for families in which the variant occurs [16].

The method is complementary to and fills an impor-
tant gap left by existing techniques. Using population-
scale data, it takes full advantage of the rapidly growing 
quantity of genetic data that are being generated for a 
wide range of human disease and therefore it is ideally 
placed to be a valuable tool in the precision medicine era. 
Moreover, the capacity to assess penetrance based on the 
distribution of a variant between samples of unrelated 
people drawn only from the affected population allows 

estimates unbiased by kinship-specific effects or ascer-
tainment of unaffected population members.

We have tested the approach in four variant-disease 
case studies, drawing upon the most common and widely 
studied autosomal dominant variants implicated in each 
disease: the LRRK2 p.Gly2019Ser variant for PD [2]; vari-
ants in the BMPR2 gene [MIM: 600799] for heritable pul-
monary arterial hypertension (PAH [MIM: 178600]) [17]; 
and variants in the SOD1 and C9orf72 [MIM: 614260] 
genes for ALS [11, 12].

Methods
Model
Here, we describe an approach to estimate genetic pen-
etrance for autosomal dominant traits using population-
scale data.

Our method builds upon and extends an existing dis-
ease model [16] which makes the following assumptions: 
in a nuclear family, a rare dominant pathogenic variant is 
necessary but not sufficient for disease to occur, therefore 
penetrance, denoted f  , is not complete and family mem-
bers who do not harbour the variant are not affected; all 
variants are inherited from exactly one parent, thus there 
are no people homozygous for the variant or de novo var-
iants. Our extended model relaxes the assumption that 
the variant is necessary for disease to occur: it assumes 
that people not harbouring the variant have a residual 
risk for developing disease after accounting for the pro-
portion of disease occurrences attributed to the variant, 
denoted g.

Accordingly, if the probability of an individual being 
affected by a disease, P(A) , is f  when harbouring variant 
M or g if M is absent, denoted M ′ , P(A) can be deter-
mined by considering the probability of harbouring M , 
P(M):

letting P M′ = 1− P(M).
In a family where a single parent harbours, and each 

child has a 0.5 chance of inheriting, M , the following 
probabilities of being affected can be determined per 
family member:

for the variant harbouring parent, where P(M) = 1;

for each offspring, each of whom has P(M) = 0.5 , and 
thus risk influenced by both f  and g ; and

(1)P(A) = f × P(M)+ g × P
(

M
′
)

,

(2)P(A)M = f

(3)P(A)M
0.5

=
f

2
+

g

2
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for the parent without M , where P(M) = 0 , and therefore 
for whom disease risk is only determined by that which is 
associated with M ′.

Considering these individual disease probabilities, 
three probabilities can be determined for a nuclear family 
where one parent harbours a given variant: that no fam-
ily members are affected, P(unaffected) ; that exactly one 
member is affected, P(sporadic) ; and that more than one 
member is affected, P(familial) . These probabilities are 
determined by penetrance, f  , residual disease risk g if 
not harbouring the variant, and sibship size, N  . In a fam-
ily with N  siblings:

where no family member, with or without the variant, 
develops the disease, and where each of the sibs has 1/2 
probability of being transmitted the variant.

if one family member develops the disease. This may be 
either may be the variant-harbouring parent, exactly one 
of the sibs, or the parent not harbouring the variant (on 
account of residual risk g ). Then,

where two or more family members develop the dis-
ease, which can be determined from P(unaffected) and 
P(sporadic) since the total probability of a family being 
unaffected, sporadic, or familial must sum to 1.

If g = 0 , the original [16] and extended models are 
equivalent.

Application to penetrance calculation
Conversely, penetrance can be estimated given the 
observed rates of the unaffected, sporadic, and familial dis-
ease states in families where the pathogenic variant occurs, 
the average sibship size for these families, and an estimate 
of residual disease risk g . We can also estimate penetrance 
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,

based on the observed rates of families presenting as unaf-
fected versus affected, a fourth disease state whereby

The observed rate of the arbitrarily-labelled disease 
state ‘X’, R(X)obs , is used to indicate the frequency of one 

of the sampled disease states across all states sampled. 
R(X)obs can be specified for any valid combination of the 
four disease states, drawing from any two or three of the 
familial, sporadic, and unaffected disease states, or from 
the affected and unaffected states. Data from the affected 
state cannot be specified alongside that of the familial or 
sporadic disease states since the former is determined 
through their combination. R(X)obs may be specified 
directly if the distribution of disease states across peo-
ple with the variant is known for the state-combination 
used or derived as a weighted proportion of estimates of 
heterozygous variant frequency across people with and 
without the variant (see Table 1).

(8)P
(

affected
)

= P
(

familial
)

+ P(sporadic).

Table 1 Valid disease state combinations and corresponding 
weighting factors for estimating disease state rates

The defined weighting factors are used in Step 1 of the penetrance estimation 
approach, as described in Fig. 1 and Additional File 1: Sect. 1.1MF ,S,U,A = variant 
frequencies in the familial, sporadic, unaffected, and affected states;WF ,S,U,A = 
weighting factors for the familial, sporadic, unaffected, and affected 
states;P(A)pop = the probability of a member of the sampled population being 
affected;P(F|A) = disease familiality rate;P(S|A) = disease sporadic rate

Variant frequencies provided Required weighting factors

Familial ( MF),
Sporadic ( MS)

WF = P(F|A),
WS = P(S|A)

Familial ( MF),
Unaffected ( MU)

WF = P(F|A)× P(A)pop,
WU = 1− P(A)pop

Sporadic ( MS),
Unaffected ( MU)

WS = P(S|A)× P(A)pop,
WU = 1− P(A)pop

Familial ( MF),
Sporadic ( MS),
Unaffected ( MU)

WF = P(F|A)× P(A)pop,
WS = P(S|A)× P(A)pop,
WU = 1− P(A)pop

Affected ( MA),
Unaffected ( MU)

WA = P(A)pop,
WU = 1− P(A)pop
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Sibship size can be estimated for the sample either 
directly, based on the average sibship size among sam-
pled families, or indirectly, by designating an estimate 
representative of the sample (e.g. from global databases).

Under Bayes theorem [18], g can be determined from 
P(A) and P(M) within the general population, respec-
tively P(A)pop and P(M)pop , and the frequency of variant 
M among people affected by disease, MA:

MA and P(M)pop may each be determined by weighted 
sums:

and

where MF ,S,U denote the variant frequencies in the 
familial, sporadic, and unaffected states, P(F |A) is 
the rate at which people in the affected population, 
A , are familial, and P(S|A) is the disease sporadic rate 
( P(S|A) = 1− P(F |A) ). If the disease is rare in the popu-
lation, g ≈ 0 and has a negligible influence upon pene-
trance estimates (see the simulation studies in Additional 
File 1: Sect. 1.2.3).

Our penetrance calculation method involves four steps 
and includes the option to derive error in the estimate. 
These processes are summarised in Fig.  1 and compre-
hensively outlined in Additional File 1: Sect. 1.1.

The method assumes that: one person is sampled per 
family and disease states are assigned based on the status 
of the person sampled and first-degree family members 
only; all variants are inherited from exactly one parent 
and there are no de novo variants; the value specified for 
sibship size is representative of sibship size across disease 
state groups. We recommend providing an estimate of g , 
however, g = 0 by default, which makes the additional 
assumption that the trait only occurs in members of sam-
pled families owing to the presence of the variant.

A further assumption is made in each of the two sce-
narios for determining R(X)obs . When sampling across 
only families where the variant occurs, it is assumed that 
disease state classifications for sampled families will not 
change at a future time. When estimating variant fre-
quencies within disease states across cohorts of people 
with and without the variant, it is assumed that family 
disease states change comparably over time for people 
with and without the variant. The latter assumption can 
be partially tested by examining whether age of disease 

(9)g =
P(A)pop × (1−MA)

(

1− P(M)pop
) .

(10)MA = MF × P(F |A)+MS × P(S|A),

(11)
P(M)pop = MA × P(A)pop +MU ×

(

1− P(A)pop
)

,

onset is equally variable for people with and without the 
tested variant; the assumption is further discussed in 
Additional File 1: Sect. 1.2.2.

Additional File: Sect.  1.2 outlines the steps taken for 
approach validation, including details of several simu-
lation studies and comparison between using a lookup 
table or maximum-likelihood approach for Step 3. The 
included simulation studies test accuracy in penetrance 
estimation when input parameters are correctly or 
incorrectly specified, when g is accurately measured or 
assumed to be 0, and according to age of sampling across 
several scenarios.

We have made this approach available as the R func-
tion adpenetrance hosted on GitHub [19]. In the GitHub 
repository, we additionally provide functions to calcu-
late g ; test for equal onset variability across two groups; 
and simulate how a certain degree of unequal onset vari-
ability, as indicated by the previous function, may affect 
penetrance estimates. To facilitate easy use, the approach 
is also hosted on a publicly available web-server, devel-
oped using the R Shiny package (version 1.7.3) [20, 21]. 
The web tool is further described in the Additional File: 
Sect. 1.3, and Fig. 2 presents an example of its usage.

Case studies
Input parameters for included case studies were esti-
mated using publicly available data. Variant frequen-
cies were estimated across people with and without the 
variant in the familial, MF , and sporadic, MS , states in all 
cases and, in case 1, the unaffected state, MU . MU was 
integrated into penetrance estimation for case study 
1 only to demonstrate the application of the method 
when sampling from various disease state combinations. 
This was not applied to other case studies as estimation 
focusses upon rare variants liable to ascertainment bias 
in control populations. In all cases, we derived the stand-
ard error of these values, σMX

 , to allow for assessment of 
error in the penetrance estimate. Variant frequency esti-
mates were weighted to calculate R(X)obs among variant-
harbouring families from those states modelled using 
the factors presented in Table  1. Accordingly, P(F |A) 
and P(S|A) were defined as weighting factors in all cases. 
P(A)pop is used in all case studies to derive g , according 
to Eqs. (9–11), and is used as a weighting factor in case 
1 only.

Sibship size, N  , was estimated in each case based on 
the Total Fertility Rates reported in the World Bank data-
base [22] for the world region(s) best representing the 
sample.

An R script permitting replication of each case study 
is provided within our GitHub repository (see the ‘Avail-
ability of data and materials’ [19]).
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Fig. 1 Summary of the key steps within this penetrance estimation approach. Legend: Step 1: Variant frequencies (M) and weighting factors (W) are 
defined for a valid subset of the familial (F), sporadic (S), unaffected (U), and affected (A) states (see Table 1) to calculate rate of one of these states, 
arbitrarily labelled state X, among families harbouring the pathogenic variant across those states with data provided, R(X)obs . Step 2: Eqs. (5–8) are 
applied to calculate P(familial) , P(sporadic) , P(unaffected) , and P(affected) , for a series of penetrance values, fi = 0, . . . , 1 , at a defined sibship size, N , 
and with disease risk g for people not harbouring the variant. The rate of state X expected at each fi among variant harbouring families from those 
states represented in Step 1, R(X)exi  , is calculated and stored alongside the corresponding fi in a lookup table. Step 3: The lookup table is queried 
using R(X)obs to identify the closest R(X)exi  value and corresponding fi . Step 4: Bias in the obtained fi estimate is corrected by simulating a population 
of families representative of the sample data, estimating the difference between true and estimated penetrance values in this population between 
f = 0, . . . , 1 and adjusting the estimated fi by error predicted within a polynomial regression model fitted upon the simulated estimate errors. 
Optional step: Confidence intervals for R(X)obs can be calculated from error in the estimates of M provided [48]; Penetrance is estimated as in Steps 
3 and 4 for the interval bounds. All steps within this approach are comprehensively detailed in Additional File: Sect. 1.1
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Fig. 2 Example interface and output of the ADPenetrance web tool [20]. Legend: Here we show the example of penetrance of SOD1 variants for 
amyotrophic lateral sclerosis in a European population, applying variant frequency estimates for familial and sporadic ALS patients of European 
ancestry, an estimate of ALS disease risk among people not harbouring SOD1 variants, and the average Total Fertility Rate for the European Union in 
2018 [22, 35]
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Case 1: LRRK2 penetrance for PD
We estimated the penetrance of the LRRK2 p.Gly2019Ser 
variant for PD. This case illustrates the flexibility of this 
method for application using data drawn from several 
combinations of the defined disease states.

The first-degree familiality rate of PD, about 0.105 , was 
used to estimate P(F |A) and P(S|A) [23, 24]. P(A)pop was 
estimated as 1 in 37 ( 0.027 ), the lifetime risk of developing 
PD [25].

We estimated MF .S using data aggregated from 18 Euro-
pean ancestry groups within a sample of 24 world popu-
lations [26]. Of 3, 770 unrelated people with familial PD 
manifestations, 126  (MF = 0.033, σMX

= 2.92× 10−3 ) 
harboured the LRRK2 p.Gly2019Ser vari-
ant, compared to 130 of 10, 898 with sporadic PD 
( MS = 0.012, σMS

= 1.04 × 10−3).
As LRRK2 p.Gly2019Ser occurred in only 2 mem-

bers of the unaffected control sample, we estimated 
MU using the larger European (non-Finnish) sam-
ple of the gnomAD v2.1.1 (controls) database [27], 
in which 10 of 21, 383 people harboured the variant 
( MU = 4.67× 10−4, σMU

= 1.47× 10−4).
We estimated that g = 0.0267 , in accordance with Eqs. 

(9–11), based on the estimated MF ,S,U , P(A) , and P(F |A).
As no single region is representative of the total sample, 

we estimated that N = 1.572 by aggregating Total Fertil-
ity Rate estimates available in the World Bank database 
[22] across each of the 18 European populations sampled, 
weighted by the proportional contribution of each popu-
lation to the sample (see Additional File 1: Table S1) [26].

Additional region-specific and joint population pen-
etrance estimates for this variant are presented in Addi-
tional File 1: Table S2.

Case 2: BMPR2 penetrance for heritable PAH
We estimated the penetrance of variants in the BMPR2 
gene for heritable PAH, a gene for which the low pene-
trance of pathogenic variants is well established [28].

Input parameters were defined based on only people 
with idiopathic (sporadic) or heritable PAH diagnoses 
[17]. This captures people with and without family dis-
ease history and excludes PAH manifestations associated 
with comorbidities or drug exposure.

We estimated P(F |A) and P(S|A) using the first-degree 
familiality rate of heritable PAH, about 0.055 of people 
affected by either idiopathic or familial PAH [28]. P(A)pop 
was estimated as 1 in 20 ( 0.05 ), according to an estimated 
1 in 10 lifetime risk of developing any PAH, and that idi-
opathic and heritable PAH forms account for approxi-
mately 50% of PAH occurrences [28,29].

To minimise any study-specific bias, we applied data 
from two reports to build independent estimates for each 
of MF ,S . The first dataset [17], includes 247 people with 

familial PAH, of which 202 harboured BMPR2 variants 
( MF = 0.818, σMF

= 0.025 ), compared to 200 of 1174 
in the sporadic state ( MS = 0.170, σMS

= 0.011 ). The 
second dataset [30] identified that 40  of 58 people with 
familial PAH ( MF = 0.690, σMF

= 0.061 ) harboured 
BMPR2 variants, compared to 26 of 126 in the sporadic 
state ( MS = 0.206, σMS

= 0.036 ). Variant counts were 
additionally reported separately for small genetic vari-
ations (single nucleotide variants and indels) and struc-
tural variants in BMPR2, allowing penetrance estimation 
stratified by variant type. Letting MU = 0 , we estimated 
that g = 0.0401 for dataset 1, and g = 0.0388 for dataset 
2, in accordance with Eqs. (9–11).

The first dataset may violate two assumptions of our 
approach: first, information on familial clustering was 
reportedly unavailable and so some families may be rep-
resented more than once in the familial state; second, it is 
not specified whether disease familiality is defined only 
by the disease status of first-degree relatives. The second 
sample overcomes a limitation of the first as each family 
is represented only once in variant counts. However, it is 
not reported whether disease states are defined accord-
ing to the status of first-degree relatives only. As R(X)obs 
is calculated after weighting MF ,S by the first-degree 
familial disease rate, the impact of some bias in variant 
frequency estimates upon penetrance estimates will be 
minimised.

The first cohort samples people from Asian, Euro-
pean, and North American populations; French, German 
and Italian cohorts comprise about 60% of the sam-
ple [17]. The second cohort samples people exclusively 
from Western Europe [30]. We therefore estimated that 
N = 1.543 in both instances, the Total Fertility Rate of 
the European Union in 2018 [22].

Cases 3 and 4: SOD1 and C9orf72 penetrance for ALS
We estimated the penetrance of variants in the SOD1 
and C9orf72 genes for ALS. For SOD1, we exam-
ined the aggregated penetrance of SOD1 variants har-
boured by people with ALS. For C9orf72, we examined 
the penetrance of a single pathogenic variant, a hexa-
nucleotide GGG GCC  repeat expansion (C9orf72RE; 
g.27573529_27573534GGC CCC [30 <]). These pene-
trances have been historically difficult to establish with-
out incurring kinship-specific biases. They represent 
ideal candidates for application of our method.

The first-degree familiality rate of ALS, about 0.050 , 
was applied to define P(F |A) and P(S|A) in these cases 
[31, 32]. P(A)pop was estimated as 1 in 400 (0 .0025 ), the 
lifetime risk of developing ALS [33].

We drew upon the results of two meta-analyses [34, 
35] to estimate MF ,S for SOD1 and C9orf72RE. As vari-
ant frequencies differed between Asian and European 
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ancestries, we modelled penetrance separately for each 
group. We derived σMF ,S

 using z-score conversion from 
the 95% confidence intervals (95% CIs) reported: for the 
arbitrary state X,

where z = 1.96 and M95%lower
X  is the lower 95% CI bound 

of the estimate MX.
In Asian ALS populations: SOD1 variants were har-

boured by 0.300 ( σMF
= 0.025 ) of people with familial 

and 0.015 ( σMS
= 2.55× 10−3 ) with sporadic disease; 

C9orf72RE was harboured by 0.04 ( σMF
= 0.010 ) of peo-

ple with familial and 0.01 ( σMS
= 5.10× 10−3) with spo-

radic disease. In accordance with Eqs. (9–11), and letting 
MU = 0 , we estimated that g = 0.00243 for SOD1, and 
g = 0.00247 for C9orf72.

In Europeans, SOD1 variants were harboured by 
0.148 ( σMF

= 0.017 ) of people with familial and 0.012 
( σMS

= 2.55× 10−3) with sporadic disease; C9orf72RE 
was harboured by 0.32 ( σMF

= 0.020 ) of people with 
familial and 0.05 ( σMS

= 5.10× 10−3) with sporadic 
disease. In accordance with Eqs. (9–11), and letting 
MU = 0 , we estimated that g = 0.00245 for SOD1, and 
g = 0.00234 for C9orf72.

The SOD1 meta-analysis allowed consideration of the 
extended kinship when defining familial ALS. The famili-
ality definition used in the C9orf72 analysis is not stated. 
As before, the weighting of Mf ,s by the first-degree famil-
ial disease rate when calculating R(X)obs will minimise 
any impact of some bias in variant frequencies upon pen-
etrance estimates.

We tested for equal onset variability (see Additional 
File 1: Sect. 1.2.2) with the checkOnsetVariability R func-
tion provided in the associated GitHub repository [19], 
comparing variability in age of ALS onset for people 
with SOD1 or C9orf72 variants to that of people without 
variants in these genes. The results (see Additional File 
1: Fig. S4) suggested approximately equal onset variabil-
ity between the SOD1 and no (SOD1 or C9orf72) variant 
groups, indicated by visual inspection of the cumulative 
density plot provided and by an approximately equal time 
spanned between the first and third quartiles of age of 
onset across the groups. Onset variability appears more 
unequal in the C9orf72 case study, with a ~ 1.36 times 
shorter interquartile interval for people harbouring C9or-
f72RE than the no variant cohort. One of the simulation 
studies presented in Additional File 1: Sect.  1.2.3; Fig. 
S11 models a comparable departure from the equal onset 
variability and demonstrates that a small but tolerable 
inflation of penetrance estimates may occur if sampling 
a younger cohort. Since the present penetrance estimates 
are based on pooled variant frequency estimates from 

(12)σMX
=

MX −M95%lower
X

z

large meta-analyses of variant frequencies in these genes, 
the present degree of unequal onset variability is unlikely 
to have impacted penetrance estimation.

In these datasets, the Asian ancestry cohorts were pre-
dominantly individuals from East Asia, with small pro-
portion from South Asia. The European ancestry cohorts 
primarily comprise people from European countries, 
with some from North America and Australasia. Accord-
ingly, N  was estimated for the Asian population samples 
as 1.823 , the Total Fertility Rate for East Asia and Pacific 
in 2018, and for the European population as 1.543 , the 
Total Fertility Rate for the European Union in 2018 [22].

Results
Here we summarise the input data and results of the case 
studies modelled (see Table 2). Penetrance estimates are 
presented both when accounting for residual disease risk 
g among people with no variant and when assuming that 
g = 0 ; those accounting for g are preferred.

Estimated penetrance of the LRRK2 p.Gly2019Ser vari-
ant for PD was roughly consistent across the modelled 
disease state combinations. Additional penetrance esti-
mates across various populations within the dataset from 
which this European sample was drawn are presented in 
Additional File 1: Table S2.

The penetrance of BMPR2 variants for PAH was esti-
mated comparably across the two sample sets, although 
slightly higher within dataset one [17] than two [30]. Pen-
etrance was also comparable between the defined BMPR2 
variant subtypes of the second sample. Differences in 
these estimates reflect variation in MF ,S between the 
cohorts and may result from a different admix of variants 
between samples, or unspecified family clustering within 
the first sample set. It is not known for either dataset 
whether family history classifications were restricted to 
first-degree relatives only and so the estimates obtained 
may be slightly inflated. We note, however, that impact of 
any inflation was minimised because variant frequency 
weighting factors were correctly defined. With the avail-
able data, these possibilities cannot be explored further.

Penetrance estimates of SOD1 and C9orf72 variants 
for ALS demonstrate consistency within genes across 
populations and indicate that the penetrance for ALS is 
greater in people harbouring SOD1 variants than in those 
harbouring C9orf72RE. Additional File 1: Table  S3 pre-
sents additional penetrance estimates for several widely-
described SOD1 variants: penetrance was estimated 
as 1 for p.Ala5Val (c.14C > T), 0.644 for p.Ile114Thr 
(c.341  T > C), and 0 for p.Asp91Ala (c.272A > C). Each 
estimate made in these case studies may be slightly 
inflated owing to inclusion of extended kinship within 
familiality definition. However, as before, accurately 
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defined weighting factors will have minimised this 
impact.

Discussion
We have developed a novel approach to estimate the 
penetrance of genetic variants pathogenic for autosomal 
dominant traits. The method was tested via simulation 
studies (see Additional File: Sect. 1.2.3) and application to 
several case studies.

Our penetrance estimates of the LRRK2 p.Gly2019Ser 
variant for PD and of the aggregate penetrance of 
BMPR2 variants for PAH closely matched those obtained 
using other approaches. Previous research on LRRK2 
p.Gly2019Ser estimates its lifetime penetrance between 
0.24 (95% CI: 0.135, 0.437) and 0.45 (no CI reported) 
when analysing data that is not liable to inflation owing to 
biased selection of familial cases [2]. Longitudinal analysis 
of disease trends among 53 families harbouring BMPR2 
variants finds penetrance as 0.27 overall, 0.42 for women 
and 0.14 for men [36]. These case studies additionally 
demonstrated the importance of considering residual dis-
ease risk g for family members not harbouring the variant 
when estimating penetrance in more common traits. This 
importance is explored further within simulation studies 
(see Additional File 1: Sect. 1.2.3; Fig. S8).

The estimates in the SOD1 and C9orf72 case studies 
align with current understanding of penetrance in these 
ALS genes.

For SOD1 variants, penetrance for ALS is incom-
plete and differs between variants [10, 37]. The widely-
described p.Ala5Val (formally p.Ala4Val) variant has 
a recorded penetrance of 0.91 by  70 years of age [38]. 
Among other variants, penetrance is typically lower [10, 
37]. Of those best characterised, p.Ile114Thr approaches 
complete penetrance in some pedigrees and p.Asp91Ala 
reaches polymorphic frequency in some populations, with 
linked ALS presentations typically displaying an autoso-
mal recessive pattern [10, 13, 38]. Our estimates for het-
erozygous inheritance of these individual variants aligned 
with these observations (see Additional File 1: Table  S3) 
and highlight the spectrum of penetrance across variants 
in SOD1. Our estimate for the p.Asp91Ala variant in par-
ticular supports the hypothesis that it is associated with 
ALS via a recessive or oligogenic inheritance pattern [39]. 
The absence of p.Asp91Ala within the familial ALS data-
base sampled further corroborates the finding. Accord-
ingly, our penetrance estimates in Asian and European 
populations can be taken to suitably represent an aggre-
gated penetrance of risk variants in SOD1 for ALS; some 
variation between populations can be expected, reflecting 
differences in the admix of variants between them.

For C9orf72, we modelled the penetrance of its 
pathogenic hexanucleotide repeat expansion for ALS. 

Pleiotropy of this variant is widely reported, addition-
ally conferring risk for frontotemporal dementia and, 
to a lesser degree, other neuropsychiatric conditions 
[40]. Past penetrance estimates made for this variant 
are vulnerable to inflation from biased ascertainment 
of affected people, and the variant is more common 
among unaffected people than would be expected if 
these estimates were accurate [12, 40, 41]. A previous 
study tentatively reports the penetrance of C9orf72RE 
for either ALS or frontotemporal dementia as 0.90 by 
age 83 after attempting to adjust for ascertainment 
bias within their sample [41]. Accounting for lifetime 
risk of each phenotype and their respective familial-
ity rates, people of European ancestry harbouring 
C9orf72RE appear to develop ALS or frontotemporal 
dementia with comparable frequency, we calculated 
that 1.012 cases of ALS emerge per case of frontotem-
poral dementia (see Additional File 1: Table S4) [33, 34, 
42–44]. It is therefore reasonable to predict that, if the 
variant has 0.90 penetrance for the joint condition of 
ALS and frontotemporal dementia, its penetrance of 
for ALS alone would be around 0.45. The 0.45 estimate 
is comparable to the upper bound of our findings. How-
ever, we note that our calculation does not account for 
the common co-occurrence of ALS and frontotempo-
ral dementia and that the true penetrance of C9orf72RE 
for the joint ALS-frontotemporal dementia condition is 
likely lower than the tentative 0.90 estimate.

The method presented has high validity. Internal valid-
ity is demonstrated within simulation studies (see Addi-
tional File: Sect.  1.2.3). Criterion and face validity are 
shown across the present case studies, aligning with esti-
mates made using other techniques and current under-
standing of the assessed cases. Construct validity is also 
demonstrated: in the ALS case studies, disease risk was 
greater for those harbouring a pathogenic SOD1 variant 
than for those with the C9orf72 repeat expansion. This 
aligns with the multi-step model of ALS [45], where har-
bouring SOD1 variants is associated with a 2-step disease 
process, converse to the 3-step process associated with 
C9orf72RE.

The data necessary to operate our approach is distinct 
from other techniques which examine patterns of disease 
among affected people, allowing assessment of pene-
trance in unrelated populations rather than families. The 
estimates are therefore unaffected by kinship-specific 
modifiers and are instead applicable to the sampled pop-
ulation. Since penetrance may vary according to genetic 
background, ancestry-specific penetrance estimates 
are best obtained by stratifying input data according to 
ancestral groups; this approach is demonstrated in the 
PD and ALS case studies (see Table 2, Additional File 1: 
Table S2).
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Where analysis is confined to people affected by dis-
ease, across the familial and sporadic states, we circum-
vent the ascertainment biases affecting designs which 
examine the distribution of a variant between affected 
and unaffected populations [9]. Where analysis includes 
data for unaffected samples (i.e. controls harbouring 
the variant) these would not be avoided; ascertainment 
of controls compared to cases has equivalent challenges 
irrespective of the penetrance estimation approach. 
However, as our method does not require this informa-
tion if data of familial and sporadic cases are available, 
this does not majorly limit the approach.

Furthermore, limitations of ascertainment will 
diminish as huge datasets of genetic and phenotypic 
information available within public databases become 
increasingly available. Therefore, the usefulness of pen-
etrance estimates generated through population data 
will grow alongside the increasing size and scope of 
genetic data within such datasets [9].

A limitation of this approach is the definition of 
familiality, which is the occurrence of the studied trait 
in a first-degree relative under this model. In practice, 
familial disease may be defined using various criteria, 
for example considering the disease status of second- 
or third-degree relatives, or including related diseases 
that may share a genetic basis [32, 46]. For example, 
ALS and frontotemporal dementia each share a genetic 
basis, and considering a family history of frontotempo-
ral dementia is reasonable when assessing familiality in 
a person with ALS. If the extended kinship is incorpo-
rated within familial disease state definitions, then the 
familial rate will trend upwards and inflate penetrance 
estimates. Using a wider definition of being affected is 
acceptable, although it will yield penetrance estimates 
for the joint condition.

A further caveat is that the model equations assume a 
particular family structure. It is not feasible to include 
all possible family configurations for large quantities of 
summary data however and approximations made are 
sufficiently close to provide an estimate of penetrance.

This method is suitable for calculating the point, 
rather than age-dependent, penetrance of pathogenic 
variants and can be applied to any germline genetic 
variation associated with a disease via an autoso-
mal dominant inheritance pattern. Penetrance can be 
derived for an individual variant or for an aggregated 
set of variants, with the latter indicating an averaged 
burden of variants meeting the given criteria. We sug-
gest that confidence intervals should be included when 
using this approach; the size of the interval returned 
will provide a useful indication of whether the data pro-
vided are sufficient for precise penetrance estimation.

When samples include only people harbouring the 
variant, the method assumes the stability of disease states 
among sampled families over time. This assumption is 
typical in case–control research designs, which expect 
that members of the control sample will not later become 
cases. However, in traits with age-dependent penetrance, 
estimates would be influenced by the age at time of sam-
pling. Younger samples would yield reduced estimates if 
fewer than two family members are affected when sam-
pled and others will only later become affected. A lifetime 
penetrance estimate would therefore be best obtained 
within this sampling scenario if sampling people beyond 
the typical age of onset for the studied disease.

Reasonable lifetime penetrance estimates can how-
ever be obtained at earlier sampling times even in cir-
cumstances of age-dependent onset when disease state 
rates are calculated via weighted proportions of variant 
frequency estimates within those states sampled. This 
sampling approach was applied in each of the 4 case stud-
ies, and follows an assumption that family disease states 
change comparably over time for people with and with-
out the variant (see Additional File 1: Sect. 1.2.2). Simu-
lation studies demonstrated this relative stability across 
ages and a relative tolerance to an unequal variability in 
age of onset profiles between variant and non-variant 
groups (see Additional File 1: Sect. 1.2.3; Fig. S10-S12).

Point penetrance estimates have several applications, 
for instance, improving the characterisation of patho-
genic variants at a population level, facilitating research 
involving tested variants and, in particular, aiding clinical 
trial design by supporting the curation of homogenous 
study populations. They would have additional utility 
once gene therapies move towards preventative treat-
ment, giving justification for or against such treatment 
after accounting for possible side effects and risks.

In a scenario where penetrance can be estimated via 
multiple approaches, we recommend applying each 
applicable method, given the complimentary nature of 
these techniques. If the results of multiple approaches 
conflict, we would suggest inspection of the suitability of 
the input data given for each method and to prioritise the 
result which these best fit.

Conclusions
Our novel method for penetrance estimation fills an 
important gap in medical genetics because, utilis-
ing population-scale data, it enables the unbiased 
and valid calculation of penetrance in genetic disease 
instances that would be otherwise difficult or impos-
sible using existing methods. It serves to expand the 
range of genetic diseases and variants for which high-
quality penetrance estimates can be obtained, as we 
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illustrate in the ALS case studies. Estimates drawn via 
this approach have clear utility and will be useful for 
characterisation of pathogenic variants, with benefits 
for both clinical practice and research. They have wider 
relevance to the population than those obtained by 
studying particular kinships and will be more interpret-
able for clinical professionals.

The tool code is available as an R function on GitHub 
[19] and the method is available and free to use via a pub-
lic webserver [20].
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