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Clinical implications of host genetic variation 
and susceptibility to severe or critical COVID-19
Caspar I. van der Made1,2,3, Mihai G. Netea1,3,4, Frank L. van der Veerdonk1,3 and Alexander Hoischen1,2,3*   

Abstract 

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, important insights have been gained into virus 
biology and the host factors that modulate the human immune response against severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). COVID-19 displays a highly variable clinical picture that ranges from asymptomatic 
disease to lethal pneumonia. Apart from well-established general risk factors such as advanced age, male sex and 
chronic comorbidities, differences in host genetics have been shown to influence the individual predisposition to 
develop severe manifestations of COVID-19. These differences range from common susceptibility loci to rare genetic 
variants with strongly predisposing effects, or proven pathogenic variants that lead to known or novel inborn errors 
of immunity (IEI), which constitute a growing group of heterogeneous Mendelian disorders with increased suscepti-
bility to infectious disease, auto-inflammation, auto-immunity, allergy or malignancies. The current genetic findings 
point towards a convergence of common and rare genetic variants that impact the interferon signalling pathways 
in patients with severe or critical COVID-19. Monogenic risk factors that impact IFN-I signalling have an expected 
prevalence between 1 and 5% in young, previously healthy individuals (<60 years of age) with critical COVID-19. The 
identification of these IEI such as X-linked TLR7 deficiency indicates a possibility for targeted genetic screening and 
personalized clinical management. This review aims to provide an overview of our current understanding of the host 
genetic factors that predispose to severe manifestations of COVID-19 and focuses on rare variants in IFN-I signalling 
genes and their potential clinical implications.
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Background
During the coronavirus disease 2019 (COVID-19) pan-
demic, our knowledge on the SARS-CoV-2 virus and its 
interaction with the human host has rapidly expanded. 
COVID-19 displays a notable inter-individual variability 
in clinical symptoms, ranging from asymptomatic disease 
to lethal pneumonia [1, 2]. Part of this inter-individual 
heterogeneity can be explained by differences in the host 
genetic profile, which can both increase susceptibility 
and confer protective effects [3]. These differences are 
determined by both common and rare genetic variants 

in the host genome. Large-scale genome-wide associa-
tion studies (GWAS) are being undertaken to elucidate 
common genetic variation and generate valuable infor-
mation on a population level by identifying loci that are 
enriched in patients with symptomatic or severe COVID-
19. Such studies can provide important information on 
the biologic pathways important for a disease. On the 
other hand, classical GWAS cannot effectively detect rare 
or private genetic variation, which often characterizes 
patients with extreme phenotypes of the disease [3, 4].

Although disease severity is disproportionally higher 
among the elderly, men and individuals with chronic 
comorbidities, severe or critical cases of COVID-19 can 
also occur in younger, previously healthy individuals [1, 
2, 5, 6]. These individuals might carry rare genetic vari-
ants with strongly predisposing effects, or mutations 
that lead to known or novel immunodeficiencies that 
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significantly impair the immune pathways central to the 
defence against SARS-CoV-2 infection [3, 7–10]. The 
identification of such monogenic disorders can help to 
elucidate the mechanistic basis of the immunopathogen-
esis underlying severe COVID-19, as these inborn errors 
of immunity (IEI) enable scientists to study the effects of 
severe and specific dysfunctions of host defence. More-
over, genetic diagnosis and clinical counselling might 
facilitate preventive, diagnostic and therapeutic interven-
tions. This review will summarize the current knowledge 
on host genetic variants that are associated with severe 
forms of COVID-19. We focus on rare genetic variants 
that have been shown to explain a significant proportion 
of cases with critical COVID-19 and discuss the potential 
clinical implications.

Genetic susceptibility to coronavirus infections
Infectious diseases have shaped the human genome dur-
ing evolution through pathogen-imposed selection pres-
sures [11]. Genome-wide sequencing studies have shown 
that genes involved in immunity display strong selection 
patterns, thereby delineating genes and pathways crucial 
in host defence [11]. The observed inter-individual heter-
ogeneity in the outcome of infectious diseases is in many 
cases due to rare or common variation of the human host 
genome that can result in a clinical spectrum ranging 
from rare Mendelian diseases to altered individual sus-
ceptibility to complex immune-related phenotypes such 
as COVID-19. Diverse genetic backgrounds might also 
explain the widespread differences in COVID-19 sever-
ity across peoples of varying genetic ancestries, as the 
prevalence of genetic risk factors in these populations 
could differ. These differences could have originated from 
distinct degrees of selection pressure exerted by specific 
infectious agents in previous outbreaks, such as recently 
exemplified for tuberculosis [12].

Genetic associations in previous coronavirus outbreaks
Until the COVID-19 pandemic, six human-tropic 
coronaviruses had been described. These include the 
alphacoronaviruses HCoV-NL63 and HCoV-229E and 
betacoronaviruses HCoV-OC43, HCoV-HKU1, SARS-
CoV-1 and Middle East respiratory syndrome (MERS), 
the first four of which are seasonal “common cold” 
viruses [13]. Although large, systematic and reproduc-
ible genetic studies to address the host genetic variation 
influencing the immune response against coronavirus 
infections before the COVID-19 pandemic are lacking, 
the SARS outbreak in 2003 has prompted numerous can-
didate-based association studies [13, 14]. Most of these 
have investigated a link between specific host genetic 
variants or loci that could affect the function of genes 
involved in the human antiviral innate immune response 

and susceptibility to develop SARS-CoV-1 infection or a 
relationship with clinical outcomes [14–20]. For exam-
ple, specific single-nucleotide polymorphisms (SNPs) 
in interferon gamma (IFNγ) and chemokine CCL5 
(RANTES) were demonstrated to significantly associate 
with SARS susceptibility and mortality [15, 16]. In addi-
tion, three large Chinese case-control studies have shown 
an association between polymorphisms in MBL2 and 
SARS-CoV-1 susceptibility, leading to mannose-binding 
lectin (MBL) deficiency with impaired opsonophago-
cytic viral killing [17–19]. In patients with MERS, only 
one very small cohort  study has described an associa-
tion between the human leukocyte antigen (HLA) class 
II alleles HLA-DRB1*11:01 and HLA-DQB1*02:02 and 
disease susceptibility [21]. The human and animal host 
genetic variants that have been identified in previous cor-
onavirus infections have been comprehensively reviewed 
elsewhere, although it should be stressed that no robust 
associations passing genome-wide significance thresh-
olds have been found due to limitations of the study 
designs [20].

Genetic associations with susceptibility to severe or critical 
SARS‑CoV‑2 infection
During the COVID-19 pandemic, large consortia such as 
the Severe COVID-19 GWAS group [22], the GenOM-
ICC and ISARIC groups [23] and the COVID-19 Host 
Genetics Initiative (HGI; https:// www. covid 19hg. org) 
have made unparalleled efforts of team science and inter-
national data sharing to investigate the association of host 
genetic variants with SARS-CoV-2 infection by perform-
ing GWAS at an unprecedented scale (Table 1) [4]. The 
largest GWAS by HGI leveraged the genomic data from 
multiple clinical studies, existing biobank and cohort 
studies and data from consumer genetic companies to 
investigate genetic loci associated with disease suscepti-
bility or severity [24]. Their main analyses include more 
than 2.5 million population controls and over 50,000 
COVID-19 patients, categorized depending on disease 
severity and hospital setting; several genetic loci have 
been associated with disease susceptibility or severity. In 
the GWAS studies, severe COVID-19 has generally been 
defined as PCR-proven SARS-CoV-2 infection leading 
to death or respiratory insufficiency that required hos-
pitalization with either non-invasive high-flow oxygen 
devices or invasive mechanical ventilation [24]. The first 
signals that were reported to be associated with severe 
disease included genetic loci on chromosome 3p21.31 
and 9q34.2 [22, 25, 26]. The 3p21.31 cluster is the most 
robustly replicated signal in several studies with a two-
fold increased risk of respiratory failure from COVID-
19 and is suggested to be inherited from Neanderthals 
[22, 27]. Subsequently, various other genetic loci have 
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reached genome-wide significance along with increas-
ing sample sizes (Table  1) [23, 24, 28]. Several of these 
loci implicate genes in proximity to the lead SNP that 
encode proteins that regulate either the antiviral or the 
pro-inflammatory (organ-specific) host response. Exam-
ples of antiviral pathways targeted by the first group 
involve SARS-CoV-2 cell entry via interaction of ACE2 
(SLC6A20), type I interferon (IFN) signalling (IFNAR1, 
IFNAR2 and RAVER1), IFN-induced restriction of viral 
replication (OAS1, OAS2 and OAS3), IL-10 and type III 
IFN signalling (IL10RB) [22, 26, 29, 30]. Furthermore, the 
GWAS results point to several genes that are expressed 
in pulmonary epithelial cells with distinct functions 
(LZTFL1, DPP9, ELF5, MUC5B, FOXP4, SFTPD), under-
lining the importance of these non-immune genes to the 
innate antiviral response [24]. Examples of pro-inflam-
matory pathways implicated by the GWAS results involve 
the activation of cytokine receptor signalling (TYK2), 
receptors that facilitate chemotaxis of immune cells to 
the infected tissue (CCR1, CCR2, XCR1, CXCR6 and 
CCR9) and inflammasome activation (DPP9); this dipep-
tidyl peptidase has also been associated with lung fibrosis 
and belongs to the DPP4 family, where DPP4 is the entry 
receptor for MERS [22, 26, 29, 31, 32].

Follow-up studies have already provided evidence 
towards likely causality for specific associations through 
fine-mapping and functional experiments. For example, 
a specific variant (rs17713054G>A) in tight linkage dis-
equilibrium with the lead SNPs in the 3p21.31 cluster 
was demonstrated to be an enhancer motif variant that 
increased the expression of LZTFL1 [36]. The authors 
hypothesize that the repressive activity of LZTFL1 on 
the epithelial–mesenchymal transition of pulmonary 
epithelial cells, a process that limits viral infection in 
the acute setting but is also upregulated in spatial tran-
scriptomic analysis of lung biopsies from patients with 
fatal COVID-19, could explain the elevated risk attrib-
uted to the 3p21.31 cluster. For two other genes located 
within the 3p21.31 cluster, the cytokine receptor encod-
ing CCR1 and CXCR6, it was shown that their expression 
on  CD8+ T cells and monocytes correlated with COVID-
19 severity by combining GWAS and single-cell RNA 
sequencing data [37]. Furthermore, two recent studies 
have implicated OAS1 as the suspected causal gene in the 
12q24.13 locus that contains the OAS gene cluster, show-
ing that the risk haplotype correlated with two variants 
that affected splicing and decreased nonsense-mediated 
decay of OAS1 transcripts [38], which impaired OAS1 
antiviral activity [39]. A detailed functional study further 
elucidated that one of these variants, rs10774671(G>A), 
impaired C-terminal prenylation of the OAS1 isoforms 
that consequently do not efficiently detect SARS-CoV-2, 
while higher concentrations of circulating OAS1 and 

expression of prenylated OAS1 have been associated with 
protection from severe COVID-19 [40].

Furthermore, an association was found between the 
ABO blood type locus on chromosome 9q34.2 and 
COVID-19 susceptibility [22–24, 26, 41]. In support, 
several observational cohort studies have reported a pro-
tective effect of blood group O for developing critical 
COVID-19, as opposed to non-O blood groups [22, 42–
45]. Previous work has shown that ABO blood groups 
can play direct roles as pathogen (co-)receptors and that 
genetic variation in the ABO locus is associated with dis-
ease susceptibility to various infectious agents such as 
SARS-CoV-1 [46]. In addition, differences in blood type 
are directly linked to haemostasis and endothelial integ-
rity, as shown by genetic associations with cardiovascular 
disease, venous thromboembolism and plasma levels of 
von Willebrand factor [42, 47]. The consequences of the 
variable blood type functions might be especially impor-
tant in COVID-19, as endothelitis and coagulopathy are 
cardinal features of severe disease. These data demon-
strate that genetic findings both confirm the epidemio-
logical observation and link them to the pathophysiology 
of the disease.

The data generated by these GWAS studies have already 
provided essential information on genetic loci conferring 
susceptibility to or protection from SARS-CoV-2 infec-
tion or an increased risk for severe disease. Most insights 
for loci, genes or pathways are generated on a popula-
tion level and have taught important lessons about the 
general pathophysiology of COVID-19. GWAS studies 
could even identify highly penetrant common variants, 
as recently shown for tuberculosis [12]. The study of rare 
variants is another approach to investigate such host 
genetic factors that strongly increase an individual risk 
for disease susceptibility or severity. In comparison, even 
the most robustly associated and replicated common var-
iants are predicted to modestly increase an individual’s 
risk for severe COVID-19 by a maximum odds ratio (OR) 
of about 2 [32], as opposed to an estimated OR of 50 for 
rare variants that cause IEI [48]. Three studies have so far 
performed large-scale genome- or exome-wide studies 
that studied associations between rare variants and dis-
ease susceptibility in non-hospitalized patients with con-
firmed SARS-CoV-2 infection compared to population 
controls [41, 49, 50]. Only one rare variant upstream of 
ACE2 was found that reached exome-wide significance, 
correlating with decreased expression of the SARS-
CoV-2 receptor [41]. Most studies on rare variants have 
however focused on the identification of monogenic fac-
tors enriched in cohorts of patients with life-threatening 
disease and using a candidate gene-based approach [8, 
51–55]. Moreover, in addition to the standard GWAS 
that assesses individual variant associations, an approach 
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that by design has a limited power to detect individual 
rare variants, weighed burden tests have been performed 
to validate enrichment of rare variants in specific genes 
in patients. The next sections will focus on our current 
understanding of rare genetic mutations or IEI that pre-
dispose to severe or critical COVID-19.

Inborn errors of immunity (IEI) predisposing 
patients to severe or critical COVID‑19
Severe or critical cases of COVID-19 have also been 
reported in individuals below 50 years of age who were 
previously healthy. Since the risk of critical COVID-19 is 
most significantly correlated with age, its manifestation 
in relatively young patients could indicate the presence 
of strong predisposing genetic variants that significantly 
impair the core immune pathways engaged in the defence 
against SARS-CoV-2 infection. Additionally, elderly 
individuals could be identified with similar genetic vari-
ants that until now had been redundant in their immune 
response, but became manifest in the setting of SARS-
CoV-2 infection. While these predisposing host genetic 
variants may be individually rare and explain a minority 
of severe or critical COVID-19 cases, their identification 
can highlight central mechanisms in the pathogenesis 
of COVID-19 and lead to personalized patient manage-
ment. The next sections will discuss the current literature 
on known and novel IEI in patients with COVID-19.

COVID‑19 in patients with known inborn errors 
of immunity
Several studies have documented outcomes of SARS-
CoV-2 infection in patients with known IEI, ranging from 
case reports and single-centre case series to larger, mul-
ticentre cohort studies [56]. To our knowledge, a total 
of 9 larger studies have been conducted that collectively 
report on 545 IEI patients; the findings of these studies 
have been summarized in Table 2 [57–65]. The majority 
of IEI groups that were defined based on the Interna-
tional Union of Immunological Societies (IUIS) classi-
fication were represented across these cohorts [66, 67]. 
The largest groups comprised patients with antibody 
deficiencies and combined immunodeficiencies.

Although a small majority of reported IEI patients 
with documented SARS-CoV-2 infections was either 
asymptomatic or only developed mild disease, 47% of 
patients required hospitalization [57, 63–65, 68–70, 
72]. These studies have indicated that patients with 
monogenic IEI are at an increased risk of developing 
severe or critical COVID-19 although this increase for 
the whole group is modest compared to the general 
population [9, 73]. In the study by Meyts et  al. [57], 

especially younger men were at a higher risk of devel-
oping severe COVID-19, possibly reflecting concur-
rent biological sex differences in the antiviral immune 
response [74]. Also, IEI patients contracted severe or 
fatal COVID-19 at a significantly younger age [57]. 
Since having an IEI does not seem to be an independ-
ent risk factor for severe or critical COVID-19, this 
could indicate a redundancy in different components 
of host defence mechanisms, as well as reflect effec-
tive treatment of the underlying IEI. For example, it 
can be speculated that the humoral immune response is 
not essential to resolve SARS-CoV-2 infection as most 
patients with antibody deficiencies developed mild or 
asymptomatic disease. However, most patients with 
antibody deficiencies were on immunoglobulin treat-
ment, and a report of a patient with untreated common 
variable immunodeficiency (CVID) who developed 
fatal COVID-19 suggests that supplementation of 
IgG could be indispensable [75]. Additionally, many 
severe combined immunodeficiency (SCID) patients 
in the included studies, with both cellular and humoral 
defects due to the lack of B and T cells, had already 
underwent curative stem cell transplantation [57, 65, 
71, 72].

Most studies assessing the immunological profile of 
patients with severe COVID-19 point towards an ini-
tial low-responsiveness state elicited by SARS-CoV-2, 
with defective or delayed innate and intrinsic antiviral 
type I/III interferon responses, progressing to virus-
mediated tissue damage with an ensuing dysregulated 
hyperinflammatory response characterized especially 
by high levels of IL-1 and IL-6 [76–80]. It could there-
fore be hypothesized that IEI patients with an impaired 
antiviral response or patients with immune dysregula-
tion, hyperinflammation or auto-inflammatory disor-
ders, could be at an elevated risk at developing severe 
disease. Stratification of patients according to IEI group 
indicates that patients with immune dysregulation, and 
also combined immunodeficiencies (CID), associate 
with severe COVID-19 [63, 64, 81]. Patients with IEI-
associated autoimmune or inflammatory complications 
were also at an elevated risk [62–64]. As patients with 
an innate (antiviral) immune defect constituted only 
3% of IEI patients in the discussed studies [71], this 
group could not be studied in detail. Multiple prospec-
tive studies have however identified IEI of innate type 
I interferon (IFN-I) signalling as strong monogenic 
risk factors for severe or critical COVID-19. We will 
continue by focusing on these known and novel IEI 
affecting IFN-I signalling in the next two paragraphs. 
Moreover, we will briefly address the genetic predis-
position to multisystem inflammatory syndrome in 
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children (MIS-C), a distinct complication of COVID-19 
in children and young adults.

Inborn errors of type I interferon signalling in patients 
with severe or critical COVID‑19
Early in the pandemic, the COVID-19 Human Genetic 
Effort (www. covid hge. com) was created to investigate 
the genetic and immunological determinants of critical 
COVID-19 [3]. This international consortium sequenced 
the exome or genome of patients with life-threatening 
COVID-19 pneumonia and of individuals with asympto-
matic or mild infection. As a first approach, it was inves-
tigated whether genetic variants in IEI genes previously 
associated with life-threatening influenza pneumonia 
were enriched among patients with critical COVID-19 
[51]. The authors therefore assessed the presence of rare 
variants in 13 genes known to affect the Toll-like recep-
tor 3 (TLR3)– and interferon regulatory factor 7 (IRF7)–
dependent type I interferon (IFN) immunity pathways 
in 659 patients with life-threatening COVID-19, defined 
as critical disease with respiratory insufficiency requir-
ing mechanical ventilation or high-flow oxygen, septic 
shock or other organ damage requiring critical care in 
ICU, compared to 534 individuals with asymptomatic 
or mild SARS-CoV-2 infection [51]. In the exomes of 
3.5% of patients, the authors identified rare genetic vari-
ants in 8 of the 13 genes in the TLR3- and IRF7-pathway 
(IRF7, IFNAR1, IFNAR2, TLR3, TICAM1, TBK1, IRF3 
and UNC93B1) that were shown to lead to loss-of-func-
tion (LoF) by functionally abolishing type I interferon 
signalling. The authors reported a total of 23 variants in 
these genes, of which 7 (30.4%) in the genes UNC93B1, 
IRF7, IFNAR1 and IFNAR2 followed AD inheritance that 
diverged from the established AR inheritance associated 
with severe influenza pneumonia [51]. Specific experi-
ments were carried out to assess the altered immune 
response upon in  vitro SARS-CoV-2 infection, showing 
that  TLR3−/−,  TLR3+/−,  IRF7−/− and  IFNAR1−/− fibro-
blasts had increased infection susceptibility and that 
plasmacytoid dendritic cells (pDC) from IRF7-deficient 
patients did not produce IFN-I after infection. The indi-
viduals carrying these deleterious variants had never 
been previously hospitalized for life-threatening viral 
illnesses and were aged between 17 and 77 years, sug-
gesting that the penetrance of these variants for severe 
SARS-CoV-2 infection is higher compared to severe 
influenza pneumonia.

Several subsequent studies have replicated part of these 
findings [82–85]. Two children from Canada and Alaska 
that respectively developed recurrent severe COVID-
19 or fatal COVID-19 were shown to harbour the 
same homozygous mutation in IFNAR2 (p.(Ser53Pro)) 
[82]. Both patients had a history of disseminated viral 

infections after MMRV (measles, mumps, rubella and 
varicella) vaccination, unlike the two patients with AR 
IRF7 deficiency reported by the HGE cohort [51]. The 
identified IFNAR2 variant occurred at a relatively high 
allele frequency in their Inuit ancestry and was demon-
strated to lead to abrogated cell surface expression of 
IFNAR2 and diminished IFN-I signalling. Moreover, two 
additional children with AR IFNAR1 deficiency were 
described in separate case reports [83, 84]. A 3-year-
old girl with both critical COVID-19 and fatal MIS-C 
had a homozygous large deletion leading to a frameshift 
that was confirmed to lead to LoF in HEK293T cells 
[84], while a 14-year-old boy with critical COVID-19 
harboured a homozygous splice site variant previously 
reported as deleterious [83]. Lastly, in a child who devel-
oped fatal COVID-19, both a homozygous canonical 
splice site variant in TBK1 and a homozygous missense 
variant in TNFRSF13B, a known risk factor associated 
with CVID, were identified [85]. The child had a his-
tory of unclassified auto-inflammation, which could be 
explained by the homozygous variants in TBK1, as it has 
recently been shown that AR TBK1 deficiency underlies 
TNF-driven systemic auto-inflammation [86]. Immuno-
suppressive treatment with prednisolone and methotrex-
ate up until hospital admission might have contributed to 
the severe disease course.

Although a relationship between rare variants in these 
type I IFN genes and critical COVID-19 is plausible given 
the importance of intact type I IFN signalling in the anti-
SARS-CoV-2 host immune response and the corrobora-
tion by some additional cases, four larger, independent 
studies failed to replicate the enrichment of variants in 
the TLR3 and IRF7-pathway in patients with critical 
COVID-19 [35, 49, 50, 55]. This discrepancy could be in 
part explained by differences in cohort characteristics, 
including age distribution, definition of disease sever-
ity and possibly also clinical baseline parameters such as 
pre-existent comorbidities or history of infections, and 
the use of a- or pauci-symptomatic versus population 
controls. Moreover, the determination of variant enrich-
ment was based on in vitro biochemical and immunolog-
ical experiments in the COVID-19 HGE study, while rare 
variant associations were assessed in silico with gene bur-
den testing in the other studies. Lastly, no correction for 
differences in ancestry was performed in the COVID-19 
HGE study [55]. Therefore, the exact prevalence and con-
tribution of similar variants that affect TLR3- and IRF7-
mediated IFN I signalling in a general cohort of patients 
with critical COVID-19 remain unclear and will be more 
definitively determined in studies with larger WES and 
whole-genome sequencing (WGS) datasets with more 
powerful group comparisons. Furthermore, it would be 
of interest to perform gene burden tests for AD and AR 

http://www.covidhge.com
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inheritance, considering that the mutations in known IEI 
genes associated with critical COVID-19 followed dif-
ferent inheritance patterns compared to life-threatening 
influenza pneumonia.

A novel inborn error predisposing to severe COVID‑19: 
X‑linked TLR7 deficiency
In addition to the rare variants in known IEI that were 
associated with critical COVID-19, using an unbiased 
approach, we identified X-linked TLR7 deficiency as 
the first novel immunodeficiency in patients with criti-
cal COVID-19 [8]. In two unrelated young brother pairs 
with critical COVID-19, rare genetic variants in the 
X-chromosomal Toll-like receptor 7 (TLR7) were iden-
tified by rapid clinical whole-exome sequencing (WES). 
TLR7 encodes an evolutionary highly conserved cyto-
solic pattern recognition receptor that recognizes single-
stranded RNA viruses such as coronaviruses [87]. It had 
previously been shown that mice deficient in either TLR7 
or the downstream adaptor MyD88 displayed impaired 
production of IFN-I, delayed viral clearance and severe 
lung pathology upon infection with MERS-CoV [88–90]. 
TLR7 is most abundantly expressed on plasmacytoid 
dendritic cells (pDCs), which are important producers of 
type I IFN. In peripheral blood cells isolated from these 
young male patients, the TLR7 variants were shown to 
lead to an absence of the transcriptional IFN-I response 
and the production of interferon gamma (IFNγ) in 
response to a TLR7-specific agonist [8].

These preliminary findings describing X-linked TLR7 
deficiency (OMIM #301051) in patients with critical 
COVID-19 have subsequently been replicated in sev-
eral other cohorts (Table  3) [50, 53, 91]. Fallerini et  al. 
described rare, hypomorphic or LoF TLR7 missense 
variants in 3 out of 135 (2.2%) male patients with severe 
COVID-19 aged below 60 years of age [52]. In a larger 
cohort of 1202 patients with life-threatening pneumonia 
aged below 60 years of age from the COVID-19 HGE, 
X-linked TLR7 deficiency was diagnosed in 17 (1.4%) 
patients but not in the 331 male controls [53]. Addi-
tionally, 3 of 252 (1.1%) patients with severe COVID-19 
defined as hospitalization with low-flow oxygen (<6 l/
min) that were also included in the HGE cohort carried 
deleterious TLR7 variants. Importantly, it was observed 
that the clinical penetrance of these variants in patients 
with severe or critical pneumonia was high, but not com-
plete, as three hemizygous relatives only had asympto-
matic, mild or moderate disease symptoms. Incomplete 
penetrance was also suggested by another study [91]. The 
authors showed that EBV-immortalized B cell lines and 
myeloid cell subsets from these patients were irrespon-
sive to stimulation with TLR7 agonists, which could be 
rescued by transfecting wild-type TLR7. Also, patient 

pDCs produced low amounts of type I IFNs in response 
to SARS-CoV-2. This study further established the key 
role of TLR7 signalling in the host defence against SARS-
CoV-2 infection. It has also been demonstrated in nasal 
tissue, bronchoalveolar lavage and peripheral blood mon-
onuclear cells extracted from COVID-19 patients that 
expression levels of TLR7 correlated with disease severity 
[92, 93].

Furthermore, in pan-ancestry whole-exome sequenc-
ing data of over 500,000 individuals from the UK 
biobank, including  more than 20,000 patients who  con-
tracted COVID-19, the burden of rare variants in TLR7 
was found to be significantly increased in patients with 
severe COVID-19 (OR 4.53 (2.64–7.77)) [50]. This analy-
sis did not investigate sex-specific effects as suggested for 
X-linked traits, suggesting that the effect would be higher 
among men. In addition, another very recent analysis of 
the HGI WES/WGS data of 5048 severe disease cases 
and over 571,000 controls found a significant enrichment 
of rare deleterious TLR7 variants in cases with a simi-
larly increased risk (OR 5.25 (2.75–10.05)). The risk of 
severe disease associated with the burden of rare TLR7 
variants would likely increase even more if the analyses 
would have been focused on men, especially those with-
out comorbidities. Moreover, it has been proposed that 
more common, lower effect size TLR7 variants could 
contribute to the male sex bias that is observed in severe 
COVID-19, because of its innate immune function and 
X-chromosomal localization [95]. TLR7 is one of the few 
genes that escapes X-inactivation, thereby leading to a 
difference in TLR7 dosage between men and women [96]. 
Women exhibit higher basal TLR7 expression levels and 
more pronounced TLR7-mediated IFN-I responses that 
aid in viral clearance [96–98]. On the other end of the 
spectrum, the higher TLR7 dosage in women leads to a 
predisposition to develop autoimmune disease such as 
systemic lupus erythematodes (SLE) [99]. Most recently, 
a TLR7 de novo missense variant, reported in a female 
patient with SLE, was shown to cause systemic B-cell-
driven autoimmunity through enhanced TLR7 signalling 
with a break of central B cell tolerance and accumulation 
of CD11c+ age-associated B cells and germinal centre B 
cells in mice [100]. Although it is likely that the intrin-
sic difference in TLR7 dosage between men and women 
is part of the explanation for the male sex bias in severe 
COVID-19, the possible additional effect of common 
genetic variation in TLR7 should be further investigated.

X-linked TLR7 deficiency has been identified as the 
first novel immunodeficiency with an isolated, increased 
susceptibility to severe or critical SARS-CoV-2 infection 
and has established TLR7 as a critical mediator of IFN-I 
immunity against SARS-CoV-2. X-linked TLR7 defi-
ciency is expected to account for approximately 1% of 
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cases of severe or critical COVID-19 in men aged under 
60 years of age, which is expected to be even higher with 
stricter screening criteria [91].

Inborn errors of immunity associated with MIS‑C
The prevalence of severe or critical pneumonia in chil-
dren and young adults is extremely rare [101]. However, 
in April 2020, a distinct life-threatening complication 
after SARS-CoV-2 exposure was first described in indi-
viduals younger than 21 years and defined as MIS-C 
[102]. MIS-C typically develops 2–6 weeks after SARS-
CoV-2 infection and is characterized by a multiorgan, 
hyperinflammatory response with fever and elevated 
inflammatory marker levels [103]. Since MIS-C mostly 
affects patients that experience only mild or no symptoms 
during the acute SARS-CoV-2 infection, it is considered 
to be a postinfectious syndrome that shows similarities 
with Kawasaki’s disease. The hyperinflammatory immune 
responses in MIS-C patients have been shown to be dis-
tinct from those with acute COVID-19 and Kawasaki’s 
disease and are associated with pronounced T cell expan-
sion and the production of auto-antibodies [104, 105].

The presence of monogenic IEI predisposing to 
MIS-C has been investigated in a cohort of 18 children 
that met the diagnostic criteria for MIS-C. In two boys 
without previous medical history, rare mutations were 
identified in the X-linked inhibitor of apoptosis (XIAP) 
and X-linked Cytochrome B-245 Beta Chain (CYBB), 
respectively. The XIAP variant was shown to lead to 
LoF through decreased negative control of the NLRP3 
inflammasome, leading to elevated production of pro-
inflammatory cytokines in patient  CD14+ monocytes 
and PBMCS. Patients with hemizygous LoF mutation 
in XIAP have been previously shown to be at risk for 
virally triggered haemophagocytic lymphohistiocytosis 
(HLH), reminiscent of the hyperinflammation observed 
in MIS-C [106]. In neutrophils extracted from the patient 
with CYBB mutation, the oxidative burst required for 
effective phagocytosis and suppression of type I IFN 
signalling was decreased, thereby providing a mecha-
nism for hyperinflammation [54]. Interestingly, a MIS-C 
patient was diagnosed with Suppressor Of Cytokine 
Signaling 1 (SOCS1) haploinsufficiency in a separate 
study, leading to increased type I and II interferon signal-
ling in unstimulated PBMCs [94]. Transcriptome analysis 
of unstimulated PBMCS 7 months after recovery demon-
strated that the differentially expressed genes of the three 
patients with a genetic diagnosis were still enriched for 
inflammatory signalling pathways such as type I IFN sig-
nalling compared to other MIS-C patients and patients 
with mild COVID-19 [54].

Although the pathophysiology of MIS-C is still incom-
pletely understood, these findings in a small group of 

patients together with the immunological insights sug-
gest that the genetic predisposition to MIS-C is likely to 
be different from severe COVID-19, impacting the nor-
mal control of the immune system.

Convergence of genetic findings on the interferon 
signalling pathway
The studies on rare variants in known and novel IEI 
genes that were discussed in the previous section have 
highlighted the critical role of IFN-I signalling in the 
pathogenesis of critical COVID-19. Moreover, several of 
the GWAS associations implicate common variants that 
affect genes involved in interferon signalling. The findings 
from common and rare variant studies that converge on 
the interferon pathways have been summarized in Fig. 1. 
This key role for IFN-I signalling in the host defence 
against SARS-CoV-2 is demonstrated by various other 
studies [77–79, 107]. The findings from these studies 
indicate that a delayed induction of the IFN-I response 
by SARS-CoV-2 rather than its overproduction or com-
plete absence precedes severe COVID-19 [80]. In this 
interpretation, an early robust IFN response is protec-
tive, while a delayed IFN response at a disease stage with 
high viral loads such as in older hosts fails to limit viral 
load and leads to inappropriately high circulating inter-
feron (and other inflammatory mediators) concentrations 
that drive inflammation and collateral organ damage. 
Evidence for this delayed IFN-I response to SARS-CoV-2 
is further corroborated by transcriptomic and protein 
expression data, which have shown that SARS-CoV-2 
induces a low type I (and type III) interferon-stimulated 
gene (ISG) response, especially when compared with 
the milder HCoV-229E strain and other respiratory 
viruses such as influenza [79]. Moreover, SARS-CoV-2 
elicits attenuated transcriptional responses of other cru-
cial innate immunity pathways including IL-1 signaling 
and inflammasome activation [108]. In part, this is due 
to the broad immune-evasion mechanisms that SARS-
CoV-2 employs to antagonize the IFN-I response at the 
level of virus sensing, IFN signalling and IFN production 
[80, 109, 110]. Specific examples include impaired rec-
ognition of the virus by the cytosolic RIG-I-like recep-
tor (RLR) MDA5, inhibition of STAT1 phosphorylation 
and blocked translocation of both IRF3 and STAT1 to 
the nucleus [109, 111]. This interference of SARS-CoV-2 
with IFN-I signalling could explain why certain pathways 
become less redundant or essential, such as the TLR7 
pathway.

The relevance of intact early IFN-I signalling is further 
supported by the discovery of neutralizing auto-anti-
bodies directed against IFN-I in a significant proportion 
of patients with critical COVID-19 [112]. The preva-
lence of neutralizing IFN-I auto-antibodies ranged from 
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~20% in deceased patients, 3–18% in patients with criti-
cal COVID-19 pneumonia (in part depending on the 
concentration of IFN-I used in the neutralization assay) 
and approximately 7% in patients with severe disease, 
while auto-antibodies were more uncommon in indi-
viduals with asymptomatic or mild infection [113–119]. 
These auto-antibodies predominantly target the type I 

IFN subtypes IFNα2 and IFNω but also IFNβ and have 
been replicated in various other cohorts. Patients with 
auto-antibodies neutralizing IFN-I had decreased cir-
culating IFNα plasma concentrations [112], impaired 
expression of IFN-stimulated genes (ISGs) in the naso-
pharyngeal mucosa and delayed viral clearance [120]. 
Moreover, anti-IFN-I auto-antibodies were found much 

Fig. 1 A schematic representation of interferon signalling with display of current genetic findings. The left section of the figure points out the 
three major cytosolic pattern recognition receptor (PRR) signalling pathways that recognize viruses and culminate in the production of defensive 
type I and III interferons (IFNs). These routes consist of Toll-like receptor (TLR), RIG-I-like receptor (RLR) and cGAS-STING signalling pathways that 
utilize distinct adaptor complexes with associating kinases and ubiquitin ligases for their signal transduction. These TASL, MyD88, TRIF and MAVS 
complexes subsequently lead to the phosphorylation of interferon regulatory factors (IRFs) that initiate transcription of IFNs. Furthermore, the 
production of the type II IFN interferon gamma (IFNγ) is induced through TLR7-IRF7-dependent signalling. The right section shows autocrine and 
paracrine signalling of type I and III IFNs through the respective IFNAR1/2 and IFNLR1/IL10RB receptors. This activation leads to the formation of 
either STAT1 homo- or STAT1/2 heterodimers that recruit IRF9 to induce transcription of IFNs and a plethora of interferon-stimulated genes (ISGs). 
Several inhibitory proteins are highlighted in pink to illustrate a selection of the negatively regulating feedback loops in this highly regulated 
pathways. Lastly, symbols above selected proteins indicate whether rare or common variants have been identified in the genes from which these 
proteins are encoded. P, phosphatase; STAT , signal transducer and activator of transcription; IFITM, interferon-induced transmembrane protein; 
OAS, oligoadenylate synthase; MX1, interferon-induced GTP-binding protein; GBP, guanylate-binding protein; TRIM, tripartite motif protein; ISRE, 
interferon-stimulated response element; GAS, gamma-activated sequence
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more often in men and correlate with infection fatal-
ity rates across all ages [121]. These neutralizing IFN-I 
auto-antibodies therefore constitute both strong deter-
minants and predictors of critical COVID-19 and are 
considered to be phenocopies of inborn errors of type 
I IFN immunity. However, it remains unclear whether 
genetic predisposition underlies the formation of these 
auto-antibodies and to what extent the auto-antibodies 
pre-exist or are formed during the SARS-CoV-2 infection 
as a result of a polyreactive B cell response [115, 122]. 
Longitudinal measurement suggests that auto-antibodies 
are formed de novo or can be pre-existing and triggered 
during SARS-CoV-2 infection [115, 123]. Patients with 
autoimmune polyendocrine syndrome type 1 (APS-1), 
who have a defect central T cell tolerance and are con-
sequently prone to develop autoimmune disease due to 
biallelic germline AIRE mutations, have been shown to 
produce high titres of IFN-I auto-antibodies [124]. One 
study suggested that APS-I patients with pre-existing 
auto-antibodies targeting IFN-I were at an increased risk 
of severe or critical COVID-19, although another study 
observed only mild symptoms [125]. Furthermore, it has 
been reported that patients with systemic lupus erythe-
matodes (SLE), Sjögren’s syndrome, RAG1 and RAG2 
deficiency and X-linked immunodysregulation polyen-
docrinopathy enteropathy (IPEX) can generate type I IFN 
auto-antibodies [126–128]. Further studies are needed to 
evaluate the risk of pre-existing IFN-I auto-antibodies for 
the development of severe or critical COVID-19 and the 
potential role of genetic predisposition.

Since the early host immune response against SARS-
CoV-2 is heavily dependent on intact IFN-I signalling, 
individuals with genetic susceptibility or partial or com-
plete deficiencies in the type I (and possibly the less stud-
ied type III) IFN signalling pathways form a group that 
are at an inherent risk of developing severe or critical dis-
ease. This risk may differ based on specifics of the indi-
vidual variant, including the gene affected, mutation type, 
genetic ancestry, penetrance and inheritance mode [48]. 
As an example, a common intronic variant (rs2236757) 
in IFNAR2 has a calculated OR of 1.28 to develop critical 
illness, while the OR is 9 for a rare heterozygous variant 
in the same gene [32, 48, 51, 82]. We expect that more 
risk factors at the population level impacting interferon 
signalling will be identified that could increase suscepti-
bility or confer protection, as well as patients with mono-
genic IEI in the over 400 other genes related to interferon 
signalling [129].

Clinical implications
Diagnostic sequencing
Genomic information is increasingly being incorpo-
rated in clinical decision-making as next-generation 

sequencing approaches have improved diagnostic yield, 
throughput, turnaround time and cost [130–132]. The 
IEI affecting the TLR3- and TLR7-signalling pathways 
established so far could already explain up to 5% of criti-
cal COVID-19 cases in men under the age of 60 years [51, 
120]. When applying stricter screening criteria for age 
and comorbidities than the inclusion criteria that were 
used in these previous cohort studies, the prevalence 
could be higher, such as has been shown for the applica-
tion of genetic screening for rare TLR7 variants in a small 
case series (Table 3) [91]. Since a genetic diagnosis could 
not only have consequences for the clinical management 
of the patients but also for affected family members that 
are still at risk to develop critical disease, we would sug-
gest to screen selected patients suspected of having an 
underlying IEI. We have created a flowchart that pro-
poses genetic screening criteria and outlines a strategy 
for genetic testing and follow-up of its results (Fig.  2). 
This flowchart is intended to create awareness among 
and offer guidance to the treating physicians of these 
patients, often internist-infectiologists or intensivists, 
as well as to other physicians that encounter retrospec-
tive cases with a suspect medical history. Moreover, the 
strategy for genetic testing could help (clinical) geneti-
cists and the treating physicians with the interpretation 
and validation of the results and possible implications for 
clinical management.

Diagnostic genetic testing should be considered 
in cases with the highest probability of having a rare 
genetic factor that strongly predisposes to severe/criti-
cal COVID-19 or MIS-C. This includes relatively young 
patients <50 years of age who contracted severe or criti-
cal COVID-19 as defined according to the WHO defini-
tion [133] in the absence of pre-existing risk factors, and 
all patients with MIS-C that meet the CDC case defini-
tion criteria [134]. In the selected patients, a targeted in 
silico IEI gene panel analysis could be performed after 
WES or WGS to identify rare, non-synonymous single-
nucleotide variants (SNVs) or copy number variants 
(CNVs). The IEI panel should include the latest IEI gene 
list of the International Union of Immunological societies 
that includes the genes described above and summarized 
in Table  3 and can be easily updated when novel genes 
are discovered, with limited risk of incidental findings 
[67]. Rare variants that are identified in IEI genes should 
be classified according to the ACMG criteria [135]. Vari-
ants of unknown significance (VUS) should prompt 
functional validation experiments to support pathogenic-
ity. Heterozygous variants in recessive IEI genes should 
not be disregarded, as relatively mild functional conse-
quences at the protein level that would normally not lead 
to disease could still be relevant in the interaction with 
specific pathogens. This difference in redundancy is for 
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example implied by the heterozygous variants found in 
recessive IFN-I genes in patients with critical COVID-19 
[51], but also those found in recessive HLH-genes that 
were enriched among patients with severe manifestations 
of COVID-19 [136]. Most recently, it was demonstrated 
that haploinsufficiency of OTULIN due to heterozygous 
variants was associated with an increased risk of life-
threatening necrosis upon staphylococcal infection, while 
complete OTULIN deficiency causes an auto-inflamma-
tory syndrome [137]. Similarly, hypomorphic variants 
that only partially reduce protein function in dominant 
IEI genes could still exert a significant effect.

If no rare variants of interest are found in IEI genes, it 
should be contemplated to obtain informed consent for 

an exome- or genome-wide analysis after counseling by a 
clinical geneticist to explore novel genes associated with 
severe/critical COVID-19 or MIS-C. Although many of 
the genetic variants identified so far converge on genes 
involved in interferon signalling, it would be of interest 
to investigate other pathways, for example those involved 
in virus entry, intrinsic immunity by the pulmonary epi-
thelial cells and control of the immune response. The 
importance of the pulmonary epithelial cells in the host 
defence against SARS-CoV-2 is underlined by common 
variants implicating genes involved in their function that 
were enriched in severe COVID-19, which have been dis-
cussed earlier. Moreover, genetic variants that increase 
IL-6 signalling could be of interest. Elevated IL-6 serum 

Fig. 2 Clinical screening criteria for the implementation of genetic testing to discover rare host genetic factors predisposing to severe/critical 
COVID-19 or MIS-C. This flowchart proposes genetic screening criteria and a strategy for genetic testing in patients with severe forms of COVID-19 
that are suspected of having an underlying IEI. aThe diagnostic clinical criteria for severe or critical COVID-19 have been defined according to the 
WHO definition [133]. bRisk factors that have been associated with severe or critical COVID-19 include chronic comorbidities such as hypertension, 
diabetes mellitus, obesity (BMI ≥30kg/m2), heart failure, chronic lung disease and chronic kidney disease. cThe diagnostic clinical criteria for MIS-C 
have been defined according to the CDC case definition [134]. dThe in silico IEI gene panel should contain the genes listed by the most recent 
update of the International Union for Immunological Societies [67]
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concentrations are a hallmark of severe disease and 
although circulating plasma IL-6 levels are lower com-
pared to other causes of ARDS, treatment with the anti-
IL-6 drug tocilizumab has proven effective [138–140]. 
Also, genetic variants that impact the normal control of 
the immune response that could lead to immune dysreg-
ulation or hyperinflammation might increase the risk for 
severe manifestations of COVID-19, including MIS-C.

Another clinical application that could leverage the 
generated genomic data is the development of a poly-
genic risk score (PRS). The PRS is emerging as an increas-
ingly reliable risk predictor in some diseases such as 
breast cancer [141]. In COVID-19, a PRS could estimate 
the individual risk for disease susceptibility or severity 
based on common and rare variants that are found to be 
enriched in GWAS studies. Although some studies have 
already attempted to model the PRS for COVID-19, more 
research is required to build a PRS model that is robust 
and can be applied to patients with different genetic and 
medical backgrounds [41, 50, 142, 143].

Clinical management of inborn errors of type I IFN 
signalling
When a genetic diagnosis is established, this could have 
consequences for clinical management. Some diagnos-
tic centres have implemented rapid exome sequencing 
(rWES) in clinical care, which may provide a diagnosis 
within one week [8, 132]. The original identification of 
X-linked TLR7 deficiency by rapid clinical WES dem-
onstrates that this technique could be implemented in 
a clinical setting as a diagnostic tool [8]. In a minority 
COVID-19 cases, this could enable a quick diagnosis that 
might alter therapeutic management in later stages of the 
disease. However, in most diagnostic centres, this will not 
be a feasible approach. The strongest benefit of a diagno-
sis will therefore reside in the opportunity to take preven-
tative measures, including strict adherence to the current 
protective measures that are advised by the local govern-
ment, appropriate vaccination strategy, a direct line of 
communication to the hospital and pre-emptive hospi-
talization for clinical observation with early initiation of 
treatment. A genetic diagnosis could also identify pre-
symptomatic family members that have a deficiency of 
IFN-I signalling. Although vaccination has significantly 
reduced the risk of developing critical COVID-19, novel 
SARS-CoV-2 variants could emerge that (partly) escape 
the immunological memory and would be especially dan-
gerous to patients with IEI of IFN-I immunity. The iden-
tification of male hemizygous TLR7 mutation carriers is 
particularly relevant given the high clinical penetrance 
for severe COVID-19, as only few asymptomatic carriers 
have been reported so far [53, 91]. Genetic counselling 
and testing of the family members at risk would enable 

an option for primary prevention and personalized treat-
ment in case of SARS-CoV-2 infection.

In the situation that carriers are infected, they should 
be hospitalized at an early stage of infection. The same 
approach could be taken in patients that are re-infected 
with SARS-CoV-2, although these infections are expected 
to be limited in severity as patients should develop a nor-
mal humoral immune response. Type I interferon treat-
ment might have a rationale in patients with partial or 
complete IFN-I deficiencies, as it could replenish the 
shortage of IFN-I and thereby limit viral replication and 
secondary inflammation. However, there is currently no 
convincing support for the administration of exogenous 
IFN-I in COVID-19, with some clinical trials showing a 
beneficial effect [144–148] while other, larger trials did 
not [149, 150]. These studies differ in patient popula-
tion, route of administration, outcomes and initiation of 
treatment after disease onset, although substantial evi-
dence suggests that early timing of treatment is key [80, 
151]. Despite this ongoing debate, patients with inborn 
errors of IFN-I production are expected to respond bet-
ter to treatment with type I interferon than the average 
COVID-19 patient with a presumed sufficient IFN-I pro-
duction capacity. Illustratively, in two patients with IFN-I 
deficiency (autosomal dominant TLR3 and IRF3 defi-
ciency) who developed severe COVID-19, it was shown 
that treatment with a single dose of recombinant IFNα2a 
could resolve symptoms within 48 h [152]. More studies 
are however required to investigate the place of recombi-
nant IFN-I therapy for IEI patients. Since the prevalence 
of IEI of IFN-I signalling are estimated to affect up to 5% 
of patients with critical COVID-19, it would be informa-
tive to test patients enrolled in such studies for genetic 
(or immunological) IFN-I deficiency to investigate the 
therapeutic benefit of IFN-I therapy in this specific 
patient group.

Since patients with X-linked TLR7 deficiency and pos-
sibly also patients with other IFN-I deficiencies have a 
defective type II interferon production in response to 
SARS-CoV-2, recombinant interferon gamma (IFNγ) 
could be an alternative treatment option [153]. Some 
experience with this drug has been gained in patients 
with chronic granulomatous disease (CGD), an immuno-
deficiency in which treatment or prophylaxis with IFNγ 
is used to treat or prevent infections, respectively [154]. 
Moreover, treatment with recombinant IFNγ was shown 
to be beneficial for SARS-CoV-2 clearance in patients 
with prolonged detectable virus [153].

In summary, diagnostic screening for rare variants 
should be considered in selected patients with severe 
manifestations of COVID-19. A genetic diagnosis could 
enable more personalized management of the patient as 
well as genetic counseling of family members that are 
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at risk. Recognition of patients with predisposing rare 
variants or IEI remains important even though most 
individuals are protected by vaccination or prior expo-
sure, since it is uncertain whether novel SARS-CoV-2 
escape variants might arise with high pathogenicity. 
Lastly, targeted treatment with recombinant IFN-I 
might be a feasible option that should be investigated in 
future studies.

Conclusions
The discovery of known or novel monogenic IEIs that 
confer predisposition to severe COVID-19 can give 
important insights into the immunopathogenesis of 
SARS-CoV-2 infection. GWAS studies have generated 
important associations between genetic loci and the 
pathogenesis of SARS-CoV-2 infection at the population 
level. Although these associations may provide polygenic 
risk scores or ultimately inform development of future 
therapeutic approaches, they have not yet provided 
actionable information for the individual patient. It might 
be of interest to study the interplay of rare and common 
genetic variation for both the susceptibility to and protec-
tion against SARS-CoV-2 infection. Although monogenic 
IEI are individually rare, collectively, they could account 
for a significant percentage of severe COVID-19 cases as 
illustrated by the identification of inborn errors of type I 
interferon signalling. Of these, X-linked TLR7 deficiency 
is the most robustly replicated and could account for at 
least 1% of critical cases in men. The knowledge gained 
from the study of monogenic IEI could directly benefit 
predominantly young, previously healthy patients with 
severe COVID-19 and possibly their relatives, by provid-
ing a genetic diagnosis through the implementation of 
WES or WGS in clinical care. Such a diagnosis could cre-
ate a rational basis for clinical counselling, preventative 
measures and possibly therapeutic interventions.
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