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Abstract 

Background: Identifying breast cancer patients with DNA repair pathway-related germline pathogenic variants 
(GPVs) is important for effectively employing systemic treatment strategies and risk-reducing interventions. However, 
current criteria and risk prediction models for prioritizing genetic testing among breast cancer patients do not meet 
the demands of clinical practice due to insufficient accuracy.

Methods: The study population comprised 3041 breast cancer patients enrolled from seven hospitals between 
October 2017 and 11 August 2019, who underwent germline genetic testing of 50 cancer predisposition genes 
(CPGs). Associations among GPVs in different CPGs and endophenotypes were evaluated using a case-control analy-
sis. A phenotype-based GPV risk prediction model named DNA-repair Associated Breast Cancer (DrABC) was devel-
oped based on hierarchical neural network architecture and validated in an independent multicenter cohort. The 
predictive performance of DrABC was compared with currently used models including BRCAPRO, BOADICEA, Myriad, 
PENN II, and the NCCN criteria.

Results: In total, 332 (11.3%) patients harbored GPVs in CPGs, including 134 (4.6%) in BRCA2, 131 (4.5%) in BRCA1, 33 
(1.1%) in PALB2, and 37 (1.3%) in other CPGs. GPVs in CPGs were associated with distinct endophenotypes including 
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Background
Breast cancer is the most common cancer in women 
around the world [1]. Approximately 10% of patients with 
breast cancer carry germline pathogenic variants (GPVs) 
in cancer predisposition genes (CPGs) implicated in the 
DNA repair pathway [2, 3]. Distinguishing breast cancer 
patients with GPVs is essential for employing systemic 
treatment strategies and risk-reducing interventions [4, 
5]. However, less than 10% of these carriers are referred 
for genetic testing in current clinical practice due to the 
cost and time spent [6, 7].

The probability of carrying GPVs among breast cancer 
patients has long been evaluated in terms of family can-
cer history and clinical characteristics, such as the age 
at diagnosis and tumor pathological information [8, 9]. 
One of the most commonly used criteria is the National 
Comprehensive Cancer Network (NCCN) criterion [7, 
10–12]. However, adhering to the current NCCN criteria 
would overlook nearly half of breast cancer patients with 
a clinically actionable GPV [7, 11–13]. Nonetheless, rou-
tine genetic testing of all or most breast cancer patients 
would require vastly increased genetic counseling and 
management, which might not be easily achieved with 
presently available resources [14]. Furthermore, extend-
ing population-based genetic testing to patients with low 
rates of or non-existent founder mutations might pose 
a considerable financial burden, ethical concerns, and 
other barriers [15, 16]. Therefore, an accurate prediction 
model for GPVs in clinically actionable genes is urgently 
needed. Recently, deep learning algorithms were dem-
onstrated to improve clinical practice in genomic diag-
nostics due to their high accuracy and ability to extract 
information from big data [17]. Recent studies have 
demonstrated deep learning as a feasible and potentially 

useful tool for predicting germline BRCA1/2 status for 
cancer patients using demographic and clinical charac-
teristics, medical images, or pathology images [18–20]. 
It is not known whether deep learning algorithms can 
be used to improve the precise selection of breast cancer 
patients to undergo genetic testing.

Here, we evaluated the family history of multiple cancer 
types and detailed phenotypes in a multi-center cohort of 
3041 female Chinese breast cancer patients who under-
went multigene genetic testing. Based on the distinct 
endophenotypes of breast cancer patients with GPVs in 
genes involved in homologous recombination and other 
DNA repair pathways, we designed a deep learning-
driven model named DrABC (DNA-repair Associated 
Breast Cancer) to improve the accuracy in identifying 
carriers for GPVs in CPGs among breast cancer patients.

Methods
Study participants and design
In this multi-center cohort study, we consecutively 
recruited unselected female patients with breast cancer 
from October 1, 2017, to August 31, 2019, at the Can-
cer Hospital of Chinese Academy of Medical Sciences 
and Peking Union Medical College (CHCAMS, i.e., the 
discovery cohort) and other six hospitals(i.e., the valida-
tion cohort), including (1) Huanxing Cancer Hospital, 
(2) Guiyang Maternal and Child Healthcare Hospital in 
Guiyang, (3) the Affiliated Cancer Hospital of Zhengzhou 
University, (4) the Affiliated Yantai Yuhuangding Hospital 
of Qingdao University, (5) the Fourth Hospital of Hebei 
Medical University, and (6) Beijing Tiantan Hospital all in 
China. The diagnosis of each patient was based on patho-
logical results from resection specimens. This study was 
reviewed and approved by the ethics committees at each 

the age at diagnosis, cancer history, family cancer history, and pathological characteristics. We developed a DrABC 
model to predict the risk of GPV carrier status in BRCA1/2 and other important CPGs. In predicting GPVs in BRCA1/2, 
the performance of DrABC (AUC = 0.79 [95% CI, 0.74–0.85], sensitivity = 82.1%, specificity = 63.1% in the independ-
ent validation cohort) was better than that of previous models (AUC range = 0.57–0.70). In predicting GPVs in any 
CPG, DrABC (AUC = 0.74 [95% CI, 0.69–0.79], sensitivity = 83.8%, specificity = 51.3% in the independent validation 
cohort) was also superior to previous models in their current versions (AUC range = 0.55–0.65). After training these 
previous models with the Chinese-specific dataset, DrABC still outperformed all other methods except for BOADICEA, 
which was the only previous model with the inclusion of pathological features. The DrABC model also showed higher 
sensitivity and specificity than the NCCN criteria in the multi-center validation cohort (83.8% and 51.3% vs. 78.8% and 
31.2%, respectively, in predicting GPVs in any CPG). The DrABC model implementation is available online at http:// 
gifts. bio- data. cn/.

Conclusions: By considering the distinct endophenotypes associated with different CPGs in breast cancer patients, 
a phenotype-driven prediction model based on hierarchical neural network architecture was created for identifica-
tion of hereditary breast cancer. The model achieved superior performance in identifying GPV carriers among Chinese 
breast cancer patients.

Keywords: Hereditary breast cancer, Deep learning, BRCA1/2, Genetic test, Genotype-phenotype correlation
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participating hospital. Written informed consent was 
obtained from each participant. This article follows the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guidelines [21].

As a result, 3041 women with breast cancer were 
enrolled, while 113 patients without available samples 
were excluded. The germline genetic test and analysis of 
50 CPGs and detailed phenotypic evaluation were con-
ducted in the remaining 2928 patients.

Phenotype data
We collected phenotypic data including the age at diag-
nosis, family cancer history, personal cancer history, 
pathological features, molecular subtype, and clini-
cal stage (Additional file  1: Supplementary method). 
Molecular subtyping was performed based on hormone 
receptor (HR, including estrogen receptor [ER] and pro-
gesterone receptor [PR]) and HER2 status [22]. Staging 
was determined according to the 8th edition of the classi-
fication of breast cancer staging from the American Joint 
Commission of Cancer [23].

GPV analysis
Genomic DNA was extracted from peripheral blood or 
saliva. GPVs in patients from each center were analyzed 
by their local diagnostic laboratory, which generated 
a clinical genetic test report for each participant. Each 
laboratory provided results by the enrichment of the cod-
ing regions and consensus splice sites of 50 CPGs in the 
DNA repair pathway using a targeted panel followed by 
sequencing (Additional file  1: Supplementary method) 
[24, 25]. Only novel variants or variants with < 0.1% pop-
ulation frequency in the 1000 Genomes (October 2013) 
and the genome Aggregation Database (gnomAD, http:// 
gnomad. broad insti tute. org/) were collected in this study. 
The clinical significance of each GPV was evaluated based 
on a 5-tier classification system of pathogenic/likely 
pathogenic (P/LP), benign/likely benign (B/LB), and vari-
ants of uncertain significance (VUS) according to guide-
lines of the American College of Medical Genetics and 
Genomics and the Association for Molecular Pathology 
and in-house pipeline [25–28]. The variants in BRCA1/2 
were further analyzed according to the ENIGMA expert 
panel review [29, 30]. For those variants without avail-
able expert panel results, the consensus classifications in 
ClinVar were referred to. Variants classified as P/LP were 
considered pathogenic in this study (Additional file  1: 
Supplementary method).

DrABC model development
The DrABC risk prediction model was designed based 
on a hierarchical neural network that starts with an 

input layer of 25 neurons corresponding to features of 
carriers of GPVs in CPGs followed by two hidden lay-
ers. A dropout operator is applied to the hidden lay-
ers with a 25% chance of disabling a random neuron, 
which prevents the model from overfitting. In addi-
tion, a non-linear activation function, Scaled Expo-
nential Linear Unit [31], is attached to the output of 
the hidden layers, which helps keep the representa-
tion distributions close to Gaussian. Finally, the output 
layer consists of two neurons with a sigmoid activation 
function, such that it produces two valid probabilities 
(i.e., in the range of [0, 1]): P1 and P2.Using P1 and P2, 
the final prediction is calculated using the following 
equations:

where Pa is the probability of having mutation in any 
CPGs, Pb is the probability of having BRCA1/2 mutation, 
and Pc is the probability of having mutations in other 
CPGs.

With the paired input features and ground truth anno-
tations of [Pa, Pb, Pc]  (in the form of one-hot encoding), 
we trained 101 deep learning models using cross-entropy 
loss via gradient descent. The final prediction is derived 
by aggregating results from all deep learning models 
through the ensemble learning strategy (Additional file 1: 
Supplementary method) [32, 33]. The cutoff points for 
each prediction scenario were determined to achieve 90% 
sensitivity (or the maximum sensitivity).

To evaluate the performance between the DrABC 
model and other machine learning models, we com-
pared six kinds of commonly used machine learning 
algorithms, including a fixed grid of Generalized Linear 
Models (GLMs), a naive Bayes (NB) classifier, five pre-
specified Gradient Boosting Machine (GBM) models, 
three pre-specified and a random grid of eXtreme Gradi-
ent Boosting (XGBoost) models, a default Random Forest 
(RF), a near-default Deep Neural Net (DNN), and a ran-
dom grid of DNNs. All models were trained on the dis-
covery dataset to predict whether a breast cancer patient 
carries germline pathogenic variants in any cancer pre-
disposition genes (CPGs) using an inner five-fold cross-
validation strategy. For each algorithm family, only the 
best model was retained to represent the maximum per-
formance of each kind. These common machine learning 
algorithms were performed using the R package h2o [34].

(1)Pa = P1,

(2)Pb = P1P2,

(3)Pc = P1(1− P2),

http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
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Statistical analysis
Student’s t-tests were used to analyze age at enrollment 
and age at diagnosis. The prevalence of personal can-
cer history, family cancer history, tumor size, histologi-
cal grade, ER/PR/androgen receptor (AR)/HER2 status, 
and lymph nodes metastasis were compared using Pear-
son χ2 or Fisher’s exact tests. The risk of carrying a GPV 
in BRCA1/2 or CPGs was also estimated using NCCN 
guidelines (version 1.2020) [12], BRCAPRO (version 2.1-
7) [35, 36], Myriad II [37], PENN II [38], and BOADICEA 
(v3) [39] models in the multi-center validation cohort. 
Sensitivity, specificity, accuracy, and area under the curve 
(AUC) with the receiver operating characteristic (ROC) 
were calculated to evaluate the predictive performance 
of DrABC, other machine learning, and previous mod-
els. The performance of two ROC curves was compared 
through the “DeLong’s test” [40] using the algorithm of 
Sun and Xu [41]. Two-sided p < 0.05 was considered sta-
tistically significant. Statistical analysis was performed 
using SPSS version 15.0 (SPSS, USA) and R statistical 
software, version 3.5.1. The Youden index (J = sensitivity 
+ specificity − 1) was used to evaluate the balance and 
potential effectiveness of each model with the suggested 
threshold [42].

Results
Patient characteristics
In total, patients were diagnosed at 42.9 ± 9.1 years of 
age, with 1168 (39.9%, 1168/2928) having early-onset 
cancer (age at diagnosis ≤ 40 years [43]). There were 400 
(13.7%) patients with a family history of breast cancer, 86 
(2.9%) patients with bilateral breast cancer, and 96 (3.3%) 
patients with an additional primary cancer other than 
breast cancer.

Prevalence of GPVs
In total, 332 (11.3%, 332/2928) patients harbored 335 
GPVs in CPGs (including 334 single nucleotide variants/
indels and one deletion of BRCA2 exons 22-24), while 
295 VUS were found in 249 (8.5%) patients (Fig. 1, Addi-
tional file 2: Fig. S1 and Additional file 3: Table S1) and 
were excluded from further analysis to avoid potential 
contamination of datasets. Patients with GPVs (n = 332) 
were further divided into four subgroups according to the 
clinical significance of mutated genes: BRCA1 (n = 131); 
BRCA2 (n = 132) (Fig.  2A and B); other homologous 
recombinational repair (HRR)-related genes [44] includ-
ing PALB2 (Fig.  2C), RAD51C, RAD51D, BARD1, and 
BRIP1 (n = 43); and other CPGs [45] (n = 26).

Association of GPVs with clinical characteristics
Compared with non-carriers, patients with GPVs in any 
CPGs are associated with younger onset ages (40.15 ± 

8.29 in any CPGs vs. 43.43 ± 9.08 in non-carriers, p = 5.7 
×  10− 10; Table 1 and Fig. 1). Furthermore, patients with 
GPVs in BRCA1/2 are associated with even younger-
onset ages, personal history of all cancers, previous 
breast cancer, and ovarian cancer, family history of breast 
cancer (41.2% in BRCA1 carriers and 32.6% in BRCA2 
carriers vs. 10.8% for non-carriers, p = 8.4 ×  10− 18 
and 9.5 ×  10− 11, respectively) and all cancers (64.9% in 
BRCA1 carriers and 53.8% in BRCA2 carriers vs. 30.9% 
for non-carriers, p = 1.6 ×  10− 14 and 1.5 ×  10− 7; Addi-
tional file 4: Fig. S2), and bilateral breast cancer (11.45% 
in BRCA1 and 8.33% in BRCA2 vs. 2.22% in non-carriers, 
p = 1.0 ×  10− 6 and 3.6 ×  10− 4, respectively).

In particular, patients with GPVs in BRCA1 are asso-
ciated with a family history of ovarian cancer (14.5% 
for BRCA1 carriers vs. 0.8% for non-carriers, p = 1.2 × 
 10− 15), more grade III (64.89% for BRCA1 carriers vs. 
25.01% for non-carriers, p = 1.5 ×  10− 20), more negative 
cases in ER, PR, and AR (71.76%, 70.99%, and 38.17% for 
BRCA1 carriers vs. 26.08%, 26.89%, and 7.46% for non-
carriers, p = 4.1 ×  10− 25, 2.6 ×  10− 23, and 4.6 ×  10− 21, 
respectively). Significantly more breast cancer with ki67 
> 30%, EGFR-positive breast cancer, and CK5/6-positive 
breast cancers were also seen in BRCA1 mutation carri-
ers (Table 1). Meanwhile, patients with GPVs in BRCA2 
are associated with a family history of leukemia or male 
breast cancer, lymph node metastasis (56.82% in BRCA2 
carriers vs. 38.01% in non-carriers, p = 4.0 ×  10− 5), 
more positive cases in ER and PR (81.06% and 81.06% 
for BRCA2 carriers vs. 67.83% and 66.94%for non-car-
riers, p = 7.8 ×  10− 3 and 2.3 ×  10− 3, respectively), and 
more wild-type P53 (41.7% for BRCA2 carriers vs. 26.8% 
for non-carriers, p = 4.1 ×  10− 4). Besides, patients with 
GPVs in other HRR-related genes are associated with a 
family history of pancreas cancer (9.3% in other HRR-
related genes carriers vs. 1.5% in non-carriers, p = 4.3 
×  10− 3) and more wild-type P53, while patients with 
GPVs in other CPGs are also associated with lymph node 
metastasis (Table 1).

However, HER2-positive status was less common 
among patients with HRR-related GPVs but not among 
those with GPVs in other CPGs (1.5% for BRCA1 carri-
ers, 4.6% for BRCA2 carriers, 0% for other HRR-related 
gene carriers, 26.9% for other CPG carriers, vs. 21.6% for 
non-carriers, p = 4.2 ×  10− 11, 1.1 ×  10− 7, 4.3 ×  10− 5, 
and 0.48, respectively). Triple-negative breast cancer was 
more common among patients with GPVs in BRCA1 than 
among non-carriers (62.6% vs. 12.9%, p = 6.8 ×  10− 37; 
Table 1). However, most BRCA2 and other HRR-related 
gene mutation carriers were HR+/HER2− (66.67% and 
67.44%, respectively; Additional file  5: Fig. S3). When 
combining molecular subtypes with the age at diagno-
sis and family cancer history, the CPG mutation carriers 
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Fig. 1 Patient enrollment and study design. GPV, germline pathogenic variant; CPG, cancer predisposition gene; CHCAMS, Cancer Hospital of 
Chinese Academy of Medical Sciences
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were further enriched accordingly (Additional file 6: Fig. S4).

Fig. 2 Genotype-phenotype atlas of hereditary breast cancer. A Germline pathogenic variants (GPVs) in BRCA1 were found in 131 (4.5%) patients. 
Most BRCA1 carriers had triple-negative breast cancer (82/131, 62.6%). B GPVs in BRCA2 were found in 134 (4.6%) patients. Most BRCA2 carriers were 
hormone receptor (HR)-positive and HER2-negative (90/134, 67.2%). C GPVs in PALB2 were found in 33 (1.1%) patients. Most PALB2 carriers were 
HR-positive and HER2-negative (21/33, 63.6%)
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Using a deep learning model to predict GPVs in DNA repair 
genes
To ensure data integrity and cleanness, 249 patients with 
VUSs and 247 patients without complete clinical infor-
mation or family cancer history were excluded from 
model construction [46]. A total of 1701 patients from 
the CHCAMS constituted the discovery cohort, and 731 
patients from six other institutions constituted the inde-
pendent multi-center validation cohort (Additional file 7: 
Fig. S5).

We used 25 clinical features associated with GPVs in 
CPGs to develop the prediction model. These 25 features 
correspond to an input layer of 25 neurons (Additional 
file 8: Table S2), followed by two hidden layers of 16 and 
8 neurons, respectively (Additional file  9: Fig. S6). As a 
result, DrABC achieved a superior performance through 
the inner five-fold cross-validation in the discovery 
cohort, which was slightly higher than other traditional 
machine learning models but without significance (p > 
0.05 when comparing each model with the DrABC; Addi-
tional file 10: Fig. S7).

Performance of DrABC versus previous models
DrABC generates probabilities of whether a breast cancer 
patient carries GPVs in BRCA1/2, other CPGs except for 
BRCA1/2, or any CPG. In predicting GPVs in any CPG, 
the AUCs for DrABC were 0.80 (95% CI, 0.78–0.83) for 
the discovery cohort and 0.74 (95% CI, 0.69–0.79) for 
the validation cohort, which were superior to those for 
previous models (AUC = 0.65 for BRCAPRO [35], AUC 
= 0.57 for BOADICEA [39], AUC = 0.56 for Myriad 
[37], and AUC = 0.61 for PENN II [38] in the validation 
cohort; p < 0.01 when comparing each model with the 
DrABC; Fig. 3A, Table 2, and Additional file 11: Table S3). 
Of the 731 patients in the multi-center validation cohort, 
513 (70.2%) met NCCN criteria for genetic testing cri-
teria and 218 (29.8%) did not. Patients meeting NCCN 
criteria were more likely to carry GPVs in any CPG than 
patients not meeting the criteria (15.2% [78/513] vs. 9.6% 
[21/218], p = 0.045; OR = 1.7 [95% CI, 1.0–2.8)]. As a 
result, the NCCN criteria showed a sensitivity of 78.8%, 
specificity of 31.2%, and accuracy of 37.6% (Table  2). 
Expansion of NCCN criteria [13] to include all patients 

Fig. 3 Performance of risk prediction models for hereditary breast cancer. A DrABC performed better than previous models in predicting germline 
pathogenic variants (GPVs) in any cancer predisposition genes (CPGs) (AUCs of 0.74 for DrABC, 0.65 for BRCAPRO, 0.57 for BOADICEA, 0.56 for Myriad, 
and 0.61 for PENNII). B In predicting GPVs in BRCA1/2, the AUC of DrABC was 0.79 (95% CI, 0.74–0.85) for the validation cohort, which was superior 
to those for previous models (0.70 for BRCAPRO, 0.59 for BOADICEA, 0.59 for Myriad, and 0.63 for PENN II). C, D The probabilities generated by DrABC 
were distributed differently between non-carriers and patients with GPVs in any CPG (C) or BRCA1/2 (D). **p < 0.01, ****p < 0.0001, when comparing 
with the DrABC



Page 10 of 15Liu et al. Genome Medicine           (2022) 14:21 

diagnosed with breast cancer at ≤ 65 years of age could 
increase the sensitivity to 100% but reduced specificity to 
2.5% and accuracy to 15.7%. When achieving the high-
est detection rate, DrABC had a sensitivity of 90.8% and 
specificity of 53.2% for all GPVs in the discovery cohort 
and a sensitivity of 83.8% and specificity of 51.3% for all 
GPVs in the multi-center validation cohort (Table 2 and 
Additional file 12: Table S4).

In predicting GPVs in BRCA1/2, the AUCs for DrABC 
were 0.81 (95% CI, 0.78–0.84) for the discovery cohort 
and 0.79 (95% CI, 0.74–0.85) for the validation cohort, 
which were also superior to those for previous models 
(AUC = 0.70 for BRCAPRO [35], AUC = 0.59 for BOA-
DICEA [39, 47], AUC = 0.59 for Myriad [37], and AUC 
= 0.63 for PENN II [38] in the validation cohort; p < 0.01 
when comparing each model with the DrABC; Fig.  3B, 
Table 2, and Additional file 11: Table S3). The DrABC had 
a sensitivity of 85.6% and specificity of 65.5% for GPVs 
in BRCA1/2 in the discovery cohort and a sensitivity of 
82.1% and specificity of 63.1% for GPVs in BRCA1/2 in 
the validation cohort, when achieving the highest detec-
tion rate (Additional file  12: Table  S4). Compared to 
previous models, the DrABC demonstrated the high-
est Youden index with the corresponding threshold for 
detecting GPVs in BRCA1/2 or any CPG (Table 2), sug-
gesting DrABC has a more balanced performance com-
pared with previous models.

The probabilities generated by DrABC were distrib-
uted differently between non-carriers and patients with 
GPVs in any CPG (p = 2.0 ×  10− 10; Fig. 3C) or BRCA1/2 
(p = 7.8 ×  10− 16; Fig. 3D and Additional file 13: Fig. S8), 
suggesting its capability in distinguishing patients with 

hereditary breast cancer. However, DrABC was less sat-
isfactory in predicting GPVs in other CPGs, with AUCs 
of 0.72 (95% CI, 0.64–0.79) in the discovery cohort and 
0.58 (95% CI, 0.46–0.70) in the validation cohort, which 
was still higher than other models (AUC range = 0.44-
0.53 in the validation cohort; Table  2 and Additional 
file  14: Fig. S9) but without significant difference (p > 
0.05 when comparing each model with the DrABC; Addi-
tional file  11: Table  S3). There was no significant distri-
bution difference between non-carriers and patients with 
GPVs in CPGs other than BRCA1/2 (p = 0.39; Additional 
file 14: Fig. S9).

Contributions of family cancer history and pathological 
features to DrABC performance
To identify their contributions of features to the deep-
learning model, we assessed the performance of DrABC 
after eliminating family cancer history or pathological 
feature data in the validation cohort. Eliminating fam-
ily cancer history data did not reduce the performance 
of DrABC, with AUCs of 0.72 in predicting GPVs in any 
CPG, 0.75 in predicting GPVs in BRCA1/2, and 0.52 in 
predicting GPVs in other CPGs. However, eliminating 
pathological feature data reduced the performance of 
DrABC, with AUCs of 0.62 in predicting GPVs in any 
CPG, 0.66 in predicting GPVs in BRCA1/2, and 0.44 
in predicting GPVs in other CPGs (Additional file  15: 
Fig. S10). Therefore, pathological feature represents an 
important predictive factor for hereditary breast cancer.

Table 2 The prediction accuracy of the algorithms and NCCN criteria in multi-center validation cohort

a The cutoff values were set as 5%
b The cutoff values were set as 10%
c Expansion of the NCCN criteria included all women diagnosed with breast cancer younger than 65 years of age
d The Youden index was calculated as J = sensitivity+specificity-1

Abbreviations: AUC  area under the curve, CI confidence interval, NA not applicable

DrABC BRCAPROa BOADICEAa Myriada PENNIIb NCCN NCCN 
 expansionc

BRCA1/2

 AUC (95%CI) 0.792 (0.735–0.848) 0.699 (0.635–0.763) 0.586 (0.521–0.651) 0.587 (0.537–0.637) 0.628 (0.560–0.697) NA NA

 Sensitivity 82.1% 53.8% 15.4% 9.0% 61.5% 83.3% 100%

 Specificity 63.1% 72.1% 90.2% 98.9% 61.6% 31.4% 2.5%

 Youden  Indexd 45.2% 25.9% 5.6% 7.9% 23.1% 14.7% 2.5%

All cancer predisposition genes

 AUC (95%CI) 0.737 (0.687–0.787) 0.650 (0.589–0.711) 0.571 (0.510–0.631) 0.556 (0.508–0.603) 0.606 (0.543–0.668) NA NA

 Sensitivity 83.8% 45.5% 15.2% 7.1% 58.6% 78.8% 100%

 Specificity 51.3% 71.6% 90.3% 98.9% 61.9% 31.2% 2.5%

 Youden  Indexd 35.1% 17.1% 5.5% 6.0% 20.5% 10.0% 2.5%
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Reconstructing previous prediction models using in-house 
data in discovery cohort
To investigate the contribution of the Chinese-spe-
cific training dataset to the superior performance of 
the DrABC model to the previous model, we recon-
structed the previous prediction models of BRCAPRO, 
BOADICEA, Myriad, and PENN II using the underly-
ing algorithms (i.e., Bayes’ theorem for BRCAPRO and 
BOADICEA, Logistic regression for Myriad and PENN 
II; through the R package h2o [34]) and input variables 
(Additional file  16: Table  S5) [35–39] of each model. 
These reconstructed models were trained in the Chinese 
discovery cohort and validated in the multi-center vali-
dation cohort. In predicting GPVs in any CPG, DrABC 
was superior to the reconstructed models of BRCAPRO, 
Myriad, and PENN II (AUC = 0.74 for DrABC, AUC = 
0.64 for BRCAPRO, AUC = 0.63 for Myriad, and AUC 
= 0.66 for PENN II in the validation cohort; p < 0.01 
when comparing each model with the DrABC; Addi-
tional file  17: Fig. S11 and Additional file  18: Table  S6). 
Similarly, in predicting GPVs in BRCA1/2, DrABC was 
superior to these three reconstructed models (AUC = 
0.79 for DrABC, AUC = 0.68 for BRCAPRO, AUC = 0.68 
for Myriad, and AUC = 0.70 for PENN II in the valida-
tion cohort; p < 0.01 when comparing each model with 
the DrABC; Additional file  17: Fig. S11 and Additional 
file 18: Table S6). However, there was no significant dif-
ference between the AUCs for DrABC and the recon-
structed BOADICEA model in both predicting GPVs in 
any CPG and BRCA1/2 (AUC = 0.75 and 0.78 for BOA-
DICEA, p = 0.48 and 0.32 when comparing each model 
with the DrABC, respectively; Additional file 17: Fig. S11 
and Additional file 18: Table S6).

Online DrABC tool
We implemented a website interface (http:// gifts. bio- 
data. cn/) to accommodate extensions to the DrABC 
model and make it easily accessible to healthcare provid-
ers and researchers (Additional file 19: Fig. S12). The user 
guide was provided in the Additional file 20: A user guide 
for the DrABC model.

Discussion
Breast cancer patients with GPVs in BRCA1/2 and other 
breast cancer-associated genes benefit from particular 
patterns of systemic treatments and risk-reducing inter-
ventions [48]. Although risk prediction models have been 
developed for combined groups of patients with breast or 
ovarian cancer as well as healthy individuals with a family 
history of hereditary breast and ovarian cancer [36, 37, 
49, 50], no clinical tool has been specifically developed 
for patients already diagnosed with breast cancer. There-
fore, we developed and validated a reliable prediction 

model using deep learning algorithms to identify GPV 
carriers among unselected breast cancer patients with 
better accuracy than previous models and no trend 
toward overfitting.

In this study, we have compared and tested the cur-
rently available risk prediction models and identified the 
shortfalls and limitations as follows: (1) the probability of 
carrying GPVs was derived from data from multi-gener-
ation families and computed based on the family history 
of specific cancers, age at diagnosis, and ancestry [37, 
50, 51]. Thus, their performances in small family struc-
tures with simple pedigrees would be significantly limited 
[8]. (2) Evolutionarily recent or de novo mutations may 
have a more significant influence on disease suscepti-
bility or protection than ancient mutations (Additional 
file  16: Table  S5) [52]. (3) The vast majority of models 
were developed based on the data driven from European 
populations, but the performance in Asian populations 
has not been validated [53]. (4) Most of the existing mod-
els were specifically designed to predict the GPV carrier 
risk in BRCA1/2 genes and thus cannot be readily used 
to assess the risk for other breast cancer predisposition 
loci, which are also important for personalized health-
care decisions.

Thus, to identify whether the superior performance 
of DrABC may also be attributed to its Chinese-specific 
training dataset, we imitated the previous prediction 
models of BRCAPRO, BOADICEA, Myriad, and PENN 
II using the corresponding algorithms and input variables 
and trained them in the discovery cohort of this study. 
As a result, the performance of DrABC was superior to 
those of the reconstructed models of BRCAPRO, Myriad, 
and PENN II, but similar to the reconstructed BOADI-
CEA model. Notably, only DrABC and the reconstructed 
BOADICEA model have incorporated pathological fea-
tures in the algorithm. Collectively, the DrABC model 
has shown better performance in the Chinese population 
than all these previous models in their current versions. 
After training these previous models with the Chinese-
specific dataset, the previous models without the inclu-
sion of pathological information still cannot compete 
with the DrABC model, while the BOADICEA model 
involving the pathological features demonstrated similar 
performance to the DrABC model.

In comparison with traditional machine learning mod-
els, although DrABC achieved a slightly superior perfor-
mance than other traditional machine learning models, 
there was no significant difference among them (Addi-
tional file 10: Fig. S7). While the difference between the 
performance of the machine learning models was also 
not observed in a previous study of predicting GPVs sta-
tus in pancreatic cancer patients [20]. However, based 
on the similar deep learning technique, DNN models 

http://gifts.bio-data.cn/
http://gifts.bio-data.cn/
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had the worst performance with an AUC of 0.75, sug-
gesting that DNNs in particular are difficult to perform 
well without ingenious design. In addition, as a complex 
classification task with three categories, we specially 
designed the prediction model based on a hierarchical 
neural network, producing two probabilities: P1 and P2, 
where P1 is the probability of having a mutation in any 
CPGs, P2 is the probability of having BRCA1/2 muta-
tion when the patient is known to carrier mutation in 
any CPGs. To sum up, DrABC is a specially designed and 
well-performed model for this scenario.

As each CPG has distinct endophenotypes in terms of 
clinical and pathological features, the detailed phenotype 
of a proband with breast cancer should be incorporated 
in risk prediction. However, previously incorporating 
ER/PR/HER2 status into the BOADICEA model did not 
improve its predictive accuracy [53], inconsistent with 
the present study. Intriguingly, pathological features con-
tributed more than family cancer history to the ability 
of DrABC to predict GPVs in BRCA1/2 and any CPGs, 
which might contribute to the superior performance of 
DrABC and the reconstructed BOADICEA model than 
the other previous models.

Asian breast cancer patients exhibit several unique fea-
tures. Breast cancer is diagnosed at much younger ages 
in Asian women than in women from Western countries 
[1, 54]. Moreover, BRCA2 mutations are more common 
than BRCA1 mutations in Asian women as compared 
with Caucasian women [55, 56]. However, we found that 
breast cancer patients with GPVs in BRCA2 have less dis-
tinct endophenotypes than those with GPVs in BRCA1. 
These two features reduce the performance of previous 
risk prediction models and criteria [53]. To our knowl-
edge, DrABC is the first available GPVs risk prediction 
model suitable for Asian breast cancer patients, which 
might contribute to the better performance than previ-
ous models based on Western populations.

Therefore, we introduced an applicable pipeline for 
GPV carrier risk assessment among patients with breast 
cancer (Additional file 21: Fig. S13). This approach would 
strike a balance between identifying more GPV carri-
ers and testing fewer breast cancer patients and, in turn, 
would bolster national guidelines for genetic testing, and 
reduce healthcare costs. However, we cannot rule out 
that testing breast cancer patients with a low risk of GPVs 
would further increase the detection rate [57] but should 
be undertaken considering local healthcare resources and 
patient desires.

However, there are some limitations in this study. As 
our study included few carriers of GPVs in CPGs other 
than BRCA1/2, their endophenotypes were not well-rep-
resented. Although this study employed a multi-center 
design, only Chinese female patients with breast cancer 

were investigated. Extending the usage of this model in 
other ethnicities requires further tuning via training the 
model with ethnicity-specific dataset, following by vali-
dating in larger cohorts in the corresponding population.

Conclusions
Breast cancer patients with GPVs in different CPGs 
exhibit distinct endophenotypes. Based on these distinct 
features, we developed and validated a phenotype-driven 
risk prediction model using a deep learning algorithm to 
identify GPV carriers among unselected breast cancer 
patients in a multi-center cohort. The DrABC model bet-
ter predicted the risk of carrying GPVs in BRCA1/2 or 
other CPGs in the Chinese population compared to pre-
vious risk prediction models which were trained in other 
populations. This robust germline defect risk stratifica-
tion tool can be utilized to triage patients at higher risk 
for genetic testing.

Abbreviations
GPV: Germline pathogenic variant; CPG: Cancer predisposition gene; DrABC: 
DNA-repair associated breast cancer; AUC : Area under the curve; NCCN: 
National Comprehensive Cancer Network; CHCAMS: Cancer Hospital of 
Chinese Academy of Medical Sciences; STROBE: Strengthening the Reporting 
of Observational Studies in Epidemiology; HR: Hormone receptor; ER: Estrogen 
receptor; PR: Progesterone receptor; AR: Androgen receptor; VUS: Variants 
of uncertain significance; HRR: Homologous recombinational repair; ROC: 
Receiver operating characteristic.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073- 022- 01027-9.

Additional file 1. Supplementary Methods.

Additional file 2: Figure S1. Summary of Variants in Cancer Predisposi-
tion Genes.

Additional file 3: Table S1. Summary of Pathogenic Variants and Variants 
of Uncertain Significance. 

Additional file 4: Figure S2. Association of Germline Variants with Age 
at Diagnosis (A), Family History (B), Histological Grade (C), and Molecular 
Subtypes (D).

Additional file 5: Figure S3. Phenotype-genotype correlation and data 
interpretation.

Additional file 6: Figure S4. Association of Germline Variants with Clinical 
Characteristics.

Additional file 7: Figure S5. The Multi-center Validation of the DrABC 
Model.

Additional file 8: Table S2. The Neurons in the Input Layer of the DrABC 
Model.

Additional file 9: Figure S6. Developing the DrABC Model through the 
Hierarchical Neural Network.

Additional file 10: Figure S7. The Performance of the DrABC Model and 
Other Machine Learning Models Using an Inner Five-fold Cross-validation 
Strategy.

Additional file 11: Table S3. The Performance of DrABC versus Previous 
Models in Multi-Center Validation Cohort. 

https://doi.org/10.1186/s13073-022-01027-9
https://doi.org/10.1186/s13073-022-01027-9


Page 13 of 15Liu et al. Genome Medicine           (2022) 14:21  

Additional file 12: Table S4. The Prediction Accuracy of the DrABC Model 
in Discovery and Validation Cohorts.

Additional file 13: Figure S8. The Distribution of the Predicted Probabili-
ties in Non-carriers and CPGs-carriers by the DrABC Model.

Additional file 14: Figure S9. Performance of Risk Prediction Models 
for Breast Cancer Patients with germline Pathogenic Variants in Cancer 
Predisposition Genes other than BRCA1/2.

Additional file 15: Figure S10. The Contribution of Family Cancer History 
and Pathological Features to the DrABC Model.

Additional file 16: Table S5. The Algorithms and Variables Incorporated 
in the Risk Prediction Models.

Additional file 17: Figure S11. The Performance of Reconstructed Previ-
ous Models Which Were Trained in the Discovery Cohort and Tested in the 
Validation Cohort.

Additional file 18: Table S6. The Performance of Reconstructed Previous 
Models Which Were Trained in the Discovery Cohort and Tested in the 
Validation Cohort.

Additional file 19: Figure S12. Online Website for the DrABC Model.

Additional file 20. A user guide for the DrABC model.

Additional file 21: Figure S13. The Suggested Pipeline of Genetic Testing 
for Women with Breast Cancer.

Additional file 22. Pathogenic variants and variants of uncertain signifi-
cance in this study.

Acknowledgements
We thank all the individuals, families, and physicians involved in the study for 
their participation. We thank Mr. Yuchen Niu and Mr. Shudong Yan for their 
technical support in DNA extraction. We also thank the Beijing Ekitech Tech-
nology Inc. for the technical support in database and data management.

Authors’ contributions
Jiaqi L., H. Z., Y. Z., Y. Y., J. S., and N. W. conceived the study. Z. L., J. Y., Xin W., 
Xiang W., and Z. W. administratively supported this study. Jiaqi L., L. D., S. H., J. 
Z., S. L., Jun L., Yalun L., Shuo Z., W. W., Z. X., L. Q., Xin W, and Xiang W. collected 
the study materials or patients. Jiaqi L., L. D., Sen Z., T. Q., J. Z., S. L., Jun L., Yalun 
L., Shuo Z., X. H., W. W., J. W., and J. Y. performed the data cleaning and statisti-
cal analysis. Jiaqi L., H. Z., Y. Z., L. D., Sen Z., Y. H., X. H., Yiqun L., Y. Y., J. Y., J. S., and 
N. W. devised the algorithm and performed data analysis and interpretation. 
All authors wrote the manuscript. All authors read and approved the final 
manuscript.

Funding
This research was funded in part by the National Natural Science Foundation 
of China (81802669 to J.L., 81501852 and 82072391 to N.W., 61871294 to J.S., 
81472046 and 81772299 to Z.W.), the CAMS Innovation Fund for Medical 
Sciences (2020-I2M-C&T-B-068 to J.L., 2020-I2M-C&T-A-015 to Y.M., 2021-I2M-
1-051 to N.W., and 2021-I2M-1-052 to Z.W.), the Beijing Hope Run Special Fund 
(LC2020B05 to J.L.), Beijing Natural Science Foundation (JQ20032 to N.W.), 
Tsinghua University-Peking Union Medical College Hospital Initiative Scientific 
Research Program (to N.W.), the PUMC Youth Fund & the Fundamental 
Research Funds for the Central Universities (No.3332019052 to Y. M.), Non-
profit Central Research Institute Fund of Chinese Academy of Medical Sciences 
(No. 2019PT320025), Science Foundation of Zhejiang Province (LR19C060001 
to J.S), and the Fundamental Research Funds for Wenzhou Institute of Univer-
sity of Chinese Academy of Sciences (WIBEZD2017009-05 to J.S.).

Availability of data and materials
The supplement data that support the findings of this study are openly avail-
able in the supplementary materials. Patients provided informed consent to 
participate and to have variant information published; however, the consent 
obtained did not include consent to publish or share raw sequencing data. 
The anonymous genetic test reports involving this study are available upon 
request. We have deposited all the pathogenic/likely pathogenic variants and 
variants of uncertain significance in this study in the Additional file 22 and all 
the genetic data involving this study on Genome Variation Map [58] which are 

publicly accessible at https:// ngdc. cncb. ac. cn/ gvm/ getPr oject Detail? proje ct = 
GVM000301 [59]. Scripts used to generate the findings in this study have been 
deposited on https:// github. com/ zhq921/ DrABC [60].

Declarations

Ethics approval and consent to participate
This study was reviewed and approved by the ethics committees at the Can-
cer Hospital of Chinese Academy of Medical Sciences and Peking Union Medi-
cal College (the main patient source, reference number: 2021041314383902) 
and other six hospitals, including (1) Huanxing Cancer Hospital, (2) Guiyang 
Maternal and Child Healthcare Hospital in Guiyang, (3) the Affiliated Cancer 
Hospital of Zhengzhou University, (4) the Affiliated Yantai Yuhuangding Hospi-
tal of Qingdao University, (5) the Fourth Hospital of Hebei Medical University, 
and (6) Beijing Tiantan Hospital all in China. This study conformed to the 
principles of the Helsinki Declaration. Written informed consent was obtained 
from each participant.

Consent for publication
Patients in this study gave consent to publish variant information.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Breast Surgical Oncology, National Cancer Center/National 
Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy 
of Medical Sciences and Peking Union Medical College, Beijing 100021, 
China. 2 Institute of Biomedical Big Data, Wenzhou Medical University, Wen-
zhou 325027, China. 3 Department of Orthopedic Surgery, Peking Union Medi-
cal College Hospital, Peking Union Medical College and Chinese Academy 
of Medical Sciences, Beijing 100730, China. 4 Beijing Key Laboratory for Genetic 
Research of Skeletal Deformity, Peking Union Medical College Hospital, 
Peking Union Medical College and Chinese Academy of Medical Sciences, 
Beijing 100730, China. 5 Fintech Innovation Center, Southwestern University 
of Finance and Economics, Chengdu 611130, China. 6 Department of Pathol-
ogy, National Cancer Center /National Clinical Research Center for Cancer/
Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union 
Medical College, Beijing 100021, China. 7 School of Biomedical Engineering, 
School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical 
University, Wenzhou 325027, China. 8 Department of Laboratory Medicine, 
National Cancer Center /National Clinical Research Center for Cancer/Cancer 
Hospital, Chinese Academy of Medical Sciences and Peking Union Medi-
cal College, Beijing 100021, China. 9 Department of Breast Surgery, Guiyang 
Maternal and Child Healthcare Hospital, Guiyang 550001, China. 10 Depart-
ment of Breast Surgery, the Affiliated Hospital of Guizhou Medical University, 
Guiyang 550004, China. 11 Department of Molecular Pathology, the Affili-
ated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China. 
12 Department of Breast Surgery, the Affiliated Yantai Yuhuangding Hospital 
of Qingdao University, Yantai 264000, China. 13 Department of Breast Surgery, 
the Fourth Hospital of Hebei Medical University, Shijiazhuang 050019, Hebei, 
China. 14 Department of Breast Surgery, Peking Union Medical College Hospi-
tal, Peking Union Medical College and Chinese Academy of Medical Sciences, 
Beijing 100730, China. 15 Department of Breast Surgery, Beijing Tiantan Hospi-
tal, Capital Medical University, Beijing 100070, China. 16 Department of Oncol-
ogy, National Cancer Center /National Clinical Research Center for Cancer/
Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union 
Medical College, Beijing 100021, China. 17 Department of Ultrasound, National 
Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, 
Chinese Academy of Medical Sciences and Peking Union Medical College, 
Beijing 100021, China. 18 PET-CT Center, National Cancer Center/National Clini-
cal Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical 
Sciences and Peking Union Medical College, Beijing 100021, China. 19 Medical 
Research Center, Beijing Key Laboratory for Genetic Research of Skeletal 
Deformity & Key Laboratory of Big Data for Spinal Deformities, All at Peking 
Union Medical College Hospital, Peking Union Medical College and Chinese 
Academy of Medical Sciences, Beijing 100730, China. 20 Department of Breast 
Surgical Oncology, Cancer Hospital of HuanXing, Beijing 100021, China. 21 Key 
Laboratory of Big Data for Spinal Deformities, Peking Union Medical College 
and Chinese Academy of Medical Sciences, Beijing 100730, China. 22 State Key 

https://ngdc.cncb.ac.cn/gvm/getProjectDetail?project
https://github.com/zhq921/DrABC


Page 14 of 15Liu et al. Genome Medicine           (2022) 14:21 

Laboratory of Complex Severe and Rare Diseases, Peking Union Medical Col-
lege Hospital, Peking Union Medical College and Chinese Academy of Medical 
Sciences, Beijing 100730, China. 23 Machine Intelligence Group, University 
of Edinburgh, Edinburgh EH8 9YL, UK. 24 State Key Laboratory of Molecu-
lar Oncology, National Cancer Center/National Clinical Research Center 
for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking 
Union Medical College, Beijing 100021, China. 25 Wenzhou Institute, University 
of Chinese Academy of Sciences, Wenzhou 325011, China. 

Received: 21 December 2020   Accepted: 10 February 2022

References
 1. Yap YS, Lu YS, Tamura K, Lee JE, Ko EY, Park YH, et al. Insights into breast 

cancer in the east vs the west: a review. JAMA Oncol. 2019;5(10):1489–96.
 2. Kurian AW, Ward KC, Howlader N, Deapen D, Hamilton AS, Mariotto 

A, et al. Genetic testing and results in a population-based cohort 
of breast cancer patients and ovarian cancer patients. J Clin Oncol. 
2019;37(15):1305–15.

 3. Turner NC. Signatures of DNA-repair deficiencies in breast cancer. N Engl 
J Med. 2017;377(25):2490–2.

 4. Niravath P, Cakar B, Ellis M. The role of genetic testing in the selection of 
therapy for breast cancer: a review. JAMA Oncol. 2017;3(2):262–8.

 5. Tutuncuoglu B, Krogan NJ. Mapping genetic interactions in cancer: a 
road to rational combination therapies. Genome Med. 2019;11(1):62.

 6. Drohan B, Roche CA, Cusack JC Jr, Hughes KS. Hereditary breast and ovar-
ian cancer and other hereditary syndromes: using technology to identify 
carriers. Ann Surg Oncol. 2012;19(6):1732–7.

 7. Beitsch PD, Whitworth PW, Hughes K, Patel R, Rosen B, Compagnoni G, 
et al. Underdiagnosis of hereditary breast cancer: are genetic testing 
guidelines a tool or an obstacle? J Clin Oncol. 2019;37(6):453–60.

 8. Weitzel JN, Lagos VI, Cullinane CA, Gambol PJ, Culver JO, Blazer KR, et al. 
Limited family structure and BRCA  gene mutation status in single cases of 
breast cancer. JAMA. 2007;297(23):2587–95.

 9. Mavaddat N, Rebbeck TR, Lakhani SR, Easton DF, Antoniou AC. Incorporat-
ing tumour pathology information into breast cancer risk prediction 
algorithms. Breast Cancer Res. 2010;12(3):R28.

 10. Manahan ER, Kuerer HM, Sebastian M, Hughes KS, Boughey JC, Euhus 
DM, et al. Consensus guidelines on genetic testing for hereditary breast 
cancer from the American Society of Breast Surgeons. Ann Surg Oncol. 
2019;26(10):3025–31.

 11. Yang S, Axilbund JE, O’Leary E, Michalski ST, Evans R, Lincoln SE, et al. 
Underdiagnosis of hereditary breast and ovarian cancer in medicare 
patients: genetic testing criteria miss the mark. Ann Surg Oncol. 
2018;25(10):2925–31.

 12. Daly MB, Pilarski R, Yurgelun MB, Berry MP, Buys SS, Dickson P, et al. 
NCCN guidelines insights: genetic/familial high-risk assessment: breast, 
ovarian, and pancreatic, version 1.2020. J Natl Compr Cancer Netw. 
2020;18(4):380–91.

 13. Yadav S, Hu C, Hart SN, Boddicker N, Polley EC, Na J, et al. Evaluation of 
germline genetic testing criteria in a hospital-based series of women 
with breast cancer. J Clin Oncol. 2020;38(13):1409–18.

 14. Milliron KJ, Griggs JJ. Advances in genetic testing in patients with breast 
cancer, high-quality decision making, and responsible resource alloca-
tion. J Clin Oncol. 2019;37(6):445–7.

 15. Foulkes WD, Knoppers BM, Turnbull C. Population genetic testing for 
cancer susceptibility: founder mutations to genomes. Nat Rev Clin Oncol. 
2016;13(1):41–54.

 16. Bernstein-Molho R, Singer A, Laitman Y, Netzer I, Zalmanoviz S, Friedman 
E. Multigene panel testing in unselected Israeli breast cancer cases: muta-
tional spectrum and use of BRCA1/2 mutation prediction algorithms. 
Breast Cancer Res Treat. 2019;176(1):165–70.

 17. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diag-
nostics. Genome Med. 2019;11(1):70.

 18. Wang X, Zou C, Zhang Y, Li X, Wang C, Ke F, et al. Prediction of BRCA  gene 
mutation in breast cancer based on deep learning and histopathology 
images. Front Genet. 2021;12:661109.

 19. Nero C, Ciccarone F, Boldrini L, Lenkowicz J, Paris I, Capoluongo ED, et al. 
Germline BRCA1-2 status prediction through ovarian ultrasound images 

radiogenomics: a hypothesis generating study (PROBE study). Sci Rep. 
2020;10(1):16511.

 20. Mizukami K, Iwasaki Y, Kawakami E, Hirata M, Kamatani Y, Matsuda K, et al. 
Genetic characterization of pancreatic cancer patients and prediction 
of carrier status of germline pathogenic variants in cancer-predisposing 
genes. EBioMedicine. 2020;60:103033.

 21. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke 
JP, et al. The strengthening the reporting of observational studies in 
epidemiology (STROBE) statement: guidelines for reporting observational 
studies. Ann Intern Med. 2007;147(8):573–7.

 22. Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, et al. De-
escalating and escalating treatments for early-stage breast cancer: the St. 
Gallen international expert consensus conference on the primary therapy 
of early breast cancer 2017. Ann Oncol. 2017;28(8):1700–12.

 23. American Joint Committee on Cancer (AJCC). AJCC cancer staging 
manual. 8th ed. New York: Springer; 2017.

 24. Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, et al. Perturbations of BMP/
TGF-beta and VEGF/VEGFR signalling pathways in non-syndromic 
sporadic brain arteriovenous malformations (BAVM). J Med Genet. 
2018;55(10):675–84.

 25. Zhao S, Zhang Y, Chen W, Li W, Wang S, Wang L, et al. Diagnostic yield and 
clinical impact of exome sequencing in early-onset scoliosis (EOS). J Med 
Genet. 2021;58(1):41–7.

 26. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards 
and guidelines for the interpretation of sequence variants: a joint con-
sensus recommendation of the American College of Medical Genetics 
and Genomics and the Association for Molecular Pathology. Genet Med. 
2015;17(5):405–24.

 27. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 
2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100(2):267–80.

 28. Danos AM, Krysiak K, Barnell EK, Coffman AC, McMichael JF, Kiwala S, et al. 
Standard operating procedure for curation and clinical interpretation of 
variants in cancer. Genome Med. 2019;11(1):76.

 29. Eccles DM, Mitchell G, Monteiro AN, Schmutzler R, Couch FJ, Spurdle 
AB, et al. BRCA1 and BRCA2 genetic testing-pitfalls and recommenda-
tions for managing variants of uncertain clinical significance. Ann Oncol. 
2015;26(10):2057–65.

 30. Spurdle AB, Healey S, Devereau A, Hogervorst FB, Monteiro AN, Nathan-
son KL, et al. ENIGMA--evidence-based network for the interpretation of 
germline mutant alleles: an international initiative to evaluate risk and 
clinical significance associated with sequence variation in BRCA1 and 
BRCA2 genes. Hum Mutat. 2012;33(1):2–7.

 31. Klambauer G, Unterthiner T, Mayr A, Hochreiter S. Self-normalizing neural 
networks. In:  Proceedings of the 31st international conference on neural 
information processing systems; 2017. p. 972–81. URL: https:// proce 
edings. neuri ps. cc/ paper/ 2017/ file/ 5d44e e6f2c 3f71b 73125 87610 3c8f6 c4- 
Paper. pdf.

 32. Alvarez S, Diaz-Uriarte R, Osorio A, Barroso A, Melchor L, Paz MF, et al. A 
predictor based on the somatic genomic changes of the BRCA1/BRCA2 
breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 
promoter hypermethylation. Clin Cancer Res. 2005;11(3):1146–53.

 33. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 34. LeDell E, Poirier S. H2o automl: scalable automatic machine learning. In:  

Proceedings of the AutoML workshop at ICML; 2020. URL: https:// www. 
automl. org/ wp- conte nt/ uploa ds/ 2020/ 07/ AutoML_ 2020_ paper_ 61. pdf.

 35. Mazzola E, Blackford A, Parmigiani G, Biswas S. Recent enhancements 
to the genetic risk prediction model BRCAPRO. Cancer Informat. 
2015;14(Suppl 2):147–57.

 36. Bonadona V, Sinilnikova OM, Lenoir GM, Lasset C. Pretest prediction of 
BRCA1 or BRCA2 mutation by risk counselors and the computer model 
BRCAPRO. J Natl Cancer Inst. 2002;94(20):1582–3 author reply 3-4.

 37. Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, Lingenfelter 
B, et al. Clinical characteristics of individuals with germline muta-
tions in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 
2002;20(6):1480–90.

 38. Lindor NM, Johnson KJ, Harvey H, Shane Pankratz V, Domchek SM, Hunt 
K, et al. Predicting BRCA1 and BRCA2 gene mutation carriers: comparison 
of PENN II model to previous study. Familial Cancer. 2010;9(4):495–502.

 39. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley 
S, et al. BOADICEA: a comprehensive breast cancer risk prediction 

https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf


Page 15 of 15Liu et al. Genome Medicine           (2022) 14:21  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

model incorporating genetic and nongenetic risk factors. Genet Med. 
2019;21(8):1708–18.

 40. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non-
parametric approach. Biometrics. 1988;44(3):837–45.

 41. Sun X, Xu W. Fast implementation of DeLong’s algorithm for comparing 
the areas under correlated receiver operating characteristic curves. IEEE 
Signal Proc Lett. 2014;21(11):1389–93.

 42. Reiser B. Measuring the effectiveness of diagnostic markers in the pres-
ence of measurement error through the use of ROC curves. Stat Med. 
2000;19(16):2115–29.

 43. Paluch-Shimon S, Pagani O, Partridge AH, Abulkhair O, Cardoso MJ, Dent 
RA, et al. ESO-ESMO 3rd international consensus guidelines for breast 
cancer in young women (BCY3). Breast. 2017;35:203–17.

 44. Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA  tumor suppressor 
network in chromosome damage repair by homologous recombination. 
Annu Rev Biochem. 2019;88:221–45.

 45. Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, et al. Associations 
between cancer predisposition testing panel genes and breast cancer. 
JAMA Oncol. 2017;3(9):1190–6.

 46. Cheon JY, Mozersky J, Cook-Deegan R. Variants of uncertain significance 
in BRCA : a harbinger of ethical and policy issues to come? Genome Med. 
2014;6(12):121.

 47. Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, 
Antoniou AC, et al. BOADICEA breast cancer risk prediction model: 
updates to cancer incidences, tumour pathology and web interface. Br J 
Cancer. 2014;110(2):535–45.

 48. Kurian AW, Ward KC, Abrahamse P, Hamilton AS, Deapen D, Morrow M, 
et al. Association of germline genetic testing results with locoregional 
and systemic therapy in patients with breast cancer. JAMA Oncol. 
2020;6(4):e196400.

 49. Eoh KJ, Park JS, Park HS, Lee ST, Han J, Lee JY, et al. BRCA1 and BRCA2 
mutation predictions using the BRCAPRO and myriad models in Korean 
ovarian cancer patients. Gynecol Oncol. 2017;145(1):137–41.

 50. James PA, Doherty R, Harris M, Mukesh BN, Milner A, Young MA, et al. 
Optimal selection of individuals for BRCA  mutation testing: a comparison 
of available methods. J Clin Oncol. 2006;24(4):707–15.

 51. Barcenas CH, Hosain GM, Arun B, Zong J, Zhou X, Chen J, et al. Assess-
ing BRCA  carrier probabilities in extended families. J Clin Oncol. 
2006;24(3):354–60.

 52. Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. Clan genomics and the 
complex architecture of human disease. Cell. 2011;147(1):32–43.

 53. Hung FH, Wang YA, Jian JW, Peng HP, Hsieh LL, Hung CF, et al. Evaluating 
BRCA  mutation risk predictive models in a Chinese cohort in Taiwan. Sci 
Rep. 2019;9(1):10229.

 54. Youlden DR, Cramb SM, Yip CH, Baade PD. Incidence and mortality 
of female breast cancer in the Asia-Pacific region. Cancer Biol Med. 
2014;11(2):101–15.

 55. Zhang J, Pei R, Pang Z, Ouyang T, Li J, Wang T, et al. Prevalence and char-
acterization of BRCA1 and BRCA2 germline mutations in Chinese women 
with familial breast cancer. Breast Cancer Res Treat. 2012;132(2):421–8.

 56. Kim H, Choi DH. Distribution of BRCA1 and BRCA2 mutations in Asian 
patients with breast cancer. J Breast Cancer. 2013;16(4):357–65.

 57. Kurian AW, Bernhisel R, Larson K, Caswell-Jin JL, Shadyab AH, Ochs-
Balcom H, et al. Prevalence of pathogenic variants in cancer susceptibil-
ity genes among women with postmenopausal breast cancer. JAMA. 
2020;323(10):995–7.

 58. Song S, Tian D, Li C, Tang B, Dong L, Xiao J, et al. Genome variation map: 
a data repository of genome variations in BIG data center. Nucleic Acids 
Res. 2018;46(D1):D944–9.

 59. Zhao H. GVM000301. Genome Variation Map. URL: https:// ngdc. cncb. ac. 
cn/ searc h/? dbId= gvm&q= GVM00 0301. Accessed 11 Jan 2022.

 60. Liu J, Zhao H. The DNA-repair pathway Associated Breast Cancer (DrABC) 
calculator scripts. Github. URL: https:// github. com/ zhq921/ DrABC. 
Accessed 20 Dec 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://ngdc.cncb.ac.cn/search/?dbId=gvm&q=GVM000301
https://ngdc.cncb.ac.cn/search/?dbId=gvm&q=GVM000301
https://github.com/zhq921/DrABC

	DrABC: deep learning accurately predicts germline pathogenic mutation status in breast cancer patients based on phenotype data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study participants and design
	Phenotype data
	GPV analysis
	DrABC model development
	Statistical analysis

	Results
	Patient characteristics
	Prevalence of GPVs
	Association of GPVs with clinical characteristics
	Using a deep learning model to predict GPVs in DNA repair genes
	Performance of DrABC versus previous models
	Contributions of family cancer history and pathological features to DrABC performance
	Reconstructing previous prediction models using in-house data in discovery cohort
	Online DrABC tool

	Discussion
	Conclusions
	Acknowledgements
	References


