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REVIEW
Pan-cancer patterns of DNA methylation
Tania Witte, Christoph Plass and Clarissa Gerhauser*
Abstract

The comparison of DNA methylation patterns across
cancer types (pan-cancer methylome analyses) has
revealed distinct subgroups of tumors that share similar
methylation patterns. Integration of these data with the
wealth of information derived from cancer genome
profiling studies performed by large international
consortia has provided novel insights into the cellular
aberrations that contribute to cancer development.
There is evidence that genetic mutations in epigenetic
regulators (such as DNMT3, IDH1/2 or H3.3) mediate or
contribute to these patterns, although a unifying
molecular mechanism underlying the global alterations
of DNA methylation has largely been elusive. Knowledge
gained from pan-cancer methylome analyses will aid the
development of diagnostic and prognostic biomarkers,
improve patient stratification and the discovery of novel
druggable targets for therapy, and will generate
hypotheses for innovative clinical trial designs based on
methylation subgroups rather than on cancer subtypes.
In this review, we discuss recent advances in the global
profiling of tumor genomes for aberrant DNA
methylation and the integration of these data with
cancer genome profiling data, highlight potential
mechanisms leading to different methylation
subgroups, and show how this information can be used
in basic research and for translational applications. A
remaining challenge is to experimentally prove the
functional link between observed pan-cancer
methylation patterns, the associated genetic aberrations,
and their relevance for the development of cancer.
as a hallmark of all cancer types and are used to identify
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Introduction
Ongoing molecular characterizations of large cohorts of
cancer patients using tumor samples from all major organs
have made available a wealth of genomic, epigenomic, tran-
scriptomic and proteomic data, enabling integrated analysis
across different tumor types - so called pan-cancer analyses.
These studies aim to identify genomic and epigenomic
similarities and differences among distinct cancer types,
independent of their tissue of origin [1]. The large number
of available tumor sample datasets increases statistical
power, allowing researchers to detect molecular aberra-
tions that otherwise would have been missed. From these
integrated analyses, mutational landscapes are emerging
that have revealed novel oncogenic signatures and cancer
driver mutations [2-4].
Cancer is no longer seen as solely a genetic disease;

epigenetic alterations are now being taken into account
as additional layers in the regulation of gene expression.
Epigenetic modifications, including DNA methylation,
non-coding RNAs, histone modifications and nucleosome
positioning, modify chromatin structure and hence gene
transcription. These mechanisms act coordinately to form an
epigenetic landscape regulated by various enzymes, either es-
tablishing (writers), interpreting (readers), modifying (editors)
or removing (erasers) epigenetic marks (reviewed in [5]).
DNA methylation is by far the best characterized epi-

genetic modification and is involved in the regulation of
gene expression, genome stability and developmental pro-
cesses (reviewed in [6]). High-throughput techniques, in-
cluding array and sequencing-based technologies, now
provide genome-scale DNA methylation maps (also called
methylomes), which have confirmed aberrant methylation

novel methylation-based cancer biomarkers.
Multidisciplinary international consortia such as The

Cancer Genome Atlas (TCGA) or the International Cancer
Genome Consortium (ICGC) have produced methylomes
for thousands of samples from at least 15 cancer types
(Box 1). Integrative data analyses have revealed that methy-
lomes in subgroups within one tumor type might differ
more than between distinct cancer types. Even within the
same tumor, regional differences in DNA methylation
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Box 1 The International Cancer Genome Consortium:
characterizing cancer genomes in different tumor types

Cancer genomes are complex. The integration of comprehensive

catalogues of genomic, transcriptomic, epigenomic and proteomic

data is a promising strategy for tackling this complexity. Institutions

from across the globe have joined forces to achieve this ambitious

goal. In 2006, The Cancer Genome Atlas (TCGA) Research Network

was launched in the USA with the aim of generating molecular

profiles of thousands of samples from more than 25 distinct tumor

types [2]. A year later, the International Cancer Genome Consortium

(ICGC) was created, with the goal of characterizing genomes from

50 different cancer types and subtypes worldwide [103]. By 2013,

TCGA – now an ICGC member – produced comprehensive

molecular profiles of more than 7,000 samples from 27 types of

cancer [2]. All the data generated by these research networks are

publicly available via the ICGC [104], TCGA [105] and the cancer

genomics hub [106] data portals.

To make these data comparable, the ICGC aims to standardize the

collection, processing and analysis of samples across multiple

institutions. Infinium HumanMethylation27 and

HumanMethylation450 BeadChips have been used by ICGC to

produce genome-wide DNA methylation profiles. From at least 15

cancer methylomes generated so far, the breast cancer methylome

comprises the largest number of samples, followed by serous ovarian

and kidney renal clear cell carcinoma (Table 1). Moreover, whole-

genome bisulfite sequencing (WGBS) will be applied for some tumors

and has already been used to generate the methylomes of pediatric

brain tumors and chronic lymphocytic leukemia (CLL).
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alterations have been identified, associated with intrinsic
tumor heterogeneity [7].
The TCGA Pan-Cancer project was launched in 2012

with the goal of collecting, analyzing and interpreting
data across distinct tumor types and of making these re-
sources publically available [2]. One of the aims of this
project is to define pan-cancer methylation patterns and
to integrate them with genomic, transcriptomic and
proteomic data. A remarkable initial finding was that
tumor samples cluster largely according to their tissue of
origin [1]. Analyses of single tumor entities revealed that
colorectal, gastric and endometrial cancers have similar
highly methylated subgroups that are associated with tu-
mors with microsatellite instability and hypermethyla-
tion of the MLH1 promoter. Subtypes of breast, serous
endometrial, high-grade serous ovarian, colorectal and
gastric carcinomas are associated with high chromo-
somal instability as well as with recurrent TP53 muta-
tions and share patterns of low methylation. Moreover,
emerging evidence shows that cancer genomes exhibit
frequent mutations in epigenetic regulators, suggesting a
close interplay between epigenomic and genomic events
(reviewed in [8]). Identifying commonalities between
tumor entities might help to identify therapeutic regi-
mens that are in place for one tumor type as being of
use for another, less well characterized one, and will
allow better patient stratification [1]. Deciphering the
mechanisms underlying methylation patterns will facili-
tate the identification of novel therapeutic targets.
In this review, we aim to highlight recent findings

from genome-wide DNA methylation profiling studies.
We describe DNA methylation subgroups in 11 distinct
tumor entities and analyses across cancer types, and dis-
cuss the potential mechanisms underlying the different
methylation subgroups. We also explore the potential
use of DNA methylation as a biomarker for diagnostic,
prognostic and treatment response, and as a target for epi-
genetic therapy.

Definition and function of DNA methylation
DNA methylation usually occurs at cytosine-guanine
(CpG) dinucleotides, where DNA methyltransferases
(DNMTs) catalyze the transfer of a methyl group to pos-
ition 5 of a cytosine, generating 5-methylcytosine (5mC).
DNMT1 maintains the patterns of DNA methylation
after cell division using hemi-methylated DNA as a tem-
plate [9], while the de novo methyltransferases DNMT3A
and DNMT3B establish cytosine methylation during early
development [10]. For a long time, it was believed that
methyl groups are only removed passively after cell repli-
cation. However, active mechanisms of DNA demethyla-
tion were recently identified. For instance, DNA repair
pathways have an essential role in the active removal of
5mC, involving proteins such as GADD45 (reviewed in
[11]). Another mechanism implicates the ten-eleven trans-
location (TET) family of proteins, which catalyze the hy-
droxylation of 5mC to 5-hydroxymethylcytosine (5hmC)
[12]. Subsequent studies showed that 5hmC can be further
converted to 5-formylcytosine and/or 5-carboxylcytosine,
which can then be excised by thymine-DNA glycosylase [13].
The location and distribution of 5mCs across the gen-

ome have important implications for understanding the
roles of DNA methylation [6]. In mammalian genomes
CpGs are unevenly distributed: they are depleted on a glo-
bal scale but enriched at short CpG-rich DNA stretches
known as CpG islands (CGIs), which are preferentially
located at transcription start sites of gene promoters
(reviewed in [14]). In normal cells, cytosines within
CGIs are generally protected from DNA methylation, in
contrast to the vast majority of CpGs, which are usually
methylated (that is, at non-coding regions and repetitive
elements) [15]. Flanking regions of CGIs (±2 kilobases),
referred to as CGI shores, show tissue-specific DNA
methylation and are associated with gene silencing [16].



Table 1 International Cancer Genome Consortium
projects with methylomes generated by Infinium
BeadChips

Tumor type Project and country
identification

Number of
methylomes

Breast BRCA-US 971

Ovary OV-US 572

Kidney KIRC-US 491

Head and
neck

THCA-US 488

Uterus UCEC-US 481

Lung LUAD-US 460

Colorectal COAD-US 414

Lung LUSC-US 410

Head and
neck

HNSC-US 407

Brain GBM-US 393

Skin SKCM-US 338

Stomach STAD-US 328

Brain LGG-US 293

Bladder BLCA-US 198

Prostate PRAD-US 196

Blood LAML-US 194

Pancreas PACA-AU 167

Blood CLLE-ES 159

Colorectal READ-US 150

Liver LIHC-US 149

Kidney KIRP-US 142

Cervix CESC-US 127

Brain PBCA-DE 115

Ovary OV-AU 93

Pancreas PAAD-US 72

Pancreas PAEN-AU 23

Modified from the International Cancer Genome Consortium data portal [104].
AU, Australia; DE, Germany; ES, Spain; US, United States.
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The patterns of DNA methylation observed in normal
genomes change during tumorigenesis. The first epigen-
etic alteration reported in cancer cells was a widespread
loss of 5mC [17], which has been recently confirmed
in single-base-resolution methylomes of colorectal can-
cer, chronic lymphocytic leukemia (CLL) and medullo-
blastoma [18-20]. Loss of DNA methylation occurs
mainly at repetitive sequences, centromeric DNA and
gene bodies, leading to genomic instability, reactivation
of transposable elements or loss of imprinting, which
ultimately contribute to tumor initiation or progression
[21]. Hypomethylation can also lead to transcriptional
activation of normally silenced genes such as oncogenes
(reviewed in [22]). Additionally, whole-genome bisulfite
sequencing (WGBS) analyses have shown that global
hypomethylation usually coincides with large partially
methylated domains (PMDs) that are associated with late
replication lamina-associated domains and might lead to
long-range epigenetic silencing through repressive chro-
matin domain formation [23,24]. Recent studies have also
revealed that hypomethylation occurs at more localized
regions, termed DNA methylation valleys (DMVs), which
are enriched for developmental genes and may regulate
tissue-specific expression [20,25]. Global or localized DNA
hypomethylation in cancer cells is often accompanied by
focal hypermethylation of CGIs (Figure 1), which contrib-
utes to carcinogenesis by transcriptional silencing of genes
including tumor suppressor genes (TSGs) [26].

DNA methylation subgroups according to tumor
types
It has long been thought that each tumor type has a
characteristic DNA methylation pattern. For example, a
specific pattern of high methylation at CGIs, defined as
the CpG island methylator phenotype (CIMP), was first
discovered in colorectal cancer [27], even before the
omics era. Now, genome-wide sequencing projects have
confirmed the existence of this and additional DNA
methylation subgroups in multiple cancer types. The ques-
tion remains as to what extent these DNA methylation pat-
terns are unique for a specific tumor type or comparable
across different types of cancers. The comprehensive mo-
lecular catalogs generated by the TCGA might help to shed
light on this (summarized in Table 2).
However, a caveat should be noted: the methylation

data underlying these reports were derived from 27 k and
450 k Illumina platforms. Only CpG sites covered on both
platforms were considered and filtered for sites overlap-
ping with single-nucleotide polymorphisms, resulting in
around 10,000 eligible CpGs. From these, the most vari-
able CpG sites were used for cluster analyses. The inter-
pretation of these datasets is to a certain extent biased, as
27 k arrays mainly cover sites located within CGIs, while
information on additional regulatory regions (for example,
shores, intra- and intergenic enhancers) is missing. Also,
information on larger genomic domains such as PMDs
and DMVs cannot be determined from these datasets.

Colorectal and gastric cancer
According to the degree of methylation, colorectal can-
cer is currently divided into four DNA-methylation sub-
groups with specific genetic and clinical features [28,29];
that is, CIMP high (CIMP-H), CIMP low (CIMP-L) and
two non-CIMP subgroups. CIMP-H is associated with
hypermethylation of the repair gene MLH1, the activating
BRAFV600E mutation and microsatellite instability (MSI).
Tumors in this subgroup are often derived from the right/
ascending colon, show high mutation rates (hypermuta-
tion) and low somatic copy-number alterations (SCNAs).



Figure 1 DNA methylation patterns in normal and cancer cells. (A) In normal cells, most CpGs located outside of promoters in gene bodies
and intergenic regions are methylated (red circles), whereas promoter-associated CpG islands are protected from DNA methylation (white circles).
(B) In cancer cells, a global or localized loss of 5-methylcytosine occurs at gene bodies and intergenic regions, whereas CpG-rich regions like
promoters are usually heavily methylated, which might lead to transcriptional repression. Regions of intermediate CpG levels such as shores are
associated with tissue-specific methylation. Global loss (left plot) and focal gain (right plot) of DNA methylation are depicted as tracks of the
University of California Santa Cruz genome browser [118] using whole-genome bisulfite sequencing data for normal and cancer cell lines. Tracks
for CpG islands and selected histone modifications, including H3K4me3, which is associated with transcriptionally active promoters, and H3K4me1
and H3K27ac as markers for enhancers, are illustrated below the gene track. Each color of the histone tracks represents an individual ENCODE cell
line. The deleted in colon cancer gene (DCC) was taken as an exemplary locus for which long-range hypomethylation regions (horizontal blue
bars) are observed in the breast cancer cell line HCC1954 and in the liver carcinoma cell line HepG2, but not in normal mammary epithelial cells
(HMEC) or the myofibroblast cell line IMR90. The glutathione S-transferase P1 gene (GTSP1) represents an example of promoter hypermethylation
(highlighted in red) in cancer cell lines compared to normal cells. TSS, transcription start site.
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Table 2 Pan-cancer patterns of DNA methylation

Tumor type
(number of
methylation
groups)

Methylation
subgroup

Genomic
aberrations

Methylation
pattern*

Comments References

AML High
IDH1/2 or TET2
mutations

A Associated with patients presenting with an
intermediate-risk karyotype

[43,51,107]

Co-occurrence of IDH1/2 and NPM1 mutations is
associated with good clinical outcome

Bladder urothelial(3)

High RB1 mutations Smoking-pack years as predictor of CIMP
phenotypeFrequent mutations in chromatin regulators
such as MLL2, ARID1A, KDM6A, and EP300†Mutations in
chromatin regulators were more frequent than in any
other TCGA tumor

[35]
Low

↑ TP53 mutations B

Breast(5)

B-CIMP

↓ mutation rate Luminal ER/PR-positive tumors

[31,32]

Low metastatic risk and better clinical outcome

Enriched for genes targeted by the PRC2 (e.g. SUZ12
and EZH2)

B-CIMP-negative
↑ TP53 mutations B Basal-like tumors (ER/PR-negative)

High metastatic risk and poor clinical outcome

Cholangiocarcinoma High
IDH1 and/or IDH2
mutations

A Longer survival
[47]

Chondrosarcoma High
IDH1 and/or IDH2
mutations

A
[46,64]

Colorectal(4)

CIMP-H

MLH1
hypermethylation

C MSI

[29,108]

Right/ascending colonic region
↑ mutation rate

↑ BRAFV600E

mutation
Good prognosis

↑ BRAFV600E

mutation

CIMP-L
KRAS mutations CIN (non-MSI)

Poor prognosis

Two non-CIMP
↑ TP53 mutations B Anatomic origins distinct from CIMP groups

↑ SCNAs

Endometrial(4)

High

MLH1
hypermethylation

C MSI

[33]

ARID5B mutations
↑ mutation rate

Low
↑ TP53 mutations B Serous-like tumors

↑ SCNAs Poor prognosis

Two non-
methylated

↑ POLE mutations Endometrioid tumors

↑ SCNAs ARID1A and PTEN mutations were present in all groups
without high TP53 mutations

Gastric(4) EBV-CIMP

↑ PIK3CA, ARID1A
and BCOR
mutations

EBV-positive tumorsHighest frequency of
hypermethylation events among TCGA tumors

[30]
CDKN2A
hypermethylation

Amplifications of
JAK2, CD274 and
PDCD1LG2
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Table 2 Pan-cancer patterns of DNA methylation (Continued)

Gastric CIMP
MLH1 silencing C MSI

↑ mutation rate

Cluster 3 – low

RHOA and CDH1
mutations

Enriched for the diffuse histological variant

Genomically
stable

Also fusions involving RHO-family GTPase-activating
proteins

Cluster 4 – low

↑ TP53 mutation B CIN

Focal
amplifications of
receptor tyrosine
kinases

Glioblastoma(6)

G-CIMP

IDH1 mutations A Secondary tumors with proneural expression

[41,42,48]

ATRX mutations

MYC mutations
and amplifications

Younger age at diagnosis

Better survival rates

G-CIMP negative
proneural

No IDH1
mutations

Relative hypomethylation

PDGFRA
amplifications

Proneural subtype cases without IDH1 mutations

Pediatric
glioblastoma(6)

Global loss of
methylation at
non-promoter
regions

H3F3A mutations H3F3A mutations are mutually exclusive with IDH1
mutations and are associated with TP53 mutations and
alternative lengthening of telomeres (ALT)

[49,109]

Renal cell
carcinoma

Global loss of
methylation

SETD2 mutations VHL hypermethylation in about 7 % of the tumors†

[36]
Loss of methylation at non-promoter regions

One of the tumor types with the lowest frequency of
DNA methylation events

Lung ADCA(3) CIMP-high

CDKN2A
hypermethylation

Associated either with ↑ ploidy, ↑ mutation and the PI
subtype or with ↓ ploidy, ↓ mutation rate and the TRU
subtype [39]MYC

overexpression Mutations in chromatin modifiers such as SETD2,
ARID1A, SMARCA4†

Lung SQCC(4)
High

CDKN2A
inactivation

Classical expression subtype

[38]
NFE2L2, KEAP1,
PTEN mutations

Chromosomal instability

↑ SCNAs

Low Primitive expression subtype

Serous ovarian(4)

High
Germline and
somatic BRCA1
mutations

More differentiated tumors

[34]

Better survival

Low

↑ TP53 mutation B TP53 mutations occur in 90 % of the tumors and are
not exclusive for the low methylation group

↑ SCNAs

BRAC1
hypermethylation

Poor clinical outcome

*Methylation patterns A, B and C indicate common genetic and epigenetic aberrations across different tumors. †These molecular aberrations were not necessarily
associated with a specific methylation subgroup. ADCA, adenocarcinoma; AML, acute myeloid leukemia; CIMP, CpG island methylator phenotype; CIN,
chromosomal instability; EBV, Epstein-Barr virus; ER, estrogen receptor; MSI, microsatellite instability; PI, proximal inflammatory; PR, progesterone receptor; PRC,
polycomb repressor complex; SCNAs, somatic copy-number alterations; SQCC, squamous cell carcinoma; TCGA, The Cancer Genome Atlas; TRU, terminal
respiratory unit.
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The molecular mechanisms underlying these relationships
need more investigation. CIMP-L is associated with tumors
enriched for KRAS mutations and chromosomal instabil-
ity (non-MSI). The non-CIMP subgroups, corresponding
to the majority of colorectal tumors, do not show
specific mutations, but are enriched for SCNAs and ori-
ginate from distinct anatomical sites compared with the
CIMP groups.
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Epstein-Barr virus (EBV)-positive gastric tumors display
an extreme EBV-CIMP profile [30], with hypermethyla-
tion of CDKN2A but not of MLH1. This phenotype has
the highest frequency of DNA hypermethylation when
compared with other cancer types reported by TCGA
[30]. In contrast, gastric CIMP tumors showed hyper-
mutation, MSI and epigenetic silencing of MLH1.
Breast, endometrial and ovarian carcinomas
A breast CpG island methylator phenotype (B-CIMP)
was first reported in 2011 [31]. B-CIMP is enriched in
estrogen and progesterone receptor (ER/PR)-positive tu-
mors and is associated with good survival rates and low
metastatic risk. It is characterized by high methylation of
genes targeted by the polycomb repressor complex 2
(PRC2), including SUZ12 and EZH2 [31]. In contrast,
the B-CIMP-negative group shows high metastatic risk
and poor clinical outcome. TCGA analyses confirmed
these findings, although they defined five distinct DNA
methylation subgroups. The high methylation group
overlapped with luminal B tumors (ER/PR-positive) and
had a low rate of mutations. Conversely, the methylation-
low group had a high TP53 mutation rate and was enriched
in basal-like tumors (ER/PR-negative) [32].
In endometrial carcinomas, TCGA identified four DNA

methylation subtypes. Similar to colorectal cancer, the
high methylator phenotype was mainly composed of
hypermutated MSI tumors showing extensive MLH1
promoter hypermethylation and an under-representation
of TP53 mutations [33].
Four DNA methylation clusters were defined for serous

ovarian cancer. This cancer type has a 90 % prevalence of
TP53 mutations. TCGA identified a methylation-high
group enriched for highly differentiated tumors with
germline BRCA1 mutations. BRCA1 mutations were
mutually exclusive with BRCA1 hypermethylation, which is
characteristic of methylation-low tumors with high SCNAs.
Survival analysis showed that cases with hypermethylated
BRCA1 had a poorer clinical outcome compared to tu-
mors with BRCA1/2 mutations [34].
Bladder urothelial and kidney renal clear cell carcinomas
Bladder urothelial carcinomas were divided into three
DNA methylation subgroups; one of these groups had a
CIMP-like hypermethylation profile and was enriched
for tumors with RB1 mutations. Similar to the low methy-
lation groups in breast, endometrial, gastric and colorectal
tumors, the methylation-low group had the highest per-
centage of TP53 mutations, suggesting a common mo-
lecular mechanism of epigenetic regulation. Interestingly,
chromatin regulators such as the histone methyltrans-
ferase MLL2, the chromatin remodeling gene ARID1A,
the histone demethylase KDM6A and the histone
acetyltransferase EP300 were frequently mutated in this
cancer type [35].
For renal clear cell carcinoma, the most common type

of kidney cancer, TCGA identified epigenetic silencing of
the tumor suppressor VHL in about 7 % of the tumors,
which was mutually exclusive with VHL mutations. In-
creased promoter methylation was linked to tumors with
a higher grade and stage. Tumors with a widespread loss
of DNA methylation were associated with mutations of
the H3K36 methyltransferase SETD2, in contrast to
methylation-low subgroups in other cancer types [36].

Lung adenocarcinoma and squamous cell carcinoma
Non-small-cell lung carcinoma (NSCLC), the most com-
mon type of lung cancer, is divided into three subtypes:
adenocarcinoma, squamous cell carcinoma (SQCC), and
large cell carcinoma [37]. Methylation analysis of SQCC
identified four groups with distinct DNA methylation
patterns. The methylation-high group overlapped with
tumors from the so-called classical subtype, which are
characterized by chromosomal instability. Moreover, the
TSG CDKN2A was inactivated in 72 % of cases, 21 % of
which were due to epigenetic silencing [38].
Recent results for adenocarcinoma revealed three differ-

ent methylation subgroups: CIMP-H, a subgroup with
intermediate methylation levels, and CIMP-L. Remarkably,
these methylation subgroups were not specifically related
to genomic, transcriptomic or histopathological subtypes.
CIMP-H subtypes were either associated with tumors with
high ploidy and a high mutation rate and were classified as
proximal inflammatory (previously known as squamoid),
or were associated with tumors presenting with low ploidy
and a low mutation rate and were classified as terminal re-
spiratory unit (formerly bronchioid). Moreover, an associ-
ation between tumors enriched for SETD2 and CDKN2A
methylation was found, suggesting an interaction between
SETD2 mutations and altered chromatin structure for
these tumors [39].

Glioblastoma
Aberrant DNA methylation has been widely described
for glioblastoma multiforme (GBM) – the most common
adult brain tumor. In 2008, TCGA chose GBM as the
first cancer to be comprehensively characterized, reveal-
ing an important association between MGMT methyla-
tion, mutations in mismatch repair genes and response
to therapy [40]. Subsequently, TCGA identified three
DNA methylation groups, one of which showed hyper-
methylation at a large number of loci and was termed
G-CIMP [41]. This group was enriched in secondary tu-
mors with proneural expression and somatic mutations
of the isocitrate dehydrogenase 1 (IDH1) gene [42]. This
gain-of-function mutation results in increased catalysis
of α-ketoglutarate to D-2-hydroxyglutarate (2-HG), which
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inhibits the activity of TET and KDM proteins, affecting
chromatin remodeling and leading to an increase in DNA
methylation. IDH1/2 mutations are also common in
hematopoietic malignancies, including acute myeloid
leukemia (AML) [43], myelodysplastic syndromes (MDS),
myeloproliferative neoplasms [44] and T-cell lymphomas
[45], as well as in solid tumors such as chondrosarcoma
[46] and cholangiocarcinoma [47].
The G-CIMP group is associated with better survival

compared with G-CIMP-negative tumors. The survival ad-
vantage of G-CIMP tumors was confirmed by a follow-up
TCGA study characterizing more than 500 GBM tumors
[48]. In this study, six DNA methylation clusters, including
the G-CIMP subgroup, were identified. Additionally, the
G-CIMP phenotype was associated with a younger age
at diagnosis, enrichment for mutations in the chromatin
remodeling gene ATRX, and MYC alterations.
The landscape of DNA methylation and genomic aber-

rations in pediatric GBM varies. Instead of having a hyper-
methylator phenotype, these tumors show a global loss of
5mC, which is mainly associated with extensive changes
in histone modifications caused by mutations in H3F3A
(reviewed in [8]). This was defined by Sturm et al., who
found six epigenetic subgroups harboring specific muta-
tions, SCNAs and transcriptome patterns [49]. Two
methylation subgroups specifically correlated with hotspot
mutations in H3F3A, namely at K27 and G34, and
were associated with a younger age at diagnosis. Strikingly,
the G34 tumors showed a global loss of methylation
occurring mainly at chromosome ends. The presence
of IDH1 mutations was mutually exclusive with H3F3A
mutations.
Acute myeloid leukemia
AML is a highly heterogeneous myeloid disorder and
the most common acute leukemia in adults. AML pa-
tients from the normal or intermediate cytogenetic risk
category frequently have mutations in epigenetic regulators
such as IDH1/2, DNMT3 and TET enzymes (reviewed in
[50]). Similar to GBM, AML with a DNA hypermethylation
phenotype is associated with IDH1/2 mutations [43]. These
mutations are mutually exclusive with mutations in the
demethylating enzyme TET2, suggesting a complementary
role. It might be that DNA methylation is a consequence of
mutant IDH expression and that this phenotype contributes
to AML development. The association of IDH1/2 muta-
tions with the hypermethylation phenotype in AML was
confirmed by a recent TCGA study. Gain of DNA methyla-
tion was mainly observed at CpG-sparse regions of the gen-
ome. Other subtypes of tumors were associated with a
substantial loss of DNA methylation and with the presence
of MLL fusion genes or co-occurring mutations in NPM1,
DNMT3A or FLT3 [51].
Potential mechanisms leading to DNA methylation
subgroups
The observation that many tumor types carry numerous
mutations in enzymes regulating epigenetic patterns sug-
gests that these defects contribute to the global alter-
ations seen in cancer genomes [5,8]. However, despite
this expected molecular link, there are currently only
reports associating methylome subgroups with gene
mutations [29,49], rather than detailed molecular stud-
ies. Exceptions are studies on the histone H3.3 muta-
tion H3F3A(K27M), which inactivates EZH2 in the
PRC2 complex [52-54]. In addition, introduction of an
IDH1 mutant, R132H, into astrocytes induces a specific
methylome pattern [55]. Mutations in IDH1/2 cause accu-
mulation of the oncometabolite 2-HG, which disturbs the
DNA demethylation process, causing hypermethylation [43].
Epigenetic subgroups might also represent preexisting

epigenetic states. For example, PRC2 target genes are
commonly hypermethylated in cancer, and EZH2 is up-
regulated in various cancer subtypes. These changes
were associated with gene amplifications, and alterations
in the regulation of gene expression by noncoding RNAs
and mutations (reviewed in [56]). Apart from mutations
affecting epigenetic modifiers, other genes are certainly
also affected. Colorectal CIMP is tightly associated with
BRAF mutations, although it appears that these muta-
tions do not drive the hypermethylation phenotype [28].
Methylation subgroups might reflect the survival advan-
tage of cell populations that have acquired early defects
in DNA repair genes (for example, MLH1, MGMT and
BRCA1). Distinct methylation clusters might also repre-
sent a common cell type of origin. As an example, the
basal breast cancer subgroup shares characteristics of low
methylation, high TP53 mutations and high chromosomal
instability with serous endometrial and serous ovarian
cancer subgroups [33]. Different epigenetic subgroups
have been suggested to represent differences in tumor eti-
ology induced by environmental factors, such as recently
shown for EBV in gastric cancer [30].
Again, the question of whether there is a causal relation-

ship between epigenetic changes and cancer or whether
these associations represent changes in the methylome
that are non-functional events and thus do not contribute
to the carcinogenic process (passengers) rather than
methylation events that drive the carcinogenic process
(drivers) remains open. However, there are some general
observations that extend across studies. First, mutations in
epigenetic enzymes such as IDH1/2 are causally linked to
the pathogenesis of subtypes of GBM and AML, as well as
to the formation of CIMP. Second, mutations in the gene
H3F3A encoding the histone variant H3.3 are associated
with global loss of methylation, especially in sub-telomeric
regions, and with the alternative lengthening of telomeres
phenotype that is characteristic of a fraction of cancer
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cells, for example in pediatric GBM. Third, mutations
in chromatin regulatory factors such as SETD2, ARID1,
SMARCA4, KDM6A, EP300 and MLL are emerging in
various cancer types [57] but, so far, only a few have been
linked to altered methylome patterns. Many of these fac-
tors act in protein complexes, indicating that mutations in
any of these could disrupt the function of the complex.
Fourth, current cancer epigenome research points to the
fact that methylation of polycomb group targets (PCGTs)
is detectable even in pre-neoplastic lesions and could rep-
resent a risk factor for neoplastic transformation [58].
Fifth, recent reports have described particular methylation
patterns related to infectious agents such as EBV or hu-
man papilloma virus (HPV), which can initiate carcino-
genesis [30,59]; whether these methylation alterations are
primarily useful biomarkers for patient stratification or
whether there is a causal relationship to carcinogenesis
has yet to be demonstrated. Last, similarities in methyla-
tion patterns across tumor types could indicate the accu-
mulation of as yet unidentified, low frequency molecular
aberrations that lead to a common phenotype and con-
tribute to cancer development. Future research will have
to address these points to draw clear conclusions.

Methylome analyses across different cancer types
The genome-wide methylation profiles generated by
TCGA and others have shown that aberrant methylomes
are a hallmark of cancer, and are useful for classifying
tumor subgroups as well as for identifying novel clinical
biomarkers. Currently, efforts are being made to integrate
different methylomes and to determine common and
tissue-specific DNA methylation patterns across multiple
tumor entities (pan-cancer). These integrative analyses
might also help to distinguish the driver methylation
events (that contribute to the carcinogenic process) from
the passenger methylation events (which do not contrib-
ute to the carcinogenic process).
In 2013, TCGA published the first integrative analysis

of genomic data across 12 cancer types. In this study,
SCNAs, somatic mutations and DNA methylation were
integrated, although methylation changes were limited
to a selection of 13 epigenetically silenced genes. From
these genes, MGMT, GSTP1, MLH1 and CDKN2A were
found to be aberrantly methylated in a large number of
samples in different types of tumors. Hypermethylation
of MLH1 was associated with the so-called ‘M class’,
characterized by recurrent mutations, whereas BRCA1
hypermethylation correlated with the ‘C class’ of tumors
enriched for SCNAs [3]. These findings confirm the pre-
vious TCGA reports for single tumor entities. However,
by using this selected panel of genes, the results of this
investigation might not reflect the actual similarities and
differences in DNA methylation patterns across distinct
tumor types, as for example shown in Figure 2.
By combining the methylomes of ten distinct tumor
entities, Kim et al. found that aberrant DNA methylation
affects similar biological pathways across the cancer
types analyzed [60]. Over 50 % of the hypermethylation
events were involved in early development and morpho-
genesis, including neurogenesis and embryonic develop-
ment, whereas the remaining hypermethylation changes
were related to transcription factor activity. A significant
overlap between those pathways and PCGT genes was
observed. Among the pan-cancer hypermethylated genes
targeted by PRC2 were several members of the HOX
family as well as the TSG CDKN2A. This finding is in
agreement with previous studies reporting that methyla-
tion of PCGT genes is frequent in distinct cancer types
(reviewed in [61]).
The integration of genome-wide DNA methylation

data across four different gynecological tumors, namely
breast, ovarian, endometrial and cervical carcinomas, re-
vealed similar results [62]. This study additionally inves-
tigated the dynamics of DNA methylation through
different stages of cervical carcinogenesis (that is, nor-
mal, invasive and metastatic stages). Hypermethylation
at stem-cell PCGT genes was found to occur in cyto-
logically normal cervical cells 3 years before the appear-
ance of the first neoplastic alterations. Moreover, a loss
of DNA methylation in CpGs termed ‘methylated em-
bryonic stem-cell loci’ was predominantly observed in
invasive tissues, suggesting that hypomethylation at
these CpG sites might constitute a poor prognostic sig-
nature for these four gynecological tumor entities.
In contrast to these findings, a comparative analysis of

methylomes from seven different tissue types revealed
that hypermethylated genes tend to be already repressed
in precancerous tissues and that aberrant methylation
does not contribute to cancer progression under the
classical model of epigenetic silencing [63]. It was sug-
gested that pan-cancer patterns of hypermethylation
occur owing to the variable gene expression profiles in
the corresponding normal tissues. Hypermethylation of
specific genes might then account for passenger methy-
lation events rather than for driver events.
Apart from analyzing pan-cancer methylomes, integra-

tive analyses of different tumors harboring mutations in
common epigenetic regulators might provide clues about
the molecular mechanisms affecting DNA methylation.
Guilhamon et al. performed an exemplary meta-analysis
of the DNA methylation profiles of tumors with IDH
mutations and intrinsic high methylator phenotypes –
namely AML, low-grade GBM, cholangiocarcinomas
and chondrosarcomas [64]. The retinoic acid receptor
pathway, which is usually dysregulated in the early steps
of tumorigenesis, was enriched in the four tumor types.
The early B-cell factor 1 (EBF1) was identified as a novel
interaction partner of the dioxygenase TET2, suggesting
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Figure 2 Pan-cancer methylome representation for ten cancer cohorts from The Cancer Genome Atlas. The Cancer Genome Atlas
PANCAN12 DNA methylation data, representing 24,980 CpG sites acquired from the 27 k Illumina platform and corresponding to 2,224 tumor
samples, were downloaded from the University of California Santa Cruz Cancer Genomics Browser [119]. CpG sites located on chromosome X and
Y were removed, as well as the ones associated with single-nucleotide polymorphisms (n = 2,750). DNA methylation data for ten tumor entities -
OV (n = 600), UCEC (n = 117), BRCA (n = 315), LUAD (n = 126), LUSC (n = 133), READ (n = 67), COAD (n = 166), GBM (n = 287), KIRC (n = 219) and
AML (n = 194) - are included in the PANCAN12 dataset. For each of the tumor entities, color-coded on the top of the graph, the 500 most variable
CpGs of the remaining 21,844 data points were selected. From the overlap, Qlucore Omics Explorer 3.0 software was used to select the 1,430
most variable CpGs, which were then hierarchically clustered as a heat map. Beta values are offset by −0.5 to shift the whole dataset to values
between −0.5 (in dark blue) and 0.5 (in yellow) for improved graphical display [119]. DNA methylation patterns show relatively high homogeneity
within tumor entities. We do not observe a common CpG island methylator phenotype-like group across several tumor types, suggesting that
the ‘tissue of origin’ methylation signature is a strong decisive factor for the pattern. Colorectal cancer shows the highest overall methylation,
whereas kidney cancer is characterized by low variance of methylation. The methylation patterns of ovarian, endometrial and breast cancer
display a similar distribution of high and low methylation. CpG sites fall into high and intermediate DNA methylation clusters, covering all tumors
entities, and a low methylation cluster with genes methylated in glioblastoma multiforme (GBM) or colorectal tumors and unmethylated in ovarian
cancer. Unexpectedly, the high methylation cluster shows enrichment for membrane-associated genes including claudins (CLDN) and cadherins
(CDH), while polycomb repressor complex PRC2 target genes are highly enriched in the intermediate and low methylation clusters. Some of these
genes, as well as a selection of differentially methylated genes mentioned in the text such as MLH1, APC, BRCA1/2 and VHL, are indicated on the right
side of the graph. For abbreviations of the tumor entities see Table 1.
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that TET-mediated demethylation is regulated in a
tissue-specific manner through EBF1 acting at the tran-
scriptional or post-transcriptional level.

Clinical applications of DNA methylation in
oncology
The identification of a wide number of genes that are af-
fected by aberrant DNA methylation in cancer has
highlighted the potential use of this epigenetic modifica-
tion as a biomarker for cancer risk diagnosis, prognosis
and prediction of therapy response. Moreover, the stable
nature of DNA compared with RNA and the availability
of high-throughput techniques for measurement of DNA
methylation in large sample sets add advantages for its
clinical application. The most prominent DNA methyla-
tion biomarkers are summarized in Table 3.

DNA methylation for risk prediction and as a diagnostic
biomarker
Recently, it has been proposed that the inherent epigen-
etic variability of normal cells can be used to predict the
risk of neoplastic transformation. DNA methylation is
being implemented as a molecular biomarker for early
cancer detection that is able to distinguish early precan-
cerous lesions from non-cancerous ones. Moreover, the
analysis of DNA methylation offers the possibility of
non-invasively detecting disease at early stages using
biological fluids such as blood, saliva, urine and semen.
For instance, alterations in DNA methylation in healthy

cervical tissues collected 3 years before detectable cyto-
logical and morphological transformations could predict
the risk of acquiring cancer [58]. Differentially variable
CpGs showed increased variance in normal cells from
people predisposed to cervical neoplasia; the differen-
tially variable CpGs were also enriched for developmen-
tal genes and PCGTs. Age-associated variation in DNA
methylation was also correlated with the risk of neoplas-
tic transformation.
A study analyzing whole blood from BRCA1 mutation

carriers identified a methylation signature that predicted
sporadic breast cancer risk and death years in advance of
diagnosis [65]. Hypermethylated CpGs in BRCA1 mutation
carriers were enriched for stem cell PCGTs, demonstrating
that alterations of PCGTs occur early in tumorigenesis,
as previously described [62,66]. Another study using
whole blood samples identified a PCGT methylation sig-
nature present in preneoplastic conditions that was
prone to become methylated with age, suggesting that
age might predispose to tumorigenesis by irreversibly
maintaining stem-cell properties [67]. Although attract-
ive as a surrogate tissue, analyses in whole blood should
be cautiously interpreted and stringently validated owing
to its cellular heterogeneity [68].
Aberrant DNA methylation is also emerging as a po-

tential tool for cancer detection. The list of methylation-
based diagnostic biomarkers for different tumor types is
enormous. For some of these biomarkers commercially
kits are available. Hypermethylation of GSTP1, one of
the first epigenetic biomarkers to be implemented in the
clinic, is used for early diagnosis of prostate cancer [69].
The promoter of this gene is highly methylated in about
90 % of prostate cancers and can be detected in serum,
urine and semen [70]. By combining GSTP1 hyperme-
thylation with (1) the DNA methylation levels of the
TSGs APC and EDNRB [71], (2) the DNA methylation
levels of CDKN2A, ARF and MGMT [72], or (3) the
levels of the prostate-specific antigen, prostate cancer
diagnosis sensitivity is improved [73]. In NSCLC, aber-
rant DNA methylation of CDKN2A and MGMT were
used to detect malignant lung carcinoma 3 years before
its diagnosis using samples from a small cohort of patients
[74]. Hypermethylation of the homeobox gene SHOX2 in



Table 3 DNA methylation biomarkers and their potential clinical applications

Biomarker name Cancer type Tissue detected

Risk

BRCA1 DNAm signature (1,829 CpGs) Breast Whole blood DNA [65]

140 variable CpGs Cervical Normal uterine cervix cells [58]

Diagnosis

GSTP1 Prostate Serum, urine, ejaculate [70]

APC, EDNRB, GSTP1 Prostate Urine [71]

CDKN2A, ARF, MGMT, GSTP1 Prostate Urine [72]

GSTP1, APC, PTGS2 Prostate Paraffin-embedded tissues [110]

SETP9 Colorectal Blood plasma [77]

APC, MGMT, RASSF2A, WIF1 Colorectal Blood plasma [78]

SHOX2 NSCLC Bronchial fluid aspirates/ blood plasma [76]

CDKN2A, MGMT NSCLC Sputum [74]

CCND2, RASSF1A, APC, HIN1 Breast Fine needle aspiration biopsy [111]

ZNF154, HOXA9, POU4F2, EOMES Bladder Urine [112]

Prognosis

20-gene signature ALL Leukemic cells from bone marrow and peripheral blood [88]

15-gene classifier AML

RASSF1A, APC Breast Serum [82]

ZAP70 CLL CD19 sorted mononuclear cells [80]

CDKN2A CCR Blood plasma [81]

DAPK1 Head and neck Tumor samples [84]

DAPK1 NSCLC Tumor samples [83]

CDKN2A, RASSF1A, CDH13, APC NSCLC Primary tumors and lymph nodes [85]

HIST1H4F, PCDHGB6, NPBWR1, ALX1, HOX9 NSCLC Tumor samples [89]

ALDH1A, OSR2, GATA4, GRIA4, IRX4 OPSCC Tumor samples [59]

GSTP1, APC, PTGS2 Prostate Tumor samples [110]

Response to therapy

BRCA1 Breast Tumor samples [92,93]

BCL2 Breast Tumor samples [113]

PITX2 Breast Tumor samples [114]

TFAP2E Colon Tumor samples [115]

MGMT Glioma Tumor samples [90,91]

APAF1 Melanoma Tumor samples/cell lines [116]

IGFBP3 NSCLC Tumor samples/cell lines [117]

BRCA1 Ovary Tumor samples [94]

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CCR, colorectal cancer; CLL, chronic lymphocytic leukemia; DNAm, DNA methylation; NSCLC,
non-small-cell lung cancer; OPSCC, oropharyngeal squamous cell carcinoma.

Witte et al. Genome Medicine 2014, 6:66 Page 12 of 18
http://genomemedicine.com/content/6/1/66
bronchial fluid aspirates of more than 500 patient samples
allowed the differentiation of benign lung lesions from
carcinogenic lesions [75]. A subsequent study analyzing
blood plasma from 411 individuals confirmed the specificity
and sensitivity of SHOX2 hypermethylation [76], identifying
it as a potential clinical biomarker for early non-invasive
lung cancer diagnosis.
Another exemplary diagnostic biomarker is the hyper-
methylation of SET pseudogene 9 (SETP9) in colorectal
cancer, which can be sensitively and specifically detected in
blood plasma and is able to differentiate between all the
stages of the disease [77]. Tumor-specific methylation of
APC,MGMT, RASSF2A andWIF1 have also been suggested
as potential biomarkers for early detection of colorectal
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cancer [78]. Moreover, a recent genome-wide screen using
DNA methylation data from more than 700 colorectal
cancer samples identified hypermethylation of the throm-
bin receptor THBD and of C9orf50 as novel blood-based
biomarkers for colorectal cancer detection [79].
DNA methylation as a prognosis biomarker
In addition to its diagnostic applications, aberrant DNA
methylation could help to predict and stratify patients
with risks of distinct clinical outcomes. Studies using DNA
methylation as a prognostic biomarker have identified more
aggressive tumors and predicted overall survival and risk
of disease progression and/or recurrence. Initially, studies
combined clinical characteristics with aberrant DNA methy-
lation at single or multiple genes, but genome-wide DNA
methylation profiling of thousands of CpG sites is now lead-
ing to the identification of prognostic signatures.
In CLL, DNA methylation of a single CpG within the

zeta-chain-associated protein kinase 70 (ZAP70) gene pro-
moter predicted disease outcome better than current genetic
approaches [80]. Examples of other hypermethylated genes
used to predict poor clinical prognosis include CDKN2A in
colorectal cancer [81], RASSF1A and APC in breast cancer
[82], the apoptosis-associated gene DAPK1 in lung and
head and neck cancers [83,84], and CDKN2A, RASSF1A,
cadherin 13 (CDH13) and APC in stage I NSCLC [85].
The first studies characterizing DNA methylation at

a genome-wide scale and using large cohorts of patients
to investigate prognostic signatures were performed on
hematopoietic malignancies. In AML, the methylomes
of 344 patients were used to classify 16 distinct AML
subgroups. From these, 5 subgroups defined new AML
subtypes without any reported cytogenetic, molecular or
clinical features. This study also revealed a 15-gene methy-
lation classifier that predicted overall survival [86]. A recent
investigation that focused on cytogenetically normal AML
patients identified a seven-gene score which combined
DNA methylation and gene expression and was associated
with patient outcome [87]. In childhood acute lymphoblastic
leukemia (ALL), distinct biological ALL subtypes were
identified, as well as a group of genes whose DNA
methylation levels correlated with a higher risk of relapse
[88]. Another study in HPV-driven oropharyngeal squamous
cell carcinoma defined a DNA methylation score of five
genes (ALDH1A2, OSR2, GATA4, GRIA4 and IRX4), which
was associated with clinical outcome [59]. Moreover, DNA
hypermethylation of five genes (HIST1H4F, PCDHGB6,
NPBWR1, ALX1 and HOXA9) was used to classify high-
and low-risk stage I NSCLC and patients with shorter
relapse-free survival [89]. Apart from these studies, the
efforts of TCGA have shown that methylomes could be
used to stratify tumors with distinct biological and clin-
ical characteristics, as mentioned earlier.
DNA methylation as a biomarker to predict
treatment response
The individual response of each patient to chemotherapeutic
drugs is quite heterogeneous and, hence, biomarkers that
predict response to therapy as well as the development
of drug resistance are urgently required. DNA methyla-
tion has proven to be a suitable biomarker to predict
treatment outcome in various types of tumors. Such
a marker was identified in GBM, where hypermethyla-
tion of the DNA repair gene MGMT predicted treat-
ment response. Silencing of MGMT diminishes DNA
repair activity and removal of alkyl lesions, and thus pre-
dicts responsiveness to chemotherapeutic agents such as
temozolomide and carmustine [90,91]. TCGA confirmed
these findings and further identified that MGMT hyper-
methylation in GBM patients might predict responders
from non-responders more accurately than the classical
expression subgroups [48].
Hypermethylation of the DNA repair gene BRCA1 in

sporadic triple-negative breast tumors has also been
proposed as a biomarker to predict sensitivity of breast
cancers to the cross-linking agent cisplatin [92] and to
the poly(ADP)-ribose polymerase inhibitor olaparib [93].
Similar results were observed in ovarian tumors with
BRCA1/2 mutations, where BRCA1 hypermethylation
predicted better response to poly(ADP)-ribose polymerase
inhibitor treatment [94].
Therapeutic use
Owing to its reversible nature in comparison to genetic
alterations, aberrant DNA methylation can also be thera-
peutically targeted. Epigenetic drugs such as the histone
deacetylase (HDAC) inhibitors, DNA demethylating agents
or small molecule inhibitors of the BET family of bromodo-
main proteins have been shown to modify chromatin
structure and modify DNA methylation patterns across
the genome [95,96]. DNMT inhibitors can be incorpo-
rated into the DNA or RNA of replicating cells, blocking
the catalytic domain of DNMTs and thus inhibiting the
maintenance of DNA methylation after cell division.
The DNMT inhibitors azacitidine (5-azacytidine) and
decitabine (5-aza-2'-deoxycytidine) have been tested in
clinical trials for hematopoietic malignancies and were
approved by the US Food and Drug Administration for
the treatment of MDS and AML [97,98]. Moreover, azaci-
tidine in combination with an HDAC inhibitor has been
used as a treatment regimen in a phase II clinical trial
for solid tumors including NSCLC, breast cancer and
colorectal cancer [95,99]. The results obtained for NSCLC
showed durable responses and better patient survival,
suggesting that combined epigenetic therapy may have
clinical benefits for the treatment of this and other solid
tumor types.
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Conclusions and future perspectives
The integration of genome-wide DNA methylation profiles
with genomic and other omic profiles is just emerging, and
further efforts are needed to complete cross-tumor ana-
lyses, which will then help us to understand the molecular
mechanisms responsible for the epigenetic defects that can
result from aberrant DNA methylation. Several interesting
findings have been revealed. Subgroups of cancers with
high methylation (including CIMP), are associated with in-
dividual genomic aberrations underlying these patterns, and
have been identified in various cancer entities. At present,
however, there is no evidence for a unifying mechanism
leading to these high methylation phenotypes.
Moreover, several tumor types, such as basal breast,

high-grade serous ovarian and subtypes of serous endo-
metrial, gastric and colorectal carcinomas, related to fre-
quent TP53 mutations and high levels of SCNAs, share
a pattern of low methylation in CGIs. Apparently, in these
tumor subtypes, CGIs retain the low methylation patterns
observed in normal tissues and are protected from methyla-
tion or are subjected to active demethylation. Again, the
molecular mechanism underlying these observations is not
known. We hypothesize that in this case structural genomic
alterations are sufficient to drive carcinogenesis.
Although still in its infancy, pan-cancer methylome

analyses have provided some interesting insights into the
mechanisms of cancer development. First, it is becoming
more apparent that multiple cancer types are affected by
mutations in genes encoding epigenetic regulatory enzymes,
histone variants and chromatin regulatory factors. Some of
these have been experimentally shown to contribute to al-
terations in methylation patterns. Comparing methylomes
across cancer types might now help to identify novel non-
recurrent mutations converging on common biological
pathways that might lead to the development of altered
methylation phenotypes in specific subgroups of cancers.
Second, hypermethylation of PCGTs is apparent in basically
every tumor type and can even be observed in preneoplastic
tissues. Third, the influence of environmental factors on
DNA methylomes might have been underestimated until
now. For example, infectious agents have been recently
linked to specific methylation patterns.
However, pan-cancer methylome analyses still need to

overcome some challenges. First, in the past, DNA
methylation data were generated on two different plat-
forms for some tumor types. Integration of these data
restricts the output to overlapping CpG sites, mostly
representing CGIs, and strongly reduces the genome-
wide coverage. With the generation of larger datasets
derived from the 450 k platform, these limitations will
be overcome in the future. Second, comparing datasets
derived from different platforms, and from samples pro-
vided by various centers, is intrinsically prone to system-
atic batch effects that need to be carefully monitored.
Third, some tumor types are characterized by high tumor
heterogeneity that is difficult to control and might lead
to false positive results. Also, high tumor purity is an
important prerequisite for correct data interpretation,
but is often difficult to achieve. Enrichment of certain cell
types by sorting or laser capture microdissection prior to
analysis might be desirable. Fourth, for the development
of clinical predictive, diagnostic or prognostic biomarkers
and stratification of patient subgroups, the availability of
well documented clinical data is essential. Last, integrative
and comparative analyses of multi-platform datasets require
powerful bioinformatic and biostatistical algorithms. Dedi-
cated computational centers have to develop and rigorously
test and validate these tools.
The epigenetic field is rapidly evolving, and in the near

future more single-base resolution methylomes for a
large number of tumors will be available. The generation
of such methylomes is now affordable due to a consider-
able reduction in next-generation sequencing costs, im-
proved computational expertise and emerging technologies
that use lower DNA input, such as tagmentation-based
WGBS. This method is used for WGBS library preparation,
and is based on the enzymatic activity of a transposase to
simultaneously fragment and tag DNA with adapters [100].
High-resolution methylation maps will provide additional
information to the current methylomes, especially regard-
ing cytosine methylation in a non-CpG context, long-range
methylation interactions, and better assessment of allele-
specific DNA methylation (reviewed in [101]). In addition,
high sequencing coverage will accurately quantify DNA
methylation in genomic regions such as enhancers, insula-
tors, intergenic regions and repetitive elements, which are
currently not included in pan-cancer methylome analyses.
In the longer term, novel technologies will also allow

genomic and epigenomic analyses of single cells. These
analyses will generate more precise datasets by avoiding
the problems associated with tissue impurities or hetero-
geneity, and will allow a direct link between the methy-
lome and the transcriptome [102]. However, the broad
application of single-cell analyses still requires meth-
odological development to reduce technical artefacts.
To fully understand the interplay between the genome,
epigenome and transcriptome, existing datasets need
to be integrated with information about additional
mechanisms of epigenomic regulation, including the
emerging non-coding transcriptome and higher-order
chromatin organization. Importantly, hypotheses generated
from these combined efforts need to be experimentally
tested to prove their functional relevance.
Finally, in terms of translation to the clinic, an essential

aspect is to use the knowledge generated by methylome
analyses as well as from the integration of methylation data
with other omic data to identify novel clinical markers that
should be able to stratify patients better and to define
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molecular signatures across different tumor types. On the
basis of these molecular markers, novel epigenetic therapies
could be developed, setting the stage for better clinical trial
strategies across cancer types as well as for personalized
medicine based on next-generation sequencing data. Already,
pan-cancer analyses have revealed molecular similarities that
will allow existing therapies to be applied to different cancer
types.
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