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Abstract

We present the ‘dnet’ package and apply it to the ‘TCGA’ mutation and clinical data of >3,000 patients. We uncover
the existence of an underlying gene network that at least partially controls cancer ‘survivalness’, with mutations that
are significantly correlated with patient survival, yet independent of tumour origin and type. The survivalness
network has natural community structure corresponding to tumour hallmarks, and contains genes that are
potentially druggable in the clinic. This network has evolutionary roots in Deuterostomia identifying PTK2 and VAV1
as under-valued relative to more studied genes from that era. The ‘dnet’ R package is available at http://cran.r-pro-
ject.org/package=dnet.
Background
Cancer is a heterogeneous disease that differs phenotyp-
ically between tissues and cells of origin. Cancer is also a
genomic disease in which genetic/epigenetic mutations
contribute to tumour progression and heterogeneity. This
heterogeneous nature poses a great challenge for cancer
research, but consensus has been reached for a handful of
‘hallmarks’ [1], mostly in the underlying biology. There is
a pressing need to seek consensus on more clinical aspects
for the benefit of patient healthcare [2]. In this aspect,
cancer genomic mutation data can be useful, especially
when analysed in combination with clinical data on pa-
tients [3,4]. One of the key hopes is to provide better-
informed prognostics by understanding the molecular
basis of cancer patient ‘survivalness’.
Conventional research into survivalness has focused on

individual tumour types, wherein cancer patients of the
same type are first stratified into subtypes according to
genomic data (mostly expression data [5-9], and now mu-
tation data [10]), and then are correlated with survival
data in the hope of discovering clinically meaningful
subtypes. Some are successful but many are not. This
data-driven unsupervised strategy is popular partly due
to a lack of clinical data in parallel with genomic data.
On the other hand, an increasing availability of both mu-
tation and clinical data for multiple tumour types requires
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hypothesis-driven approaches to examine cancer patient
survivalness. This can be seen in projects such as ‘The
Cancer Genome Atlas’ (TCGA) [11], which provides
multi-cancer survival data in addition to genomic mu-
tational data.
We propose that patient survivalness can also be ad-

dressed at cross-tumour levels. Like the cancer hallmarks,
there might exist common molecular programs (likely act-
ing as gene networks) controlling cancer patient survival-
ness, irrespective of tumour type, age and gender. Patient
survivalness is probably not merely a statistical product of
correlation with survival time, but also is a cumulative
outcome of mutated genes that are rooted in their evolu-
tionary history. Any attempts to address these questions
will reshape our clinical practice in cancer prognosis, diag-
nostics and even therapy.
To promote hypothesis-driven research on survivalness,

we present an integrative approach called ‘dnet’. This
method supervises both mutation and survival data, in
the context of prior knowledge of the network, to search
for a core gene network controlling cross-tumour cancer
patient survival. This survival network is robust to data re-
moval and is statistically significant as estimated under
data randomisation. On evaluating performance on sur-
vival gene identifications, our method is superior to exist-
ing network-based methods (although most of them are
not designed for this purpose). Via integrating with ontol-
ogy and evolution knowledge, dnet is also able to clarify
the survival network with relevance to: prognostic and
druggable power, tumour heterogeneity and commonality,
ntral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

http://cran.r-project.org/package=dnet
http://cran.r-project.org/package=dnet
mailto:hfang@cs.bris.ac.uk
mailto:gough@cs.bris.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Fang and Gough Genome Medicine 2014, 6:64 Page 2 of 15
http://genomemedicine.com/content/6/9/64
and evolutionary origins. The ‘dnet’ approach thus repre-
sents a significant advance in emerging research on cancer
patient survivalness, especially in an ever-maturing era of
personalised medical genomics.

Methods
All analytical methods used in this study have been im-
plemented in the R package ‘dnet’ [12], for which some
of functionalities depend on the other two R packages
‘igraph’ [13] and ‘supraHex’ [14]. The dnet package is an
open-source R package that is specifically designed to
analyse high-throughput biological data in an integrative
manner. It has the focus on making sense of these digi-
tised data from different angles including: integration
with molecular networks, enrichments using ontologies,
and relevance to gene evolutionary ages. As a proof of
principle, we apply the dnet approach for discovery and
interpretation of a core gene network controlling the pa-
tient survival across human cancers. Without loss of
generality, we use this application to illuminate the dnet
approach. Figure 1 provides the workflow of the dnet in
discovering and interpreting the cancer-patient gene net-
work, and is detailed below. In the package website, a
step-to-step demo [15] is also provided which allows the
user to completely reproduce the work in this paper.
Figure 1 Schematic workflow of dnet in discovering and
interpreting the patient-survival gene network.
Survival analysis of TCGA mutation and survival data in
patients of different tumour types
TCGA mutation and survival data were obtained from
the supplemental tables published in [16], retaining for
analysis only cancer patients with survival information
available. This results in somatic mutational profiles for
3,096 patients with mutations in 19,171 genes (mapped
to the Entrez Genes). These patient samples belong to
one of 12 major tumour types, including bladder urothe-
lial carcinoma (BLCA, n = 92), breast adenocarcinoma
(BRCA, n = 763), colon and rectal carcinoma (COAD/
READ, n = 193), glioblastoma multiforme (GBM, n = 275),
head and neck squamous cell carcinoma (HNSC, n = 300),
kidney renal clear cell carcinoma (KIRC, n = 417), acute
myeloid leukaemia (LAML, n = 185), lung adenocarcin-
oma (LUAD, n = 155), lung squamous cell carcinoma
(LUSC, n = 171), ovarian serous carcinoma (OV, n = 315)
and uterine corpus endometrial carcinoma (UCEC, n = 230).
For each patient, somatic mutations are represented as
a profile of genes, in which non-zero entry indicates the
number of mutations occurring in a gene. To better
manage associated information on samples and genes,
this dataset is provided as an instance of ‘ExpressionSet’
R object, and is available as package built-in datasets
[17]. From this data representation, both clinical sur-
vival sample information and detailed gene information
are readily accessible. Another advantage of doing this is
to help the script coding for the survival analysis (see the
demo [15]).
Survival analysis was applied [18] to TCGA mutation

and survival data based on the Cox proportional hazards
model. Cox regression yields an equation for the hazard
as a function of explanatory variables, here including: a
mutational variable for a gene in subject (a gene mutation
vector containing mutation numbers across patients), and
three clinical covariates (age, gender and tumour type).
The baseline regression only considers three clinical co-
variates, and the full regression fits all these four explana-
tory variables. Likelihood ratio tests (LRT; analogous to
the sequential ANOVA) are used to compare the full re-
gression against the baseline regression, for the calculation
of Cox hazard ratio (HR) and associated P value for each
gene. The calculated Cox HR and P value are indicative of
prognostic value: the extent to which mutation status for
a gene correlates with patient survival advantage (after
adjusting for age, gender and tumour type).

Identification of the patient-survival gene network
The dnet package takes as input a list of genes with the
significance information (here Cox P values calculated
by survival analysis above), and superposes these genes
onto a gene interaction network [19]. From this network
with imposed node information, dnet sets up the pipe-
line to search for a maximum-scoring subgraph (the
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patient-survival gene network reported in this study).
Given the threshold of tolerable P value, it gives posi-
tive scores for nodes with P values below the threshold
(nodes of interest), and negative scores for nodes with
threshold-above P values (intolerable). After score
transformation, the search for a maximum scoring sub-
graph is deduced to find the connected subgraph that
is enriched with positive-score nodes, allowing for a
few negative-score nodes as linkers. This objective is
met through minimum spanning tree finding and post-
processing, previously used as a heuristic solver of
prize-collecting Steiner tree problem [20]. The solver
is deterministic, only determined by the given tolerable
P value threshold. For identification of the subgraph
with a desired number of nodes, an iterative procedure
is also developed to fine-tune tolerable thresholds.
This explicit control over the node size may be neces-
sary for guiding follow-up experiments. For details on
the implementation, the reader is referred to the Reference
Manual [12].
For the understanding of network structure, communi-

ties in the network are detected via a spin-glass model and
simulated annealing (implemented in the ‘igraph’ package).
Significance (P value) of communities is evaluated by two-
sample Wilcoxon tests on two types of node degrees:
within-community degrees versus between-community
degrees.

Robustness of the patient-survival gene network under
data removal
The robustness of the patient-survival gene network (or
called ‘the target network’) is assessed by removal of one
tumour type per run and re-identification of networks
(called ‘networks under removal’). This systematic re-
moval is to test the robustness against the algorithm
used as well as the input data (especially the potential
dominance by one tumour type). To ensure the fairness
of the assessment, each network, under removal, has the
same/approximate number of nodes as the target network.
The confidence score (bootstrap value) for an edge in the
target network is estimated according to the chance of this
edge appearing in networks under removal.

Significance of the patient-survival gene network tested
by a degree-approximating node randomisation
The significance of the patient-survival gene network
is assessed by comparison to how often it would be ex-
pected by random. This comparison is done via a degree-
approximating node/gene randomisation [21,22], which
permutates gene labels but preserves node degrees. Simi-
lar to the robustness assessment above, for a permutated
list of genes, a survival network is identified with the
same/similar size as the target network. These networks
identified via randomisation (100 times in this case) are
used as a background to estimate the significance (P value)
for each edge in the target network. These P values are
also combined to a joint test for testing whether a global
null hypothesis can be rejected, reporting an aggregated
P value according to Fisher’s method (see the function
‘dPvalAggregate’ in the dnet package).

Survival network-based landscape across tumour types
Relationships across tumour types are characterised
based on genes in the patient-survival gene network and
their mutation frequencies in each tumour type. dnet
implements two methods for characterising sample rela-
tionships (here relationships across tumour types): one
is to build a neighbour-joining tree, the other is to create
a self-organising landscape. The first method takes as in-
put a matrix of survival genes × tumour types, with each
element for mutation frequency, and the built tree is at-
tached with confidence values. The second method takes
into account the connectivity in the network. The input
matrix is about information on edges in the network,
which are transformed from information on nodes: de-
gree and mutation frequency. For an edge e and its two-
end nodes vi and vj, the information on the edge ek for
the tumour type k is transformed according to:

ek ¼ f ki
di

‐
f kj
dj

�����

�����

where di and dj are degrees for nodes vi and vj, respect-

ively, while f ki and f kj for their mutation frequencies in the

tumour type k. Such a transformation considers mutation
frequency absolute difference but being penalised by node
degrees, thus fully utilising the information contained in
the network. The transformed matrix of network edges ×
tumour types are used for self-organising tumour types
onto a two-dimensional (2D) landscape (see the function
‘dNetReorder’ in the dnet package, which extends this
functionality from package ‘supraHex’).

Performance evaluation in identifying the patient-survival
gene network
The performance is evaluated against two state-of-the-art
methods for identifying the patient-survival gene network
using the same data input as before. The first is the
method based on node scoring under beta-uniform mix-
ture model [20,23], which is also implemented in our dnet
package. Probably because this model does not fit the
observed Cox P values, this method fails to identify any
networks. The second method is based on simulated an-
nealing, implemented as Cytoscape plug-in jActiveMo-
dules [24]. This method is commonly used [25] and thus
suitable for performance comparisons. Owing to inability
in controlling the node size, jActiveModules is sequentially



Figure 2 Performance evaluation in identifying the
patient-survival gene network. The performance of the dent
method is compared against a popular and commonly used method
called ‘jActiveModules’ and its extensions. A two-sample Kolmogorov-
Smirnov (KS) test is used to assess the significance (P value) of the
differential distributions. (A) Boxplot displays the distribution of Cox
hazard ratio (HR) for network genes. Also illustrated on the left are
46 genes in the consensus network identified by jActiveModules. This
consensus is reached based on results from four different annealing
options as indicated. (B) Gene set enrichment analysis (GSEA) of
network genes. GSEA is used to examine the extent to which genes in
a network are rank-enriched towards the highest Cox HR. The plots
show the running enrichment score and a peak (circled in blue) with a
normalised enrichment score (NES). Genes in the survival network are
indicated with red lines. (C) Comparisons of survival genes identified
by both methods. Left panel: Venn diagram illustrating the differences
and intersections of survival genes. Right panel: boxplot illustrating the
distribution of Cox HR grouped according to the Venn diagram.
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applied to identify the smaller network from the previous
larger one. Also owing to stochastic nature, jActiveMo-
dules is used with four different annealing options: the
one is classic as reported in the original publication, and
the other three using annealing extensions (hubfinding,
quenching or both). Networks from these four annealing
are merged into the consensus one consisting of nodes,
comparable in size to the one identified by dnet. See
Figure 2A for illustrations.
Patient-survival gene networks by dnet and jActive-

Modules are compared to each other in terms of perform-
ance on how well genes identified are survival-related.
Performance on the survival relatedness is equivalent to
how genes with the highest Cox HR (or the lowest Cox
P values) tend to be in the identified network. Two per-
formance measures are used to quantify this tendency.
The first measure is the distribution (and the median) of
Cox HR in the network. Difference in distributions is
tested by two-sample Kolmogorov-Smirnov (KS) tests
and measured by KS P value. The second alternative is
the rank enrichment towards the highest Cox HR. It is
measured by running enrichment score in gene set enrich-
ment analysis (GSEA; also see the ‘Gene set enrichment
analysis by dGSEA’ section). GSEA allows for visually and
quantitatively determining the degree to which genes in
the network are rank-enriched at the top of the whole
genes list; this list is pre-ranked from the highest to the
lowest Cox HR.

Prognosic and druggable evaluation of the patient-
survival gene network
Prognostic power is evaluated in two comparisons. First,
distribution of Cox HR for each gene in the network is
compared against the distribution for the same number
of genes: (1) that are randomly chosen (naive baseline);
(2) that are at the top list with the highest Cox HR (ideal
baseline). Two-sample KS tests are used to assess the
significance for their differential distributions. The sec-
ond comparison is made for genes used individually or
in combination, that is, HR for individual genes versus
HR for genes in combination. Considering practical use,
genes are combined in a way that an increasing number
of genes are added in sequentially: genes with the more
significant Cox P values always come first. Cox HR (and
P value) for each gene combination is computed using
age, gender and tumour type as covariates. The explana-
tory variable in subject is an aggregated mutation vector,
telling how many mutations each patient has in terms of
genes combined. Similarly, Cox HR distributions be-
tween individual genes and genes in sequential combin-
ation are evaluated by two-sample KS tests.
Druggable power is evaluated by enrichments of drug-

gable gene categories (compiled from [26]). Hypergeo-
metric distribution based enrichment analysis (also see the
‘Enrichment analysis by dEnricher’ Section) is applied
to find druggable categories enriched in the network.
Enrichment significance is defined under false discovery
rate (FDR) of 0.05 or lower (after controlling multiple hy-
pothesis tests).
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Gene set enrichment analysis by dGSEA
In the dnet package, the function ‘dGSEA’ implements a
computational method for determining whether a gene
set (for example, genes in the patient-survival gene net-
work) appears randomly in a pre-ranked gene list or has
a tendency to be at the top (or bottom) of this ranked
list. Such tendency is quantified by running enrichment
score, and in general by normalised enrichment score
(NES) which is suitable for comparing results across dif-
ferent gene sets. The enrichment significance (P value)
is assessed according to a null distribution that is esti-
mated by randomly sampled gene sets (each sampled set
has the same number of genes as the original set).
As described above, when determining the tendency of

genes in the patient-survival network to have a higher
Cox HR, the pre-ranked gene list is ordered according
to Cox HR in a decreasing manner. In addition, dGSEA
is also applied to look at the tendency of these survival
genes to be at the top of the gene list pre-ranked according
to: cross-tumour mutation ubiquity, mutation frequency
within a single tumour type, and mutation numbers in each
individual patient.
Our definition of cross-tumour mutation ubiquity is

based on within-tumour-type mutation frequency. For a
gene, mutation frequency within a tumour type is the
proportion of patients having the mutated gene among
all patients belonging to this tumour type. Mutation ubi-
quity defines how ubiquitous this mutation frequency is
across tumour types. Let fi be mutation frequency for a
tumour type i, then mutation ubiquity u is formulated
as:

u¼
Xn

i
f iffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i
f 2i

q ‐1

0
B@

1
CA=

ffiffiffi
n

p
‐1

� �
;

where n is the number of tumour types. This formula
results in a mutation ubiquity ranging from 0 to 1. It ap-
proaches one when a gene is mutated in all tumour
types with almost identical mutation frequency. At the
other extreme, it takes a value of zero when a gene is
only mutated in a single tumour type. Otherwise, muta-
tion ubiquity interpolates smoothly between these two
extremes.

Enrichment analysis by dEnricher
The function ‘dEnricher’ implements enrichment ana-
lysis based on the hypergeometric distribution or Fisher’s
exact test. It tests the significance of gene overlaps be-
tween a gene group (for example, genes in the patient-
survival gene network) and gene annotations (for example,
annotations by an ontology term, representing the known
knowledge). The utility of dEnricher is to identify know-
ledge enrichments, thus giving a knowledge-relevance
interpretation of this gene group. This relevance infer-
ence depends on which aspect of knowledge is used
(see ‘Data in the dnet package’ section). It can evaluate
the druggable relevance by using druggable gene cat-
egories as described above. When knowledge of gene
evolutionary ages is provided, dEnricher can also be
applied for analysis of evolutionary relevance. Briefly,
it identifies our common ancestor in which a signifi-
cantly higher number of survival genes first appeared.
A more general utility lies in ontology enrichment ana-
lysis. Since terms in an ontology are structured as a
hierarchy, dEnricher can also account for this hierar-
chal structure by respecting the parent-child depend-
ency. Term enrichments are visualised in the context
of the ontology hierarchy for better interpreting the
relevance of the knowledge.

Data in the dnet package
The backend of various analytical utilities supported in
dnet is its built-in database spanning a wide range of the
known gene-centric knowledge across well-studied organ-
isms. Knowledge of genes can be: their interacting net-
works [19], annotations by various ontologies (in dcGO
database [27,28]), evolutionary ages [29], and residual
domain superfamilies [30]. They are provided as RData-
formatted files, and are maintained and updated using
in-house Perl scripts. For this study, we also populate
the database by human-specific knowledge on druggable
gene categories. All these are freely available at the pack-
age dedicated website [12].

Results and discussion
dnet uncovers an underlying patient-survival gene net-
work across tumour types
In an attempt to discover gene networks controlling cancer
patient survivalness, we developed an integrative method
and implemented it as an open-source R package called
‘dnet’. By analysing the ‘TCGA’ mutation and clinical data
of patients covering multiple tumour types [16], we uncov-
ered a core gene network indicative of cross-tumour patient
survival (Figure 3; also see Additional file 1). For ease of
network content explanation and visualisation, we also
analysed the community structure and identified seven
communities (C1 to C7) inherent in the network. Although
no prior knowledge was used for guiding community
identification, interestingly we found these communi-
ties can be labelled with discernible biological pro-
cesses, highly indicative of functional modular design.
Notably, TP53 in the DNA binding and repair community
(C7) is directly linked to five communities including: the
apoptosis community (C1), the tyrosine kinase community
(C5), the proteolysis community (C4), the microtubule
cytoskeleton community (C6), and the community contain-
ing genes all encoding glycoproteins (C3). TP53 is indirectly



Figure 3 A core patient-survival gene network, and its community structure and robustness. This network contains 42 genes, most of
which, upon mutated, are significantly correlated with patient survival (based on Cox proportional hazards model). The nodes/genes in the
network are found to be naturally organised into seven communities (C1 to 7), each associated with distinct aspects of cancer biology. The
significance (P value) of the communities is evaluated by two-sample Wilcoxon tests on two types of node degrees: within-community degrees
versus between-community degrees. The thickness of an edge indicates the confidence score (under data removal). The bottom-left inset shows
the cumulative distribution of the edge confidence scores.
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linked to the cell adhesion community (C2), with PTK2 in
C3 as a connector. Community connectors like PTK2
serve as a scaffold linking together communities, and thus
are not necessarily correlated with the patient survival
(see Additional file 2).
We tested the robustness of dnet in identifying the

survival network. To do so, we systematically removed
one tumour type at a time and measured how the sur-
vival network would respond to this data removal. For
each edge in the network, we calculated a confidence
score by estimating the likelihood of this edge getting
recovered under removal (bootstrap value). As shown in
the bottom-left corner of Figure 3, the edge confidence
scores are relatively high, indicating that the recovery of
edges is robust against input data removal and also the
algorithm used. We see those edges falling within and
connecting together survival-relevant communities (C7,
C1, C5 and C4) are the most robust; they vary little
upon data removal.
We also tested the significance of the identified survival

network using a novel data randomisation procedure. This
randomisation shuttles gene/node labels but preserves
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node degrees in the network. For these randomisations,
we identified survival networks (as background null distri-
butions), from which we estimated how often (P value)
each edge in the original network would be expected by
random. The distribution of these edge P values is shown
in Additional file 3; it can be seen that 78% of edges are
true positives at a tolerable error rate of 0.05; this figure
increases to 89% at an error rate of 0.1. This is an equiva-
lent of an aggregated P value of 3.4e-28 when testing all
edges as a whole according to Fisher’s method. Among
those edges with high error rate (P value >0.1), most of
them are between hubs, such as pairs of UBC-PTK2,
UBC-ABL1 and UBC-TP53 (Figure 4). If these edges are
removed, their terminal hubs still remain. There results
strongly support two notions. First, the identified network
is not a result of data bias but is of statistical significance.
Second, such a degree-approximating randomisation ex-
cludes the possibility that hubs (for example, hotspot
genes) would lead to a biased result. Admittedly, hubs
tend to have edges between each other by chance, but
their presence is required for connecting highly-isolated
nodes (of interest).
Figure 4 Significance of the patient-survival gene network. This netwo
(P value; under data randomisation) of an edge is indicated by one of thre
To further understand this survival network, we looked
at its ability to characterise relationships between tumour
types. For this purpose, we developed a method fully
exploiting information carried by the network (see Methods)
and built a 2D landscape using a self-organising algo-
rithm [14] (Figure 5). This landscape captures tumour
type relationships, but also provides for displaying infor-
mation (within-tumour-type gene mutation frequency
on genes/nodes) to explain the observed relationships.
For example, two tumour types of lung tissue of origins
(LUAD and LUSC) locate at the bottom, with the high-
est proportion of survival genes frequently mutated. An-
other example is the leukaemia tumour type (LAML), in
which genes NPM1 and TP53 are highly mutated. Because
of this unique mutation profile, it is distinct in space
from others. This simultaneous inspection of tumour
type relationships and network information gives an intui-
tive clue as to what establishes the observed relationships.
It should be noted, however, that any interpretation of the
relationships are in the context of survivalness: muta-
tion frequency and connectivity of genes in the survival
network.
rk has the same network layout as in Figure 3, and the significance
e different line styles.



Figure 5 The survival-network-based landscape of 11 tumour types. Tumour types are self-organised onto a 6 × 6 grid based on mutation
frequency and connectivity of genes/nodes in the survival network (see Methods for details). This grid represents the network-based 2D landscape,
from which geometric locations delineate relationships between these 11 tumour types. Smaller squares illustrate the same network layout
(as in Figure 3) but nodes are colour-coded according to tumour-type-specific mutation frequency information. The inset in the top shows the
enlarged view for LAML. Abbreviations for these 11 tumour types are: bladder urothelial carcinoma (BLCA); breast adenocarcinoma (BRCA);
colon and rectal carcinoma (COADREAD); glioblastoma multiforme (GBM); head and neck squamous cell carcinoma (HNSC); kidney renal clear
cell carcinoma (KIRC); acute myeloid leukaemia (LAML); lung adenocarcinoma (LUAD); lung squamous cell carcinoma (LUSC); ovarian serous
carcinoma (OV); uterine corpus endometrial carcinoma (UCEC).
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Survival advantage for patients within a tumour type
can differ in age and gender, and these difference can be
further complicated when comparing across tumour
types. As illustrated in Additional file 4A, different tumour
types have different survival curves: the poorest seen in
GBM and LAML, and the most favourable in UCEC and
BRCA. For these reasons, in survival analysis we incorpo-
rated three covariates (age, gender and tumour type) in
our Cox regression model as the baseline (see Methods).
With the survival network in hand, it is also interesting
to examine the survivalness for each tumour type.
Briefly, we used a Cox regression model taking age and
gender as covariates in the baseline to compare against
the full regression model. This full regression model in-
cludes an additional explanatory variable (a total num-
ber of mutations falling into the survival network),
which is subjected to likelihood ratio tests (LRT). The
Cox hazard ratio (HR) calculated from LRT is shown in
Additional file 4B. From it, we see that this survival net-
work is in general informative in characterising the sur-
vivalness observed in different tumour types. However,
we also see that this cross-tumour survival network,
though informative, is not simply so. For example, OV
has a better survival curve than LUAD, but according to
the network it has a higher HR (thus worse prognosis).
It is reasonable since the identified survival network
is not merely a reflection of the survivalness in indi-
vidual tumour types, but also incorporates all pos-
sible combinatorial factors between age, gender and
tumour types.

dnet performs better in identifying the survival network
than commonly used methods
We next evaluated the performance of the dnet method
against a popular method implemented in Cytoscape
plug-in jActiveModules [24] (although not originally de-
signed for cross-tumour survival network identification).
Comparisons were made using the same data input used
by dnet. Performance results are only specific to this
survival dataset since there is no gold-standard bench-
mark for evaluations. We found that dnet is superior
over jActivemodules in identifying survival-related genes
(Figure 2). First, jActiveModules requires a relatively
complicated procedure (sequential running) for identi-
fying the stable networks with desirable size. For this
reason, we sought the best procedure in this application,
and obtained the consensus network (see Methods).
Second, genes identified by the dnet method tend to
have higher Cox HR than those by the jActiveModules
method (Figure 2A), and thus many more survival genes
are identified by the dnet method. Indeed, survival genes
are extremely enriched; this distinction is less extreme
in the survival network identified by the jActiveModules
method (Figure 2B). Looking further at genes commonly
identified and unique to each method (Figure 2C; also see
Additional file 5), we also see that genes unique to the
dnet method have Cox HR at least comparable to genes
commonly identified by both methods. In contrast, genes
unique to the jActiveModule method tend to have lower
Cox HR and are therefore of lesser survival-relatedness.
In the literature, a growing number of methods have

been reported for network-based survival analysis [31-36].
Some of them have been implemented as tools, including
Net-Cox [31], Reactome FI [32], HyperModules [36] and
HotNet [35]. Among these, all but Reactome FI are con-
ceptually similar to dnet in using survival data to guide
survival network discovery, while HyperModules currently
does not support the Cox regression required in this ap-
plication. Unlike dnet, however, Net-Cox and HotNet both
require sophisticated parameter tuning. A major limitation
of these existing tools is that all of them are unable to ad-
just for covariables (such as age, gender and particularly
tumour type); this is essential for cross-tumour survival
analysis. Without adjustments for survival differences
between different tumour types (as shown previously
in Additional file 4A), these tools are only applicable in
within-tumour-type survival network discovery. There-
fore, here we do not provide direct comparisons. In-
stead, in Table 1 we provide a side-by-side comparative
discussion in terms of availability, concept (supervised
by survival data), covariable adjustments, analytical dif-
ficulty (parameter tuning) and other relevant aspects
(visualisations, downstream interpretations and docu-
mentations). From the table, it becomes clear that dnet
is most suitable for the task in cross-tumour survival
network discovery and interpretations. This comparison
also identifies a need for the adaptation of existing tools
to fit this purpose.

The survival network has potential for prognosis and
druggability
For the survival network to be of potential use, we next
explored its power in prognosis and druggability. Prog-
nostic power is seen when compared to the naive use
(chosen at random); an average of 10-fold increases in
Cox HR will be expected using genes in the survival net-
work. If survival genes are combined for prognostic use,
an average of 100-fold gain will be achieved (Figure 6A).
It should be noted that genes in the survival network
are not always on the top list of genes with the highest
Cox HR (that is, an ideal list); this must be compro-
mised to ensure that they are all interconnected cohe-
sively as a whole, even though, we still see that these
network genes, when used in combination, have a com-
parable prognostic power as seen in the combination of
the ideal gene list (Additional file 6). These results col-
lectively suggest the prognostic potential of this network
signature.



Table 1 Comparison of network-based survival analysis tools

dnet jActiveModules Net-Cox Reactome FI HyperModules HotNet

Platform/Language R Cytoscape Matlaba Cytoscape Cytoscape Python

Operating Systems independentb Yes Yes Yes Yes Yes Linux/Unix

Supervised by clinical survival data Yes Yes Yes No Yesc Yes

Able to adjust for covariablesd Yese Yese,f No No No No

Require sophisticated parameter setup No Yes Yes No No Yes

Advanced network visualisation Yes Yes No Yes Yes Yes

Downstream evolution analysis Yes No No No No No

With full documentations Yes Yes No Yes Yes Yes
aNeeds commercial license.
bWindows, Mac, Linux/Unix.
cDoes not support Cox regression.
dIncludes age, gender and tumour type that are required for cross-tumour survival analysis.
eIt incorporates this functionality from the package ‘survival’.
fCan be extended for this purpose as shown in Figure 2.
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For pharmaceutical use, it also requires evaluations of
whether the survival genes are druggable. To address
this power, we populated built-in data (in the dnet pack-
age) by druggable gene categories available from the
Drug-Gene Interaction database [26], and performed en-
richment analysis to examine the druggability of genes
in the survival network. As shown in Figure 6B, the top
enrichment is a category ‘Clinically actionable’, and other
enrichments cover a wide spectrum of anti-neoplastic
categories. Clinically actionable genes include: genes en-
coding tyrosine kinases (ABL1, BTK, EPHA3, EPHB1),
genes involved in DNA repair (ABL1, BRCA2, NPM1,
RAD50, TP53) and histone modification (BAP1, BRCA2,
Figure 6 The power of the patient-survival gene network in prognosi
distribution of Cox HR for: the randomly chosen 42 genes (as a naive meth
dnet; in green), and the genes in the network used in combination (in blue
10-fold increase in Cox HR over using those genes individually (66.1 versus
(66.1 versus 0.6). (B) Druggable power. The table lists significant enrichmen
TP53), and tumour suppressor genes (ABL1, BAP1,
BRCA2, NPM1, TP53). Taken together, genes in the
survival network have the potential of being used in
combination for better prognosis, and of being targeted
for clinical use.
In addition to the cross-tumour survival network, we

also applied dnet to identify cancer-specific survival net-
works and to investigate their characteristics for drugg-
ability. As expected, these cancer-specific networks differ
from each other in the genes involved and in node size,
with the lowest (5) in LAML to the highest (60) in LUSC
(see Additional file 7 for details). This is consistent with
the mutated gene number observed in each of tumour
s and druggability. (A) Prognostic power. The boxplots display the
od; in red), the 42 individual genes in the network (as identified by
). Genes in the network used in combination yields an average of a
6.2), which equates to a 100-fold gain in Cox HR using genes naively
ts of druggable gene categories and their annotated genes.



Fang and Gough Genome Medicine 2014, 6:64 Page 11 of 15
http://genomemedicine.com/content/6/9/64
types. When looking at the druggability of genes in each
cancer-specific network, unexpectedly we found that they
are all clinically actionable (Additional file 8). We also
found that most of cancer-specific networks share similar
druggable gene category enrichments as observed in the
core cross-tumour survival network. These results suggest
that different tumour types vary greatly in survival-related
genes; however, they probably utilise several common
characteristics to constrain these survival genes. This
also indicates the feasibility of deriving commonality
from varied tumour types.

The survival network offers an overview of inter-tumour
mutation similarity and intra-tumour mutation
heterogeneity
Viewing genes in the survival network as a signature, we
conducted gene set enrichment analysis (GSEA) to look
Figure 7 A survival network based overview of inter-tumour mutatio
enrichment analysis (GSEA) is applied to the genes in the survival network
single tumour type (B), and mutation numbers in each individual patient (
genes ranked from the highest to the lowest values (x-axis). Genes in the s
running enrichment score and a peak (circled in blue) with a normalised en
of the 11 tumour types (B) and each of 3,096 individual patients (C). Each
enrichment and green otherwise. Abbreviations for tumour types are the s
at the extent to which these genes are enriched in terms
of cross-tumour mutation ubiquity, mutation frequency
within a single tumour type, and mutation numbers for
each individual patient (Figure 7). Our definition of cross-
tumour mutation ubiquity is based on within-tumour-
type mutation frequency, defined as how ubiquitous this
mutation frequency is observed across tumour types.
Figure 7A shows the rank distribution of survival genes
in terms of mutation ubiquity, displaying a tendency to-
wards higher mutation ubiquity. We also see such a ten-
dency for all tumour types in terms of within-tumour-type
mutation frequency (Figure 7B). These results suggest that
there is a high degree of inter-tumour similarity in the
relevance to survival. In sharp contrast, GSEA analysis
of 3,096 individual patients reveals a high degree of
intra-tumour heterogeneity for their relatedness to the
survival network (Figure 7C). These results add a new
n similarity and intra-tumour mutation heterogeneity. Gene set
for: cross-tumour mutation ubiquity (A), mutation frequency within a
C). The top graph of (A) shows mutation ubiquity values (y-axis) for
urvival network are indicated by red lines. The graph below shows the
richment score (NES) and P value. GSEA is also applied to analyse each
dot in (C) stands for an individual patient, with red for significant
ame as described in Figure 5.
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layer of information: survivalness, to explain our current
observations of inter-tumour mutation similarity and intra-
tumour mutation heterogeneity [37,38].

The survival network is traceable in evolution, most
prominently to our ancestor Deuterostomia
Since the survival network controls cancer patient survi-
valness, we therefore further explored the possibility of
tracing its evolutionary origins. For such a purpose, we
studied the evolutionary history of survival genes using
our previously built species tree of life (sTOL) [39]. This
tree spans all completely sequenced genomes and best
consolidates the knowledge of structural genomics and
the NCBI taxonomy [29]. From sTOL, we retrieved gene
evolutionary/phylostratific age information based on the
first creation. For a human gene, evolutionary age is de-
termined by the ancestor in which this gene was first
created. Figure 8 illustrates the survival genes and their
corresponding first-created ancestors. We see that half of
survival genes were created at the animal-fungi boundary
(Opisthokonta) or earlier; this proportion increases to 65%
at or before the ancestor of animals (Metazoa), and up to
83% at our ancestors as early as Deuterostomia. To test
Figure 8 Evolutionary age of genes in the survival network. This is a h
types (in columns). The tumour types are ordered based on a neighbour-jo
history of genes is based on species tree of life (sTOL [29]). The left panel in
analysis shows that these survival genes contain a significantly higher numbe
in blue; FDR <0.05). Indicated beside the gene symbols are their Cox P values
same as described in Figure 5.
whether when survival genes were created is a random
event or has a preference, we conducted enrichment
analysis using gene repertoires at each ancestor as
background. Ancestor enrichments show that survival
genes did not appear randomly in their evolutionary
history but were preferentially created at these ances-
tors: Metazoa, Deuterostomia and Chordata (FDR < 0.05;
see also Additional file 9).
When simultaneously displaying the mutation frequency

matrix and their first-created ancestors for survival
genes (Figure 8), we notice a tendency for Deuterostomia-
originated genes to mutate ubiquitously across tumour
types. To quantify such a tendency, we introduced the con-
cept of cross-tumour mutation ubiquity. Based on it, we
compared the distribution for survival genes grouped ac-
cording to their first appearance in ancestors (Figure 9A).
We see that there is a clear difference in mutation ubiquity
between genes first appearing in Deuterostomia and genes
created earlier (KS tests; P = 6.5e-3), but no significant
support for the difference to genes appearing thereafter
(P = 0.21). Figure 9B provides an integrated view of rela-
tionships between mutation ubiquity, ancestors and con-
nectivity (degree) of survival genes. From it, we also see a
eatmap of the mutation frequency of genes (in rows) versus tumour
ining tree (built from the mutation frequency matrix). The evolutionary
dicates the ancestor in which genes first appeared. Ancestor enrichment
r of genes first created at Metazoa, Deuterostomia and Chordata (framed
: *<0.05; **<0.01 and ***<0.005. Abbreviations for tumour types are the



Figure 9 Genes first appearing in Deuterostomia mutate more ubiquitously and tend to be hubs. (A) Boxplot of genes in the survival
network. Dots represent genes, color-coded according to their Cox P values. These genes are grouped according to ancestor in which they first
appeared (x-axis). Cross-tumour mutation ubiquity (y-axis) measures how ubiquitous the mutation rate of a gene is in different tumour types.
(B) Visualisation of the survival network with nodes/genes color-coded by mutation ubiquity. Also indicated are genes first appeared in
Deuterostomia. The bottom-left inset shows the differential distributions of node degrees for genes first appeared in Deuterostomia against
in our other ancestors.
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significant difference in node connectivity between
Deuterostomia and other ancestors.
Evolutionary tracking analysis of cancer genes has previ-

ously suggested the importance of Metazoa in the emer-
gence of oncogenes and tumour suppressor genes [40].
Conceptually, this is consistent with our observations:
many cancer-survival genes first appeared in Metazoa. Be-
yond this, our results also point to the evolutionary signifi-
cance of a more recent ancestor Deuterostomia in shaping
up genes related to cancer patient survivalness. Our work
adds a new layer of information for cancer evolutionary
analysis: survival-relatedness. Cancer survival genes contin-
ued to emerge after Metazoa, and probably not coinciden-
tally at Deuterostomia. Deuterostomia are characterised by
their plastic ability in cell-fate determination that they ac-
quired but is absent in preceding ancestors [41]. The most
parsimonious explanation for acquisition of such plasticity
is to create de novo highly mutable genes with broad effects
on cell fate. Partially because of the high mutability in dif-
ferent cell/tumour types, and in part because of their es-
sentiality in evolution, we postulate that genes first created
at Deuterostomia are more likely to be now affecting can-
cer patient survivalness. Some of these genes have been
highly studied, such as TP53 and its degrader HUWE1, and
protein-tyrosine kinase signals such as EPHA1 and EPHA3.
Others are less studied, such as PTK2 and VAV1, and ex-
perimental data have suggested so [42]. Our evolutionary
analysis strongly suggests that they are more important in
the study of cancer than currently appreciated.
Conclusions
Applying dnet in analysing all of the ‘TCGA’ mutation
and clinical data of >3,000 patients covering multiple
tumour types (Figure 1), we uncovered a network of
genes (Figure 3) for which most of their mutations are
significantly correlated with patient survival. This sur-
vival network has community structure responsible for
distinct aspects of tumour hallmarks. It is insensitive to
the removal of single tumour types (Figure 3), is not an
artifact of data characteristics (as shown by randomisa-
tion in Figure 4), can be used for characterising relation-
ships between tumour types (Figure 5) and is generally
informative for characterising survivalness for individual
tumour types as well. The kind of survival network
would not be identified via other commonly used methods
(Figure 2) or indeed attempted (Table 1). Genes in this
core network seem to be far more informative for progno-
sis when used in combination than when used individu-
ally, and are potentially druggable in the clinic (Figure 6);
we also show this druggability is universal for cancer-
specific survival networks even though their gene mem-
bers differ greatly. Using these genes as a signature, we
examined the distribution of mutations at three differ-
ent levels of granularity (across tumour types, within a
single tumour type, and in individual patients); Figure 7
shows the relevance to survival of intra-tumour hetero-
geneity and inter-tumour similarity. Strikingly, we also
observe a clear relationship between cross-tumour muta-
tion frequency and the evolutionary age of these survival
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genes (Figure 8). We observe a significantly higher muta-
tional heterogeneity across cancer types in genes first cre-
ated in Deuterostomia (Figure 9). Consistent with plastic
cell-fate determination first appearing in this ancestor, we
postulate that highly mutable genes with broad effects on
cell fate were created at this time. Some have been highly
studied such as TP53 and its degrader HUWE1, and genes
involved in protein-tyrosine kinase signals such as EPHA1
and EPHA3. We also identify the less-studied PTK2 and
VAV1 genes in the same category, and suggest that they
are more important in the study of cancer survivalness
than currently appreciated.
Our findings support the hypothesis that ‘survivalness’

is at least partly under the control of networks of mutated
genes that also are traceable in evolution. This survival
network has the potential to directly influence clinical
practice in developing better prognostic, diagnostic
and therapeutic protocols. The open source R package
we present here is available for anybody to reproduce
this work or apply our methodology to analyse other
emerging mutation and clinical data on cancer patient
survival.

Additional files

Additional file 1: Genes in the patient-survival gene network and
their relevant information.

Additional file 2: The patient-survival gene network with nodes
color-coded according to Cox hazard ratio (A) and Cox P value (B).

Additional file 3: Distribution of P values for edges in the
patient-survival gene network.

Additional file 4: Survivalness for individual tumour types. (A)
Kaplan-Meier survival curves. Notably, the survival curve for each tumour
type does not adjust for age and gender, and these curves are used to
illustrate differentiated survival advantages for different tumour types.
(B) Bar plot of Cox hazard ratio (HR) for different tumour types according
to the survival network. For each tumour type, the calculation of HR has
already adjusted for age and gender (as covariates; within the baseline
regression), and is to test for an additional explanatory variable: a total
number of mutations falling into the survival network.

Additional file 5: Comparing the survival genes identified by dnet
and jActiveModules.

Additional file 6: Comparing the prognostic power of 42 network
genes identified by dnet and 42 top genes with the highest Cox HR
(that is, an ideal gene list as baseline). The boxplots display the
distribution of Cox HR for these genes used individually or in
combination. As expected, network genes identified by dnet are not
always on the top gene list with the highest Cox HR (6.2 versus 9.5, with
their ratio: 0.65). This is necessary to make sure that all these network
genes are interconnected; it differs from the ideal baseline in which
genes have highest Cox HR but lack cohesiveness as a whole. When used
in combination, however, network genes still have a comparable prognostic
power as the ideal gene list (66.1 versus 79.7, with their ratio: 0.83).

Additional file 7: Cancer-specific survival networks. This file contains
11 sheets, each for a tumour type in which member genes and their Cox
information are listed and visualised.

Additional file 8: Enrichments of druggable gene categories in
cancer-specific survival networks.

Additional file 9: Ancestor enrichments of genes in the
patient-survival gene network.
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