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Abstract

DOTS-Finder/.

A key challenge in the analysis of cancer genomes is the identification of driver genes from the vast number of
mutations present in a cohort of patients. DOTS-Finder is a new tool that allows the detection of driver genes
through the sequential application of functional and frequentist approaches, and is specifically tailored to the
analysis of few tumor samples. We have identified driver genes in the genomic data of 34 tumor types derived from
existing exploratory projects such as The Cancer Genome Atlas and from studies investigating the usefulness of
genomic information in the clinical settings. DOTS-Finder is available at https://cgsb.genomics.iit.it/wiki/projects/

Background

The amount of data regarding somatic mutations in vari-
ous cancer types has increased enormously in the past
few years, thanks to technological advancements and re-
duction of sequencing costs. The massive sequencing of
several cancer genomes has led to the identification of
thousands of mutated genes. However, only a minority
of the identified mutations has a true impact on the fit-
ness of the cancer cells, in terms of conferring a selective
growth advantage and leading to clonal expansion (drivers),
while the others are simply passengers, namely, mutations
that occur by genetic hitchhiking in an unstable environ-
ment and have no role in tumor progression.

Several statistical strategies have been developed to
properly identify driver mutations and driver genes. These
strategies can be roughly classified into four main cat-
egories: ‘protein function’, ‘frequentist’, ‘pathway-oriented’
and ‘pattern-based’ approaches. The ‘protein function’ ap-
proaches are based on the prediction of the functional
impact of a specific mutation in the coding sequence of
a protein [1-3]. Although they do not permit the identi-
fication of driver genes, they can predict the effect of
the mutation on the protein product. The ‘frequentist’
approaches evaluate the frequency of mutations in a gene
compared with the background mutation rate (BMR), a
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measure of baseline probability of mutation for a given re-
gion of DNA [4-6]. The ‘pathway-oriented’ approaches are
based on the analysis of the co-occurrence of mutations in
a pathway-centered view [7-10] and are usually focused
on searching for driver genes belonging to the most sig-
nificant mutated pathways. Lastly, the ‘pattern-based’ ap-
proaches identify driver genes by assessing the type of
mutations (for example, missense/truncating/silent) and
their relative positions on an amino acid map across many
cancer samples [11-14]. They exploit the known structural
properties of mutations in tumor suppressor genes (TSGs)
and oncogenes (OGs). Nevertheless, the identification of
driver mutations in cancer remains a major challenge in
computational biology and cancer genomics. Indeed, dis-
covering driver mutations is one of the main goals of gen-
ome re-sequencing efforts, as the knowledge generated by
exome-sequencing will translate from research to the
clinic. The results of some of the cited tools are summa-
rized in a recent database called DriverDB [15] and also
aggregated in one of the Pan- Cancer analysis publications
[16]. From their comparison, it is clear that all these ap-
proaches are complementary and only the integration of
many of these strategies can improve the identification of
driver genes.

Here, we present an innovative tool called DOTS-
Finder (Driver Oncogene and Tumor Suppressor Finder)
that integrates a novel pattern-based method with a pro-
tein function approach (functional step) and a frequentist
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method (frequentist step) to identify driver genes. In
addition, it allows the classification of driver genes as
TSGs or OGs. The software is freely available and has
been designed to return robust results even with few
tumor samples.

Implementation

Overview of DOTS-Finder

The DOTS-Finder pipeline is illustrated in Figure 1. Our
method can be applied to genes that are targeted by sin-
gle nucleotide variants (SNVs) and small insertions and/
or deletions (indels). Given a set of mutations in an ex-
ome/genome sequence dataset, the output is a ranked
list of genes that prioritizes the best candidate driver
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genes and classifies them as TSGs or OGs. The user can
submit an input Mutation Annotation Format (MAF)
file for a set of patients that can be grouped by different
criteria. In the preliminary step, the MAF file is reanno-
tated and several descriptive statistics are calculated.
This produces a gene-based table with aggregated muta-
tional measures. The next two main steps, a functional
assessing procedure and a statistical confirming proced-
ure, constitute the core of DOTS-Finder. In the former,
putative candidate OGs and TSGs are identified by cal-
culating a Tumor Suppressor Gene Score (TSG-S) and
an OncoGene Score (OG-S), based on the type and loca-
tion of the mutations occurring in each gene. These
scores are inspired by the concepts expressed in a recent
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Figure 1 DOTS-Finder workflow. lllustration of the three main steps and the databases used to identify driver genes. Starting from the top left,
a Mutation Annotation Format (MAF) file is taken as input. This file can encompass patients with any particular kind of tumor or any stratification
of homogeneous samples under specific criteria (for example, smoker patients with lung cancer, patients aged <50 years, and so on). The workflow
includes the following three steps (green arrows): 1) preliminary step - the dataset is filtered, reannotated and aggregated by gene (from top-left to
bottom-left); 2) functional step - Tumor Suppressor Gene Score (TSG-S) and OncoGene Score (OG-S) are calculated (from bottom-left to bottom-right);
3) frequentist step - four statistical tests are run on genes that exceed the TSG-S and OG-S thresholds (from bottom-right to top-right). The center panel
(Data Integration) lists the external sources used by DOTS-Finder. CDD, Conserved Domain Database.
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study by Vogelstein et al. [12]. The TSG-S is based on
the ratio between truncating (that is, inactivating) muta-
tions and total number of mutations found in each gene,
under the null hypothesis that this value is equal to the
average truncating/total ratio of patients’ exomes. The
OG-S is based on the entropy of the pattern of missense
SNVs and inframe insertions/deletions calculated using a
Gaussian density model on the protein product. In the
latter step, the statistical confirming procedure, the two
lists of possible OGs and TSGs undergo four tests to as-
sess whether the mutational pattern in each gene shows
statistically defined evidence of positive selection based
on the mutation rate and the number of non-silent mu-
tations, calculating their statistical probability of being
true driver mutations. After correction for false discov-
ery rate, all the genes with a g-value <0.1 are identified
as candidate driver OGs or TSGs. The user is free to
modify this threshold.

DOTS-Finder is a comprehensive method that con-
siders three main aspects of a mutated gene: it takes into
consideration where the mutations are collectively found
(pattern-based approach), what is the effect of mutations
on protein products (protein-change approach), and what
is the frequency of these mutations in the sample (fre-
quentist approach). Our method is able to overcome many
of the problems derived from the application of each indi-
vidual approach. First of all, the prediction ability of fre-
quentist approaches such as MutSigCV [5] relies on the
estimation of the BMR. Nevertheless, a precise map of the
BMR in the whole genome is still unavailable and consti-
tutes one of the unresolved challenges of cancer genomics.
A plethora of genomic events, such as transcription and
replication timing, are associated with the fact that part of
the genome is more prone or less prone to mutation. In
particular, experimental data of these two events showed a
significant correlation with the probability of a mutational
event [5]. However, while these experiments should be
context specific (tissue/patient specific), data on replica-
tion timing are hard to obtain for every patient and/or tis-
sue. Finally, pure frequentist methods do not allow any
classification of the type of aberrations in terms of gain or
loss of function. A pattern-based approach can bypass
the problem of achieving a correct BMR estimation by
focusing on the position of the observed mutations and
not on their frequency. Thus, the frequency simply be-
comes a statistical power boost and not the point of in-
vestigation. Vogelstein et al. [12] provide a scheme to
assess whether a gene can be considered an OG or a
TSG, but a large amounts of data are needed in order to
evaluate rarely mutated genes. The approach of Vogelstein
et al., as well as the method developed in TUSON Ex-
plorer [13], has been used to collectively evaluate general
cancer genes across tumor types; however, when applied
to single tumor type, they were found to lack the statistical
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power to recapitulate the overall results. In particular, with
these methods, the discrete calculation of an OG test re-
quires many mutations in the exact same hotspots to
reach statistical significance. On the contrary, our ap-
proach, which takes into consideration the proximity of
mutations by using the Gaussian smoothing, is able to
identify also small deviations from a uniform distribution.

The main problem in assessing the value of our method
is the absence of a gold standard in the identification of
driver genes and the lack of benchmark studies. Indeed,
the objects of our investigation are the driver genes of the
different cancer types, which are still mostly unknown.
However, to have an estimate of the prediction ability of
DOTS-Finder, we decided to compare the aggregated pre-
dictions for 12 cancer types with the results of a well-
documented Pan-Cancer 12 global analysis [16] (Text Sla
and Figure S1B in Additional file 1). In this analysis, the
authors combined the outputs of several approaches and
we were able to compare our tool with the single output
from MutSig, MuSiC, ActiveDriver [17], OncodriveFM
[18] and OncodriveClust [14] (Text Sla and Figure S1 in
Additional file 1). We also related the predictions of each
method with the Cancer Gene Census (CGC) database
[19], a manually curated collection of driver genes (all the
results are available in Table S1 in Additional file 2). Not-
ably, DOTS-Finder emerged as the best available tool in
terms of precision-recall balance.

Moreover, we have applied DOTS-Finder to 34 tumor
types and compared its output with the results of other
approaches. Our approach shows results that are con-
sistent with the literature for both high and low muta-
tion rate cancers; DOTS-Finder allows detection of new
plausible driver candidates while excluding highly mu-
tated genes not associated with cancer, the so-called
'fishy genes', such as those encoding the mucins, titin
and most of the olfactory receptors.

DOTS-Finder requires minimal input files, it is easy to
use, and does not necessitate any programming skill or
statistical knowledge. Indeed, we created a tool access-
ible to researchers in a wide range of fields. Compared
with popular tools like MuSiC [6] and MutSigCV [5], we
only require the availability of easily accessible MAF
files. Users do not need to have bam files as in MuSiC,
which are not publicly available or easily accessible. In
addition, the users do not need any proprietary software,
as the source code is written in Python and contains some
embedded R codes, which are two freely available lan-
guages. Since DOTS-Finder is released under the GNU
GPLv3+ license, users are also free to modify the code and
implement new features.

DOTS-Finder is an easy solution for investigating gen-
omic information from existing exploratory projects like
The Cancer Genome Atlas (TCGA), but it is especially use-
ful to identify reliable driver candidates in small studies
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assessing the value of genomic information for clinical pur-
poses, such as understanding and predicting chemo-
resistance or metastatic spread. Indeed, we performed a
saturation analysis on the mutational data present in 238
bladder cancer patients using 9 subsampling fractions, and,
as shown in Text S1b in Additional file 1, DOTS-Finder
can perform statistically better than our best competitor,
MutSigCV (Text Sla and Figure S1 in Additional file 1), in
terms of number of drivers found and precision-recall
balance in small sample datasets (Figure S2A,B in Additional
file 1). Our tool could recapitulate up to 40% of the results
of the entire dataset with just 5% (that is, 12 patients) of the
dataset (Figure S2C in Additional file 1). Thus, it can be used
in the clinical research setting to help identify driver genes
that can assist patient stratification for prognosis and choice
of treatment. We envisage that DOTS-Finder might facilitate
the identification of candidate targets, which could be used
to develop diagnostic, prognostic or therapeutic strategies,
even in situations where the available data are scarce (for
example, rare tumors).

The functional step: finding the best tumor suppressor
gene and oncogene candidates

On the basis of previous proposals [11,12], we developed
scores to assess if a gene in a given tumor could be
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considered either a TSG or an OG candidate. A TSG is
characterized by loss of function mutations. Typically,
these mutations are truncating and tend to destroy the
protein product or make it non-functional. Frame shift
mutations, SN'Vs creating a stop codon, non-synonymous
mutations on the stop codon, translations in the start site,
and splice site mutations are all considered of the truncat-
ing type. Ultimately, a TSG is characterized by truncating
mutations in a non-specific pattern (Figure 2A).

An OG, on the other hand, is characterized by gain or
switch of function mutations that confer new properties on
the protein product or simply enhance the existing ones.
Hence, the typical mutations affecting an OG are missense
mutations on key amino acids or on specific domains.
We consider as missense type mutations all the non-
synonymous SNVs that do not create a stop codon and
occur outside start codons or stop codons, and all the inser-
tions and deletions not altering the reading frame (inframe
indels). These mutations have a particular pattern, as they
are generally clustered in one or more regions along the
protein (Figure 2B). For example, in leukemias, IDH1 can
bear different kinds of mutations, but almost always at
amino acid position 132 (Figure S3 in Additional file 1).

The TSG-S evaluates whether a gene harbors an ele-
vated number of truncating mutations compared with
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the total number of mutations present on that gene.
Given 64 codons in the DNA and 9 possible SNVs per
codon (3 nucleic acids x 3 possible changes) we have a
total of 576 possible base changes. Only 23 of them can
be considered truncating (approximately 3.9% of all the
SNVs, weighted for the actual human codon usage)
against the 415 non-synonymous single base changes that
lead to missense variations and 138 silent mutations. If we
take into account all the indels that corrupt the reading
frame of a gene, we can estimate, based on our sample
data, that the ratio between truncating mutations and total
number of mutations in cancer is approximately 14%, with
a standard deviation of 4. This ranges from a minimum of
9% in glioblastoma to a maximum of 25% in pancreatic
adenocarcinoma, with high intra-tumor variability among
patients. This discrepancy indicates that some tumors are
more prone than others to acquire and maintain truncat-
ing mutations (Figure S4 in Additional file 1).

The TSG-S is calculated using a binomial distribution
under the null hypothesis that the ratio between truncat-
ing mutations and total number of mutations found in
each gene is equal to the average truncating/total ratio
in patients’ exomes (Figure S5 in Additional file 1). The
calculation of this score is set in the specific cancer-
patient environment where the gene is found mutated,
following the idea that a truncating mutation in a sample
with few other alterations weights more than a mutation
in a hypermutated sample.

The OG-S indicates whether a gene harbors an ele-
vated number of missense mutations in certain regions
of the gene. The score is based on the Shannon’s entropy of
the pattern of missense SN'Vs and inframe indels, calculated
using a Gaussian density model on the protein product. Every
mutation is weighted for the actual Functional Impact pro-
vided by Mutation Assessor (a ‘protein function’ method) [3]
and compared with a random model estimated by a boot-
strapping procedure. The score is able to catch the clusteriza-
tion of mutations around significant hot spots in a gene.

We set a threshold for the two scores based on the ana-
lysis of the Catalogue Of Somatic Mutations In Cancer
(COSMIC) [20], using as positive control the CGC genes
that encompass somatic point mutations. To evaluate the
quality of our scores with regard to classification as driver
and non-driver, and avoid making assumptions on the be-
havior of driver genes, we adopted two strategies. First, we
did not consider any a priori set of true non-driver genes
(negative control) and, second, we did not divide the CGC
into OGs and TSGs. As mentioned before, the OG-S and
TSG-S work on different levels and different mutation
types, so we do not exclude the possibility that the same
gene might show oncogenic and tumor suppressor fea-
tures at the same time in different tumors, or even in the
same cohort of patients (see the 'Atypical tumor suppressor
genes and oncogenes' section below).
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Since the number of mutated genes reported in COSMIC
is greater than 18,000, the known drivers in CGC ac-
counts for less than 1% of all the mutated genes. These
numbers indicate that the two classes are extremely
unbalanced, and that a common 'receiving operator
characteristic' analysis is not appropriate to address the
goodness of our scores. We therefore calculated the
Matthews correlation coefficient curves for the two
scores and maximize their values to obtain our thresholds
(Figure S6 in Additional file 1). Compared with other
common measures like accuracy, the Matthews correl-
ation coefficient is much more informative for strongly
unbalanced classes [21]. Our thresholds were also rescaled
for every tumor type in order to take into account the
setting-specific mutation rate and the number of samples
at our disposal.

The frequentist step: assessing the possible drivers

Genes that exceed at least one of the thresholds of the
two scores are classified as OGs or TSGs and four tests
are then performed to assess if the mutational pattern in
each gene shows a statistically defined 'driver behavior'.
This analysis is complex, as it requires the proper esti-
mation of the BMR, which is specific for each gene in
each tumor type and patient. Indeed, we foresee at least
seven sources of BMR heterogeneity: i) the specific
mutation-rate of each tumor type; ii) the specific num-
ber of mutations in each patient; iii) the GC content, as
most of the mutations found in cancer are point muta-
tions occurring in GC spots; iv) the gene size; v) the
gene-specific single nucleotide polymorphism frequency;
vi) the replication time; vii) the levels of gene expression.
However, other unknown parameters could also influ-
ence the BMR of a gene. Our method does not need to
take into consideration either replication timing or gene
expression levels, since they both require a great amount
of new experimental data.

The four tests used by DOTS-Finder are the higher
frequency test, the non-synonymous versus synonymous
ratio test, the tumor-specificity test and the functional
impact test (see Text S3 in Additional file 1 for a full ex-
planation of these). In the higher frequency test, the rate
of non-synonymous mutations per megabase in a gene is
compared with the rate of mutations in the patients car-
rying mutations in that gene. Given the total number of
mutations found in a specific gene, the non-synonymous
versus synonymous ratio test assesses whether the num-
ber of non-synonymous mutations is higher than the ex-
pected number of non-synonymous mutations. The
expected value is calculated on the probabilistic ratio ob-
tained by randomly placing the same number and type
of mutations on the specific codon usage structure of
the gene. The tumor-specificity test prioritizes the driver
genes in the different tumors, although it is not
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fundamental for the driver assessment. The frequency of
non-synonymous mutations in the samples is compared
with the frequency found in the COSMIC database
across tumor types. The test verifies whether the fre-
quency of non-synonymous mutations in a particular
tumor or situation is higher than the general frequency
found in COSMIC. The idea is that some mutations are
tissue-specific and might be drivers only in certain kinds
of cancers. For example, NPMI is a clear driver gene
specific for leukemias; similarly, VHL is specific for renal
cancer. The functional impact test is used to verify
whether the functional impact score of the gene muta-
tions, calculated by Mutation Assessor, is higher than
the average score in the patients affected by a mutation
in that gene. The four P-values obtained from these tests
are combined using the Stouffer’s method with specific
weights, in order to take into account both the depend-
encies between tests and their relative importance in
the driver definition (Text S3 in Additional file 1). The
resulting P-value is then adjusted to correct for false dis-
covery rate.

Results and discussion

Application of DOTS-Finder to individual cancer types
characterized by different mutation rates

We applied our methodology to 34 different cancer
types (Table S2 in Additional file 2) and analyzed the
overall output (Text S2a in Additional file 1). In this sec-
tion, we show the existence of great variability among the
different tumor types in terms of driver genes. In Table 1,
we present the results of four cancer types: breast carcin-
oma (BRCA) and thyroid carcinoma (THCA), described in
the next two paragraphs, and acute myeloid leukemia
(AML) and bladder carcinoma (BLCA), described in Text
S2b and S2c¢ in Additional file 1. We also compared the
DOTS-Finder output with the output of the following
methods (Table S3 in Additional file 2): i) the main TCGA
publications (when available); i) TUSON Explorer [13]
(considering all the genes with a g-value <0.1); iii) MuSiC
(used for identifying significantly mutated genes in 12 can-
cer types [22]); and iv) MutSig (used for identifying sig-
nificantly mutated genes in 21 tumor types [23]).
Thus, we used the state-of-the-art results from official
TCGA publications and from the latest release of the
applications described above. We were not able to
use exactly the same input data of all the publica-
tions, since TUSON Explorer and MutSig (as used in
[23]) are unavailable. Our results show that DOTS-
Finder can identify known cancer genes involved in
each tumor, confirm new discoveries reported by
other groups, and detect novel driver gene candidates
that are mutated at low frequency and not identified
by other methods.
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Breast carcinoma

We then applied DOTS-Finder to the list of 1,046 breast
carcinoma samples. We found a poor overlap between the
TCGA official publication [24] and our results (Figure 3,
Panel A), but all the known cancer genes for this tumor
type are retained, while our results do not encompass any
notorious 'fishy gene' like RYR2 or OR6A2 [5], which are
instead present in the TCGA publication. The TCGA
publication also misses known breast cancer-associated
genes, like FOXAI [25] and CASPS8 [26].

We identified three new driver candidates not present
in previous publications: AQP7, MEF2A and UBC. AQP7
encodes aquaporin 7, an integral-membrane protein that
plays important roles in water and fluid transport and
cell migration. Recent discoveries of AQPs involvement
in cell migration and proliferation suggest that AQPs
play key roles in tumor biology [27]. MEF2A encodes a
DNA-binding transcription factor that is involved in sev-
eral cellular processes, including cell growth control and
apoptosis. It was recently shown that NOTCH-MEF2
synergy may be significant for modulating human mam-
mary oncogenesis [28]. UBC is a member of the ubiqui-
tin family and involved in cell cycle and DNA repair.
The role of ubiquitination is well established in cancer,
especially in breast cancer [29].

Thyroid carcinoma

We applied DOTS-Finder to the list of 326 thyroid car-
cinoma samples from TCGA, identifying 12 driver genes.
We could only compare the DOTS-Finder results with
the results obtained by TUSON Explorer, since, to date,
there are no published TCGA papers for thyroid carcin-
oma (Figure 3B). Three of our putative driver genes (TG,
BRAF and RPTN), are also predicted by TUSON Explorer.
TG and BRAF are known driver genes in THCA [30,31],
while RPTN is a poorly characterized protein that has
never been associated with THCA.

We identified several putative driver genes that may
have relevant functions in cancer development (Table 1):
mutations in EMGI have been recently identified in a
screen for mediators of IGF-I signaling in cancer [32];
germline mutations in PRDM9 are thought to influ-
ence genomic instability, increasing the risk of acquir-
ing genomic rearrangements associated with childhood
leukemogenesis [33]; and PPM1D is an important interac-
tor of TP53, is amplified in different types of cancers and
encodes WIP1, a protein involved in oncogenesis [34]. Re-
cently, mutations and variants of this gene were associated
with DNA damage response [35].

Although only slightly above our threshold, we also
detected PTTGILP and DICERI as putative OGs. Inter-
estingly, PTTGIIP (pituitary tumor transforming gene-
binding factor) is a poorly characterized proto-oncogene
that has already been implicated in the etiology of
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Table 1 Significantly mutated genes identified by DOTS-Finder in four cancer types

Acute myeloid leukemia Thyroid carcinoma Breast cancer Bladder carcinoma
(S=196, MNSp =11) (S =326, MNSp = 19) (S = 1046, MNSp = 36) (S=145, MNSp = 177)
Gene NS g-value Gene NS g-value Gene NS g-value Gene NS g-value

name frequency name frequency name frequency name frequency
TSGs
CEBPA 0.066 0 G 0.049 80E-10  CBFB 0.021 0 ARIDTA 0.241 0
NPM1 0.276 0 EMGT 0.018 53E-08  CDH1 0.062 0 CDKNTA 0.145 0
RUNX1 0.092 0 RPTN 0.025 9.1E-06  GATA3 0.095 0 KDM6A 0214 0
TET2 0.087 0 PPM1D 0.015 0.0054  MAP2K4 0.039 0 TP53 0.262 0
TP53 0.077 0 T™MCO2 0.009 0.0056 MAP3K1 0.070 0 ELF3 0.076 1.2E-10
wWT1 0.061 0 IL32 0.009 0.0152  PTEN 0.040 0 MLL2 0.262 1.2E-10
RAD21 0.026 33E06 DNMT3A 0.015 0.2896 TP53 0.338 0 EP300 0.152 3.0E-09
PHF6 0.031 34E-06 TBX3 0.022 1.1E-12  RBI 0.110 2.3E-08
STAG2 0.031 1.4E-05 MLL3 0.065 59E-12  SPTANI 0.097 3.0E-06
EZH2 0.015 0.0007 AOAH 0019 3910 MLL3 0.200 6.1E-06
ASXLT 0.026 0.0014 CTCF 0.021 79E-10  CREBBP 0.131 1.2E-05
HNRNPK 0.010 0.0083 RUNXT 0.024 32E-06  STAG2 0.090 7.6E-05
CALR 0.010 0.0142 NCOR1 0.038 39E-06  FOXQI 0.048 0.0060
CBFB 0.010 0.0572 RB1 0.021 6.1E-06  TXNIP 0.055 0.0079
CBX7 0.005 0.0948 NCOR2 0.032 0.0003 FATI1 0.110 0.0370
BCOR 0.010 0.1971 STXBP2 0.010 00004  FBXW7 0.069 0.0428
AQP7 0.008 0.0017 GC2 0.069 0.0800
ZFP36L1 0012 00046  ZNF513 0.055 0.0911
RBMX 0.012 0.0056 KLF5 0.062 0.1184
GPS2 0.007 00095  GPS2 0.028 0.2599
CASP8 0.015 0.0104 NHLRC1 0.021 0.2635
CDKN1B 0.008 00125
UBC 0.008 0.0155
MED23 0013 0.0224
MYB 0.012 0.0407
CCDC144NL 0.008 0.1268
GNRH2 0.003 0.2062
HNF1A 0.009 0.7280
0Gs
CEBPA 0.066 0 BRAF 0.561 0 AKT1 0.022 0 TP53 0.262 0
DNMT3A 0.260 0 HRAS 0.037 0 PIK3CA 0.285 0 NFE2L2 0.076 6.1E-06
FLT3 0.270 0 NRAS 0.080 0 TP53 0.338 0 ERBB3 0.117 1.1E-05
IDH1 0.097 0 TG 0.049 3.5E-08  TBX3 0.022 9.0E-10  RARG 0.069 1.5E-05
IDH2 0.102 0 DNASE2 0.009 00694  SF3BI1 0017 34E-08  IRS4 0.014 0.6550
NRAS 0.077 0 PRDM9 0.018 0.0816 FOXAT 0.017 7.7E05  ELP5 0.014 0.6550
TP53 0.077 0 DICER1 0.009 0.1070  HISTIH3B 0.008 0.0001 RPS6 0.021 0.6550
U2AF1 0.041 0 ZNF845 0.018 0.1070 MEF2A 0.014 0.0002
PRG4 0.012 0.1085  PIK3R1 0.025 0.0008
PTTG1IP 0.012 0.1085 ATNT 0.017 0.0425
AKD1 0018 0.0431

MNSp, median number of non-silent mutations per patient; NS freq, non-synonymous mutation frequency among samples; S, number of samples. Genes in bold
are the closest to significance in the ranking.
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Figure 3 Comparative driver gene predictions in breast cancer and thyroid cancer. (A) The candidate driver genes predicted by DOTS-Finder in
BRCA are compared against four previously reported predictions: MuSiC, MutSig, TUSON Explorer and the TCGA publication. The five-set Venn diagram
shows the number of predicted genes in common between the different analyses and those uniquely predicted by each of them. The line delimiting
each set and the name of the corresponding method are depicted in the same color. The diagram uses a graduated color ramp from light yellow to
dark red to represent the overlap of an increasing number of tools that predict the same drivers. Although the BRCA mutational landscape is highly
heterogeneous among patients, all the methods agree on predicting the same 17 genes as drivers (darkest shade of red). In addition, DOTS-Finder is
able to predict seven genes that were never found by any method in BRCA. Also MutSig and TUSON Explorer retain unique predictions (11 and 5
possible driver candidates, respectively). This discrepancy is a reflection of the typical 'mountains and hills' landscape of the BRCA genome [4], with few
highly mutated genes (predicted by almost all the tools) and hundreds of low-frequency mutations (only identified by a specific tool). (B) Number of
genes predicted by TUSON Explorer and DOTS-Finder in the THCA dataset. The former predicts only few driver genes (6); of these, two-thirds are also
identified by DOTS-Finder. Notably, our tool shows a much higher sensitivity than TUSON Explorer with 12 new predicted genes.

TUSON Explorer

thyroid tumors [36,37]. Loss of DICERI is associated
with the development of many cancers; somatic mis-
sense mutations affecting DICERI are common in non-
epithelial ovarian tumors and these mutations show an
oncogenic behavior [38].

Atypical tumor suppressor genes and oncogenes

The concept of TSGs and OGs has evolved over time. In
conventional wisdom, TSGs are nonfunctional in tumors
and require biallelic loss of function to manifest tumori-
genicity [39]; OGs are typically characterized by acquired
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Table 2 Genetic and functional effect of mutations in
oncogenes and tumor suppressors

Functional effect

Gain Loss
Dominant  Typical OG ~ Dominant negative TSG
Genetic effect
Recessive None Typical TSG

A driver cancer gene is defined by a genetic effect (dominant, recessive) and a
functional effect (gain or loss). These two components ultimately define the
tumor suppressor and oncogene characteristics that we try to infer from the
mutational landscape (structural effect).

or enhanced function and a single mutated allele is suffi-
cient [40]. Thus, three levels of information are required
to classify a cancer driver gene as an OG or a TSG: func-
tional, structural and genetic. The functional level is de-
fined by a gain or loss of a biochemical function. It
requires understanding of the actual role of the gene in
tumorigenesis and of the pathways in which it is involved.
Functional changes result from and can be predicted based
on the structural information; this is what we ultimately
do by dividing mutations into truncating (TSG related) or
missense (OG related) ones and analyzing their pattern.
The genetic effect defines the dominant or recessive char-
acteristics of the driver gene. At the genetic level, a mu-
tated gene can be dominant or recessive depending on
how many dysfunctional copies are required to exert its
effect (Table 2).

Typically, the functional information is missing or
poorly understood for new driver candidates and the
genetic information (allelic-specific) is not directly avail-
able in cancer sequencing studies. Thus, the OG and
TSG classification must be inferred from the structural
level. It is not surprising that our tool can classify many
genes as being both TSGs and OGs within the same cancer
type, or even put them into different categories according
to the tumor context. This apparent misclassification might
cast a light on the particular behavior of some genes.
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There are four possible structural scenarios of mutations
in a gene (Table 3). The first two scenarios are shown in
Figure 2: a clustered missense mutation landscape with no
truncating mutations, implying a typical gain-of-function
OG like KRAS; and diffuse and predominant truncating
mutations with no missense pattern like APC, underlying
a loss-of-function TSG.

Figure 4 shows four genes with atypical patterns. 7P53
in endometrial carcinoma (Figure 4A) has a landscape of
mutations that can be considered borderline for both
the OG-S and TSG-S definitions, with a consistent num-
ber of diffuse truncating mutations (around 20%) and a
concentration of missense mutations on the DNA bind-
ing site. According to our tool, the duality of TP53 is re-
vealed in many tumor types and can mask a possible
dominant negative effect, as summarized in [41]. Similarly,
and strongly supported by the literature [42], DNMT3A
(Figure 4B) presents diffuse truncating mutations and a
visible missense cluster on the cytosine C5 DNA methyla-
tion domain. In both genes, a patient-specific mechanism,
which can distinguish the two different patterns, is prob-
ably implicated. In Figure 4C, we analyze two different
patterns of mutations in SMARCA4 in different tumor
types. Although considered a TSG [43], SMARCA4 is clas-
sified as a true TSG only in lung adenocarcinoma (LUAD),
with 11 out of 18 truncating mutations diffuse all over the
gene body. In lymphoma, the situation is the opposite:
none of the six mutations found is truncating, and three
are clustered on amino acid 973 on the SNEN 2 domain
of the protein. DOTS-Finder classifies this gene differently
according to the tumor type, suggesting a dominant nega-
tive effect of SMARCA4 that is able to regulate its own
expression with just one mutated copy [44], as previ-
ously described for this cancer [45]. The last example in
Figure 4D refers to NPMI, which is a shuttling protein in-
volved in AML. Although NPMI is almost exclusively
characterized by truncating mutations (53/54) and is clas-
sified as a TSG by DOTS-Finder, NPMI is instead a

Table 3 Inference of biological classification by structural effect of mutational landscape

Structural landscape

Missense Clustered No Clustered Any
Truncating No Diffuse Diffuse Clustered
Oncogene  Typical (gain-of-function) None found None found Atypical (gain of function through
for example, KRAS loss of inhibition) for example, NPM1
Biological Atypical (dominant negative, Typical Atypical (possible dominant
classification  Tumor gain-of-function) (loss-of-function)  negative, gain-of-function®)
None found
suppressor for example, SMARCA4 for example, for example, TP53 in UCEC
in lymphoma RB1 or DNMT3A in AML

Inferring the biological role of OGs and TSGs in cancer via the mutational landscape can lead to borderline results in the classification. While for the majority of
known cancer genes there is a clear correspondence between the mutational landscape and the biological classification, other genes require a careful evaluation

to assess their functional characteristics (Figure 4).

*A mixed mutational landscape with diffuse truncating and clustered missense in the same tumor type must be carefully analyzed. We should understand
whether truncating and missense mutations are mutually exclusive and what is the allelic status (heterozygosity or homozygosity) of the two different patterns.
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Figure 4 Mutational patterns of atypical tumor suppressor genes and oncogenes. (A) TP53 mutational landscape in uterine corpus endometrial
cancer. DOTS-Finder classifies this gene as a TSG as well as an OG. While this gene retains many truncating mutations, which are diffused all over the
gene body, it also encompasses a high number of clusterized missense mutations affecting DNA binding. (B) DNMT3A mutational landscape in acute
myeloid leukemia. The pattern of mutations shows diffuse truncating mutations and an evident missense cluster on the cytosine C5 DNA methylation
domain. The two types of mutations (truncating and missense) do not share the same domains. This pattern could reflect a double mechanism of
action of this gene in different patients. (C) SMARCA4 mutational landscape in diffuse large B-cell lymphoma (DLBCL) compared with lung adenocarcinoma
(LUAD). SMARCA4 is reported in the literature as a typical loss-of-function TSG and its mutational pattern in lung is consistent with this classification (diffuse
truncating mutations). In lymphoma no truncating mutations are called, and half of the missense mutations affect amino acid 973. DOTS-Finder classifies
SMARCA4 as a TSG in lung but as an oncogene in lymphoma, following its clustered missense pattern. We suspect a possible dominant negative effect in
this second example (Table 3). (D) NPM1 mutational landscape in acute myeloid leukemia. This gene is reported as a gain-of-function oncogene, although
it shows a peculiar mutational landscape: 99% of its mutations are truncating, but they are clustered on the carboxyl terminus of amino acid 288. Mutation
p.W288fs truncates the protein without deactivating it; NPM1 is instead delocalized from the nucleus to the cytoplasm. The total numbers of truncating
sites and missense mutations are indicated. The mutations are mapped on the corresponding canonical protein ideogram, and thus not all the mutations
can be represented (for example, splice site mutations are not included in the figure).

typical gain/switch-of-function gene [46]. The truncating
mutations are, in fact, clustered as p. W288fs, a four base
insertion that deactivates the carboxyl terminus and delo-
calizes the protein [47].

The importance of considering subsets of samples

Analyzing the pattern of genetic alterations in tumor
subsets classified by clinical or other biologic parameters
can reveal important insights into individual pathogenic
mechanisms and suggest possible therapeutic avenues.

For instance, in LUAD, about 25 to 30% of the cases are
not attributable to tobacco smoking as they are found in
people that have never smoked (never smokers). Studies
have revealed that LUAD in never smokers is a com-
pletely different disease from any type of lung cancer
arising in smokers (LUAD included), as it differs in
terms of clinical and pathological features, with diverse
prognosis and strategy of care [48]. The difference in the
mutational landscape [49] supports the hypothesis that
lung adenocarcinomas in never smokers are driven by
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distinct genetic mechanisms. To identify additional
driver genes with a role in the development of lung can-
cer in never smokers, we applied DOTS-Finder to the
somatic mutations of the 50 never smoker patients present
in the LUAD samples of the TCGA. These samples consti-
tute approximately 10% of the population; our driver
candidate predictions are reported in Table S4 in Add-
itional file 2. At the top of the list of predicted OGs is
EGFR, consistent with the fact that EGFR is a key onco-
genic player in never smokers with LUAD. Besides the
identification of very well-known cancer genes such as
SMAD4, STK11, SETD2, MET, KEAPI, TP53 and KRAS,
we also identified several putative driver genes that might
have relevant cancer development functions: somatic
mutations in GRMI disrupt signaling with multiple
downstream consequences [50]; mutations in RPLS have
been recently described as a potential oncogenic factor in
T-cell acute lymphoblastic leukemia [51]; inactivating mu-
tations in the SHA gene, which has a role as a TSG, have
been identified in familial paragangliomas [52,53]; WRN
encodes a helicase that is important for genomic integrity
and involved in the repair of double strand DNA breaks
and defects in this gene are the cause of the aging-
promoting Werner syndrome and copy number variations
or epigenetic inactivation of it have been recently found in
never smokers with LUAD [54] and non-small cell lung
cancer [55], respectively.

Similarly, kidney cancer can be classified into different
histological subtypes, the most common being kidney
renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP) and kidney chromophobe (KICH).
Applying DOTS-Finder separately on each kidney dataset
(results are in Table S2 in Additional file 2), we observed a
subtype-specific pattern of genetic alterations. KIRC and
KIRP share only SETD2, KIRC and KICH have only TP53
in common, and there are no common driver genes be-
tween KIRP and KICH. By analyzing all the datasets to-
gether we can predict two new putative driver genes,
GFRAL and STAG2, not appearing in the single analyses.
Since the KIRC subset is predominant in terms of sample
size, the aggregated analysis can recapitulate 69% of its
genes, while it can only identify 50% of KICH and 27%
of KIRP genes. In KIRP, we lose the following candidate
driver genes, which then appear to be tumor specific:
KDMG6A, SRCAPB, SAV1, DARS, OGGI, MET, ATPI0A;
similarly, in KICH we lose CDKNIA.

DOTS-Finder sets the threshold for OG-S and TSG-S
as a function of both the mutation rate of the analyzed
tumor and the sample size of the input dataset (Text S3f
in Additional file 1). These thresholds have a default
lower boundary. Nevertheless, for very small sample
sizes, these thresholds can still be too high to let genes
pass the functional step. We decided to introduce an op-
tion called lax that ignores the imposed lower boundary
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and allows more genes to pass the functional step in the
presence of a small sample size. We provide insights on
two tumors with small sample size (oligodendroglioma
(16 patients) and carcinoid (54 patients)) to highlight the
lax option in Text S2d and Table S5 in Additional file 1.

Conclusions

DOTS-Finder is the first published software that can
identify driver genes and classify them as TSGs and/or
OGs and it can also be used to identify driver genes with
atypical patterns of mutations (Figure 4). In addition, it
is the first software that can be used by a vast and di-
verse scientific community as it is easy to install and use,
does not require proprietary software, and does not re-
quire the use of low-level and hard to access files (for
example, bam files, coverage files).

We have applied DOTS-Finder on publicly available
datasets containing the mutation profile of 34 cancer
types. We have obtained plausible driver genes for many
low mutation rate cancers like gliomas, acute myeloid
leukemia and prostate cancer. Notably, we have obtained
results that are consistent with the literature even with
some high mutation rate tumor types, like head and neck
squamous cell carcinoma and bladder cancer, where the
risk of falling into the 'fishy genes' trap is higher.

Our tool outperforms other available methods in terms
of precision-recall, considering CGC as a gold standard.
Importantly, DOTS-Finder has confirmed the predic-
tions made by other methods and discovered novel
driver candidates never identified before.

Using DOTS-Finder, researchers can identify driver
genes in large public databases and also in user-defined
samples stratified for a given characteristic, as the software
is specifically designed to identify driver genes even in
small datasets (for example, obese/normal weight, male/
female, and so on). The use of few samples in cancer is
justified by the high molecular heterogeneity present in
tumors. Indeed, we believe that the results produced by
DOTS-Finder could be very useful for researchers who
want to identify driver genes in user-defined datasets, in
order to investigate the significance or relevance of par-
ticular somatic mutations in relation to specific clinical
questions.

Availability and requirements

Project name: DOTS-Finder.

Project home page: see [56].

Operating system(s): Unix based (MacOS, Linux).
Programming language: Python/R.

Other requirements: python 2.7, R > 2.

License: GNU GPLv3 +.

Any restrictions to use by non-academics: license
needed.
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Additional files

contains a comprehensive analysis of Pan-Cancer 12 data (Text S1a and

Figure S1), a statistical comparison between DOTS-Finder and the other
tools described in the main text (Text S1 and Figure S2), and additional

results from AML, BLCA, oligodendroglioma and carcinoid datasets (Text
S2, Figure S7 and Table S5). All material and methods are also included

(Text S3, Figures S3-S6, S8, S9 and Table S6).

all the results from the Pan-Cancer 12 analysis (Table S1), the results of
DOTS-Finder for 30 cancer types (Table S2), the analysis and comparison
of the results from other 4 cancer types (Table S3), and the comparative
output of DOTS-Finder obtained from the complete LUAD dataset and
the non-smoker LUAD subset (Table S4).

Additional file 1: Text S1-S3, Table S5-S6 and Figures S1-S9. This file

Additional file 2: Table S1-S4. This file contains four tables that include
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